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ABSTRACT
Adaptation is crucial to realise high data rate transmission
in multicarrier communication systems over dispersive chan-
nels. Apart from rate/power adaptation enabled by orthogo-
nal frequency division multiplexing (OFDM), OFDM/offset
QAM (OFDM/OQAM) systems provide possibility to ad-
just pulse shapes regarding to the channel characteristics.
In this paper we discuss and evaluate pulse shape adaptiv-
ity in OFDM/OQAM systems with focus on the extended
Gaussian functions (EGF) which have been shown to be
good candidates for pulse shape adaptation. By investi-
gating the time frequency dispersion robustness and carrier
frequency offset sensitivity, both analysis and simulation re-
sults show that pulse shape adaptation with respect to the
channel state information can improve the system perfor-
mance.

1. INTRODUCTION
Multicarrier communication technologies are promising can-
didates to realize high data rate transmission in Beyond 3G
and further wireless systems where the channel is mostly
doubly dispersive. Contrary to the classic OFDM system
using a cyclic prefix (CP-OFDM) to combat time disper-
sion, OFDM/OQAM [1, 2] which utilises well designed pulse
shapes and/or system lattice can achieve smaller ISI/ICI
without using the cyclic prefix. Performance evaluation of
OFDM/OQAM has already illustrated promising advantage [3,
4] and it has already been introduced in the TIA’s Digi-
tal Radio Technical Standards [5] and been considered in
WRAN (IEEE 802.22) [4], where the robustness to frequency
dispersion is not taken into account.

Among other famous pulse functions, the extended Gaus-
sian function (EGF) [6] is well known for its localisation
variation in the time-frequency plane. Therefore it plays a
vital role in the OFDM/OQAM pulse shape adaptation in
the following discussion. Besides, adjustment of other pa-
rameters, such as FFT size, sampling frequency, etc., will
also change the overall performance largely. The purpose of

this paper is to investigate and evaluate pulse shape adap-
tivity in OFDM/OQAM systems to see how it can affect the
performance over dispersive channels.

The rest of this paper is organized as follows. Section 2
presents the system model and Section 3 introduces two
time frequency localisation (TFL) parameters and their re-
lationship to system performance with respect to channel
realisations are discussed. In Section 4 the sensitivity of
OFDM/OQAM systems to carrier frequency offset are dis-
cussed. Uncoded bit error rate simulation results with vari-
ous parameter adaptation over time dispersion channels are
presented in Section 5 and conclusions are drawn in Sec-
tion 6.

2. SYSTEM MODEL
The transmitted signal in CP-OFDM and OFDM/OQAM
systems can be written in the following analytic form

s(t) =

+∞∑
n=−∞

N−1∑
m=0

am,ngm,n(t), (1)

where am,n(n ∈ Z, m = 0, 1, ..., N − 1) denotes the symbol
conveyed by the sub-carrier of index m during the symbol
time of index n, and gm,n(t) represents the synthesis ba-
sis which is obtained by time-frequency translation of the
prototype function g(t). In CP-OFDM systems

gm,n(t) = e
j2πmFtg(t− n(T + Tcp)), TF = 1 (2)

where T and F are the symbol duration and inter-carrier fre-
quency spacing respectively, am,n are complex valued sym-
bols and g(t) is the rectangular function. In OFDM/OQAM
systems

gm,n(t) = e
j(m+n)π/2

e
j2πmν0tg(t− nτ0), ν0τ0 = 1/2 (3)

where the real part and imaginary part of the complex sym-
bol am,n are transmitted separately with symbol duration τ0

and inter-carrier spacing ν0 respectively. Hence OFDM/OQAM
systems transmit at half symbol rate but with doubly den-
sity compared with CP-OFDM systems if the length of cyclic
prefix equals to zero.

Two kinds of realizations of pulse shaping OFDM/OQAM
systems are of practical interest as they are very easy imple-
ment in classic OFDM systems. One can either set ν0 = F
and shorten the symbol duration, or set τ0 = T and double
the number of sub-carriers. We use the former approach in
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this paper via the efficient implementation method derived
in [7].

After passing through the doubly dispersive channel, the
received signal (noise is omitted here for simplicity) can be
written as

r(t) =

∫
h(t, τ)s(t− τ)dτ =

∫∫
H(ν, τ)s(t− τ)ej2πνtdνdτ

=

∫∫
H(ν, τ)

∑
m,n

am,ngm,n(t− τ)ej2πνtdνdτ (4)

where h(t, τ) is the channel impulse response and H(ν, τ)
is its Fourier Transform with respect to t. Without loss of
generality, we assume symbol a0,0 is going to be detected,

â0,0 =< r(t), g0,0(t) >=

∫
r(t)g∗0,0(t)dt (5)

=

∫∫∫
H(ν, τ)

