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Abstract— In this paper we investigate the time frequency
localization (TFL) properties of different pulse shapes in
OFDM/OQAM systems. Various prototype functions, such as
rectangular, half cosine, Isotropic Orthogonal Transfer Algorithm
(IOTA) function and Extended Gaussian Functions (EGF) are
discussed and implemented in a Matlab/Octave Simulation Work-
bench for Software Defined Radio by direct discretisation of the
continuous time model. Simulation results show that pulse shapes
with good TFL properties can have near perfect reconstruction.

I. INTRODUCTION

Pulse shaping OFDM/OQAM systems [1]–[3] can achieve
smaller combination of inter-symbol and inter-carrier inter-
ference (ISI/ICI) without adding any cyclic prefix compared
to classic OFDM systems. Various pulse shaping prototype
functions with good TFL property have been proposed [4]–[7]
and implementation issues based on filter banks have been ad-
dressed [8]–[10]. Contrary to the classic OFDM scheme which
modulates each sub-carrier with a complex-valued symbol,
OFDM/OQAM modulates a real-valued symbol in each sub-
carrier and consequently allows time-frequency well localized
pulse shape under strict TFL requirement [11]. This enables
a very efficient way to package symbols that maximizes the
throughput or enhances interference robustness in the com-
munication link. OFDM/OQAM has already been introduced
in the TIA’s Digital Radio Technical Standards [12] and is
considered in WRAN (IEEE 802.22) [13].

The transmitted signal in pulse shaping OFDM/OQAM
systems can be written in the following analytic form

s(t) =
+∞∑

n=−∞

N−1∑
m=0

am,ngm,n(t) (1)

where am,n(n ∈ Z,m = 0, 1, ..., N−1) denotes the real valued
symbols conveyed by the sub-carrier of index m during the
symbol time of index n, and gm,n(t) represents the synthe-
sis basis which is obtained by the time-frequency translated
version of the prototype function g(t) in the following way

gm,n(t) = ej(m+n)π/2ej2πmν0tg(t − nτ0), ν0τ0 = 1/2. (2)

A modified inner product for demodulation is defined as
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Fig. 1. OFDM/OQAM Lattice.

follows

〈x, y〉
R

= �
{∫

R

x∗(t)y(t)dt

}

where �{•} is the real part operator. It decomposes the lattice
points gm,n into four sub-lattices [4]: EE={m even, n even},
EO={m even, n odd}, OE={m odd, n even} and OO={m
odd, n odd}, as shown in Fig. 1.

The orthogonality between different sub-lattices is automat-
ically guarantied and is independent of the prototype function
as long as this function is even. While inside the same sub-
lattice, the orthogonality can be ensured by finding an even
prototype function whose ambiguity function Ag(τ, ν) (see (9))
satisfies

Ag(2pτ0, 2qν0) =
{

1, when (p, q) = (0, 0)
0, when (p, q) �= (0, 0) p, q ∈ Z (3)

Two kinds of realizations of pulse shaping OFDM/OQAM
systems are of practical interest as they are very easy to be
implemented in the classic OFDM system. Assume T is the
OFDM symbol duration and F is the inter-carrier frequency
spacing, we have TF = 1 when no cyclic prefix is added. One
can either set ν0 = F and shorten symbol duration [10], or set
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τ0 = T and double the number of sub-carriers [9]. We use the
former approach.

The paper is organized as follows. Section II presents pulse
shape prototypes and introduces criteria for the TFL property.
The continuous and discrete time system models and the
direct implementation method are introduced in Section III.
Simulation results both on TFL and perfect reconstruction
are presented in Section IV and conclusions are drawn in
Section V

II. PULSE SHAPE PROTOTYPES AND TFL

In the following part of this section, several different
types of pulse shape functions are presented, followed by the
Heisenberg parameter ξ as an indicator for the TFL property.

A. Prototype Functions

1) Rectangular Function:

g(t) =
{ 1√

2τ0
, |t| ≤ τ0

0, elsewhere
(4)

2) Half Cosine Function:

g(t) =
{ 1√

τ0
cos πt

2τ0
, |t| ≤ τ0

0, elsewhere
(5)

3) Extended Gaussian Function and IOTA:

zα,ν0,τ0(t) =
1
2

[ ∞∑
k=0

dk,α,ν0

[
gα(t +

k

ν0
) + gα(t − k

ν0
)
]]

·
∞∑

l=0

dl,1/α,τ0 cos(2πl
t

τ0
)

(6)

where τ0ν0 = 1
2 , 0.528ν2

0 ≤ α ≤ 7.568ν2
0 , dk,α,ν0 are

real valued coefficients and can be computed via the rules
described in [4], [8]. This family of functions are named as
Extended Gaussian Function (EGF) as they are derived from
the Gaussian function gα which is defined by

gα(t) = (2α)1/4e−παt2 , α > 0 (7)

Note that, for EGF and Gaussian functions, their Fourier
transforms have the same shape as themselves except for an
axis scaling factor [8]

Fzα,ν0,τ0(t) = z1/α,τ0,ν0(f), Fgα(f) = g1/α(f) (8)

A special case of EGF, ζ(t) = z1, 1√
2
, 1√

2
(t), is called Isotropic

Orthogonal Transform Algorithm (IOTA) Function due to its
invariance to Fourier transform Fζ(t) = ζ(f).

B. Ambiguity Function and Heisenberg Parameter

The (auto-)ambiguity function is defined as

Ag(τ, ν) =
∫

R

e−j2πνtg(t + τ/2)g∗(t − τ/2)dt (9)

and the Heisenberg parameter [1] ξ = 1
4π∆t∆f ≤ 1 where{

(∆t)2 =
∫

R
t2|g(t)|2dt

(∆f)2 =
∫

R
f2|G(f)|2df (10)

in which g(t) is assumed to be origin-centered with unity
energy [14] for simple expression. ∆t is the mass moment of
inertia of the prototype function in time and ∆f in frequency,
which indicates how the energy (mass) of the prototype func-
tion spreads over the time and frequency plane. According to
the Heisenberg uncertainty inequality [15], 0 ≤ ξ ≤ 1, where
the upper bound ξ = 1 is achieved by the Gaussian function
and the lower band ξ = 0 is achieved by the rectangular
function whose ∆f is infinite. The larger ξ is, the better joint
time-frequency localization the prototype function has.

III. SYSTEM IMPLEMENTATION

Rather than deriving the implementation structure from
filterbank theory, like in [8]–[10], we try to find an imple-
mentation method by direct discretisation of the continuous
time model without considering the perfect reconstruction (PR)
condition.

Let s(t) be the output signal of the OFDM/OQAM modu-
lator

s(t) =
∞∑

n=−∞

N−1∑
m=0

(a�
m,ngm,2n(t) + a�

m,ngm,2n+1(t)), (11)

the demodulated signal at branch k during symbol duration n
can be written as

ã�
m,n = �

{∫
R

s(t)g∗m,2n(t)dt

}

ã�
m,n = �

{∫
R

s(t)g∗m,2n+1(t)dt

} (12)

where � and � indicate the real and imaginary part respec-
tively. By sampling s(t) at rate 1/Ts during time interval
[nT − τ0, nT + τ0), we get

s(nT + kTs) =
∞∑

l=−∞

N−1∑
m=0

[
a�

m,lg(nT + kTs − lT )

+ja�
m,lg(nT + kTs − lT − T

2
)
]

ej π
2 (m+2l)ej2π mk

N

(13)

where n ∈ Z and k = −N
2 , ..., N

2 − 1.
Let sk[n] = s[nN + k] = s(nT + kTs), and rewrite (13) as

sk[n] =
∑

p

g(pT + kTs)

[
N−1∑
m=0

a�
m,n−pej π

2 (m+2n−2p)ej2π mk
N

]

+
∑

p

g(pT + kTs − T

2
)

[
N−1∑
m=0

ja�
m,n−pej π

2 (m+2n−2p)ej2π mk
N

]

=
∑

p

[
gk[p]Ak

N (a�
m,n−p) + gk−N/2[p]Ak

N (ja�
m,n−p)

]
= gk[n] ∗ Ak

N (a�
m,n) + gk−N/2[n] ∗ Ak

N (ja�
m,n) (14)

where

Ak
N (xm,n) =

N−1∑
m=0

xm,nej π
2 (m+2n)ej2π mk

N (15)

gk[n] = g[nN + k] = g(nT + kTs) (16)
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Fig. 2. Implementation diagram.

Therefore the OFDM/OQAM modulator can be easily imple-
mented by an IFFT block defined in (15) followed by a bank
of component filters which are obtained by partitioning the
polyphase representation of g(t) in the way defined in (16).

At the receiver side, we sample the received signal r(t) at
rate 1/Ts, and rewrite the integration in (12) via approximation

ã�
m,n ≈ �


Ts

∞∑
l=−∞

N
2 −1∑

k=−N
2

r(lT + kTs)g∗m,2n(lT + kTs)




= �

Tse−j π

2 (m+2n)

N
2 −1∑

k=−N
2

∞∑
l=−∞

rk[l]gk[l − n]e−j2π mk
N




= �

Tse−j π

2 (m+2n)

N
2 −1∑

k=−N
2

rk[n] ∗ gk[−n]e−j2π mk
N


 (17)

= �

Tsej π

2 (m−2n)

N
2 −1∑

k=−N
2

rk[n] ∗ gk[−n]e−j2π
m(k+N/2)

N




ã�
m,n ≈ �


Tse−j π

2 (m+2n)

N
2 −1∑

k=−N
2

rk[n] ∗ gk−N
2
[−n]e−j2π mk

N




where gk[−n] = g[−nN + k] = g(−NT + kTs). Similarly,
the OFDM/OQAM demodulator can be implemented by filter
component banks gk[n] and gk−N

2
[n] followed by an FFT

block. The implementation diagram is shown in Fig. 2, which
looks similar as the system diagram presented in [16].