∑
m,n

am,ngm,n(t− τ)g∗0,0(t)e
j2πνtdtdνdτ

Define the ambiguity function1 as

Ag(τ, ν) =

∫
R

e−j2πνtg(t + τ/2)g∗(t− τ/2)dt

then for OFDM/OQAM (5) can be rewritten as (8), shown
on the top of next page. Under the assumption of wide
sense stationary uncorrelated scattering (WSSUS) channel,
we have

E{H(ν, τ)H∗(ν′, τ ′)} = Sh(τ, ν)δ(τ − τ ′, ν − ν′) (6)

where E{}̇ is the expectation operator and Sh(τ, ν) is the
channel scattering function. Assume all the transmitted
symbols are independent with uniform energy, i.e., E{am,na∗m′,n′} =

δmm′δnn′, and apply the WSSUS assumption (6), the energy
of the desired signal part S and the interference part I in
(8) can be written as

ES = E{SS∗} =
∫∫

Sh(τ, ν)|Ag(τ, ν)|2dνdτ
EI =

∑
(m,n) �=(0,0)

∫∫
Sh(τ, ν)|Ag(nτ0 + τ, mν0 + ν)|2dνdτ

(7)

which are the same as, at least on the analogy of, the energy
expressions derived for pulse shape multicarrier systems [10]
and for hexagonal multicarrier systems [9]. Different optimi-
sation methods regarding maximising desired signal energy
ES [11], or minimising interference EI [10, 9], or maximising
the signal to interference ratio ES/EI [10] are considered.
However analytical solutions only exist for some special cases
and therefore numerical solutions are used for general cases.

3. TIME FREQUENCY LOCALISATION PA-
RAMETERS

For different channels, the optimal pulse shape is normally
different. A widely used parameter to measure the time
frequency localization of the pulse shape is the Heisenberg
parameter [2] ξ = 1

4πΔtΔf
≤ 1 with its maximum achieved

by the Gaussian function gα(t) = (2α)1/4e−παt2 , α > 0. Δt
is the mass moment of inertia of the prototype function in
time and Δf in frequency, which indicates how the energy
(mass) of the prototype function spreads over the time and

1There is another definition for the ambiguity function,
which differs by a phase shift.
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Figure 1: TFL parameters (ξ,η) for EGF with λ = 1
(dashed line), λ = 2 (solid line). TFL for the Gaus-
sian function (dotted line) is plotted as reference.

frequency plane. The larger ξ is, the smaller space the pulse
shape occupies in the T-F plane.{

(Δt)2 =
∫

R
t2|g(t)|2dt

(Δf)2 =
∫

R
f2|G(f)|2df

(9)

Here g(t) is assumed to be origin-centered with unity en-
ergy [8] for simple expressions.

In order to know how the pulse shape spreads over the T-
F plane, we define the Direction parameter η = Δt

Δf
. For

EGF functions with τ0
T

=
√

1
2λ

and ν0
F

=
√

λ
2
, where λ > 0

is a constant scaling factor, the variation of ξ and η with
respect to α for EGF functions with λ = 1 ( τ0

T
= ν0

F
=√

2
2

) and λ = 2 ( τ0
T

= 1
2
, ν0

F
= 1) is shown in Fig. 1, in

which τ0 and ν0 are normalised by T and F respectively for

convenience. Compared to the case with τ0
T

= ν0
F

=
√

2
2

,

the EGF function with τ0
T

= 1
2

have larger variation of η
and better stability of ξ, which makes it more suitable for
pulse shape adaptation. The Gaussian function gα(t) which
has η = 1, will not be taken into consideration since it will
introduce large reconstruction distortion as we will see later.

To maximise the immunity to delay and frequency disper-
sion, the optimum pulse shape should have the same shape
as the channel itself [2, 11], namely,

Δt

Δf
≈

τrms

fD
≈

T

F
(10)

where τrms is the root-mean-square (RMS) delay spread and
fD is the maximum Doppler shift. If the value of η is calcu-
lated with normalised τ0 and ν0 (by T and F respectively)
as in Fig. 1, (10) can be rewritten as

η(α) ≈
τrms/T

fD/F
=

τrms

fD
(
Fs

N
)2 (11)



â0,0 =
∑

m,n am,njm+n
∫∫

H(ν, τ)Ag(nτ0 + τ, mν0 + ν)ejπ(nτ0+τ)(mν0+ν)dνdτ

= a0,0

∫∫
H(ν, τ)Ag(τ, ν)ejπτνdνdτ︸ ︷︷ ︸

Signal S

+
∑

(m,n)�=(0,0)

am,njm+n

∫∫
H(ν, τ)Ag(nτ0 + τ, mν0 + ν)ejπ(nτ0+τ)(mν0+ν)dνdτ

︸ ︷︷ ︸
Interference I

(8)

Therefore, for each specific channel realisation (i.e. τrms

fD
is

determined), the performance against delay and Doppler dis-
persion depends on the bandwidth F and the direction pa-
rameter η. We can adjust these two parameters to improve
the system performance. When the sampling frequency Fs

is fixed in some instance, the FFT size N will be subject to
adaptation since F = Fs

N
.