Assume the pulse shape prototype function g(t) (or its trun-
cation) has finite duration in −Mτ0 ≤ t ≤ Mτ0, its discrete
version g[n] is nonzero when n = −MN/2, ...,MN/2, and
therefore the length of g[n] will be MN + 1. In order to have
the same number of taps in each component filter, we just drop
the last sample of g[n] so that the length of each component
filter equals to M .
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Fig. 3. Demodulation gain of OFDM/OQAM system.

IV. NUMERICAL RESULTS

A. Time Frequency Localization (TFL)

To illustrate how the demodulation gain varies with respect
to the time and frequency spread, the ambiguity function of the
output of one demodulation branch is plotted both in a three
dimensional plot and a two-dimension contour plot, as shown
in Fig. 3, in which the IOTA prototype function is used and
axes are normalized by τ0 and ν0 respectively.

Here the data transmitted on each basis function is ignored
for simplicity, and only the neighboring lattice points in the
same subset are considered. Those pulses on lattice points with
distance 2τ0 or 2ν0 have negative envelope due to the phase
factor ej π

2 (m+n) which equals to −1 when either |m| or |n|
equals to 2, but not both. 0 is achieved at the boundary of each
lattice grid and therefore no interference will be introduced
by neighbors as long as the normalized time or frequency
dispersion is less than 2.

The Heisenberg parameter ξ for each pulse is calculated
with τ0

T = ν0
F , see Table I. For each normalized time or

frequency unit, 32 samples are used.
The Gaussian pulse achieves the maximum of ξ = 1 and

therefore has the best TFL property. The IOTA pulse shows
satisfying localization which maximizes ξ among the EGF
functions [4]. One thing has to be noticed is that the IOTA



TABLE I

THE HEISENBERG PARAMETER ξ

t, f ∈ Recta HalfCosine Gauss IOTA
EGFb

α = 3.774
[−6, 6] 0.3518 0.8949 1.000 0.9769 0.7015

[−40, 40] 0.1028 0.8705 1.000 0.9769 0.6878
a for rectangular pulse, (∆f)2 =

∫
f2sinc2(wf)df = ∞ and therefore

ξ = 0 in theory.
b for EGF pulse, ξ(α) = ξ(1/α) and it will steadily increase to its

maximum as α approaches 1 from either direction.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(d)

Fig. 4. Signal constellation with 16QAM modulation for (a) EGF (b) Half
Cosine (c) Rectangular (d) Root Raised Cosine with ρ = 0.2.

prototype function will not be used in our implementation as
we have to set τ0

T = 1/2 and ν0
F = 1, rather than what is

demanded in IOTA function where τ0
T = ν0

F = 1/
√

2.

B. Simulation in the SDR Workbench

We have implemented the pulse shaping OFDM/OQAM
system in the Matlab/Octave simulation workbench [17]. The
FFT/IFFT size is 64 for all the following simulations. As
stated in Section III, the pulse shape prototype function g(t) is
truncated (if necessary) to a finite duration −Mτ0 ≤ t < Mτ0.

Fig. 4 presents the reconstructed signal constellation at
the OFDM/OQAM demodulator output for an ideal channel.
With the length of component filters M = 12, EGF, Half
Cosine and Root Raised Cosine prototypes can achieve almost
perfect reconstruction (see Fig. 4 a, b, d) while the Rectangular
prototype will result in some distorsion (see Fig. 4 c).

For the EGF prototype function, three parameters will affect
its performance: α, τ0 and the length of filter taps M . Fig.
5 displays the influence of α and M . It shows that when
the number of filter taps is large enough (e.g. M = 6), the
performance of EGF prototypes with different α is pretty good.
However, when the number of filter taps is insufficient (e.g.
M = 2), the most centralized prototype (with highest α) will
be least affected by truncation (cf. Fig. 5 b vs. Fig. 5 d).

Fig. 6 displays the influence of the symbol length τ0

on reconstruction performance with fixed α = 2 and M .
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Fig. 5. Signal constellation of EGF with 16QAM modulation.
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Obviously even a slight variation of τ0 affects the performance
significantly.

V. CONCLUSIONS

The time frequency localization properties indicated by
the Heisenberg parameter, the Ambiguity function, as well
as the interference function and the instantaneous correlation
functions [14] provide an intuitive way to describe how signals
from different carriers and different symbols get along with
each other. As the transmitted signal composed by basis
functions will place a copy of the prototype function on each
lattice point in the time-frequency plane, the less power the
prototype function spreads to the neighboring lattice region, the
better reconstruction of the transmitted signal can be retrieved
after demodulation.

By adaptively exploiting different prototype functions with



varying TFL properties, dynamic spectrum allocation can be
achieved in a more natural way, since the transmitter and
receiver adapts dynamically to different channel conditions
and interference environments leading to a higher reliability
and spectral efficiency can be expected. Also simplified syn-
chronization can be expected as less sensitivity to time and
frequency offset is achieved. Therefore, OFDM/OQAM is a
promising candidate in the future wireless communication.
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Conference, Linköping, Sweden, November 2006, pp. 145–148