4. ORTHOGONALITY PARAMETER γ2 AND
FREQUENCY OFFSET SENSITIVITY

Define the orthogonality parameter for different pulse shapes
as

γ2 = E{|ãm,n − am,n|
2} (12)

where am,n is the transmitted symbol, ãm,n is the recon-
structed signal. γ2 can also be used to indicate the distortion
power introduced by non-perfect reconstruction through an
ideal channel (r(t) = s(t)), see Table 1. CP-OFDM and
OFDM/OQAM with the half cosine function can achieve
perfect reconstruction in the absence of a channel as the level
of distortion power reaches the resolution limit of a double
precision number (≈ 10−15). OFDM/OQAM with the EGF
pulse shape introduce limited distortion due pulse shape
truncation, and the distortion introduced by the Gaussian
pulse is very significant due to lack of orthogonality.

Table 1: Distortion power after reconstruction

pulse OFDM
half-
cosine

Gaussian
α=1|α=2

EGF
α = 1

EGF
α = 2

γ2 [dB] -314 -309 -11 |-22 -96 -178

Assume each block of data consists of Nr frames and each
frame contains N data symbols in OFDM/OQAM and N +
Ncp symbols in CP-OFDM respectively, with Ncp denotes
the number of cyclic prefix symbols inserted. Based on pre-
vious work in [12] and take the length of data block into
consideration, it can be shown that in CP-OFDM the dis-
tortion power γ2 introduced by carrier frequency offset fΔ

through an ideal channel (with only frequency offset added)
can be written as

γ2
OFDM =

4

3
(πNNr

fΔ

Fs
(1 +

Ncp

N
))2 (13)

where N is FFT size, fΔ
Fs

is the normalised frequency offset.
The number of frames Nr per block appears since the phase
shift caused by carrier frequency offset fΔ accumulates as
the length of data block increases, and therefore increase
the distortion power. General expression for OFDM/OQAM
with different pulse shapes has a similar form as for CP-
OFDM

γ2
OQAM = βg

4

3
(πNNr

fΔ

Fs
)2 (14)
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Figure 2: Frequency offset robustness for CP-
OFDM and OFDM/OQAM (EGF 2 taps) systems,
4QAM.

where βg > 0 is a scaling factor related to the pulse shape
g(t) and can be determined by numerical methods. The
number of taps in the pulse shape filterbank will affect the
value of βg since it will increase the length of the data block
and therefore the phase shift, if the number of taps used
is larger than 1. Therefore a trade off between orthogonal-
ity and frequency offset sensitivity has to be sort to achieve
small βg. Both simulation results (markers only) and curves
by (13) and (14) are shown in Fig. 2. When the same sys-
tem parameters are used, OFDM/OQAM always outper-
forms CP-OFDM by 0.9dB to 2.3dB, in which about 0.5dB

(
Tcp

T
= 1

16
) to 1.9dB (

Tcp

T
= 1

4
) comes from not using the

cyclic prefix.

5. SIMULATION RESULTS
In this section we present uncoded bit error rate (BER) sim-
ulation results carried out on the Matlab/Octave Simula-
tion Workbench for Software Defined Radio [13]. A Monte
Carlo-based WSSUS channel model [14] for doubly disper-
sive channels is extended and used. Assume that the time
and frequency dispersive channel has Q resolvable paths
hq, q = 0, 1, 2, ..., Q−1, each with time spread τq, Maximum
Doppler shift fq, power amplitude βq and random phase shift
ϕq. τd = maxi,j |τi − τj | is defined as the delay spread and
Bd = 2fD as the Doppler spread, where fD = maxq(fq) is
the maximum Doppler frequency shift. With assumption of
exponential delay power profile and U-shape Doppler power



spectrum, we have

Sh(τ, ν) =
e
− |τ|

τrms

τrms

1

πfD

√
1− ( ν

fD
)2

(15)

where τrms is the RMS delay spread. Two time dispersive
channels and one doubly dispersive channel are used in the
following simulation, with the channel parameters listed in
Table 2. For a carrier frequency fc = 2.5GHz, Doppler
spread Bd = 2fD = 700Hz is equivalent to a moving speed
of 157.5km/h.

Table 2: Channel parameters

channel τ ∈ [ns] τd [ns] τrms [ns] Bd[Hz] #taps
A [0,4167] 4167 1042 0 < 10
B [-1042,3125] 4167 1402 0 < 10
C [0,4167] 4167 1042 700 < 10

In OFDM/OQAM systems each component filter has maxi-

mum 4 taps and a cyclic prefix with length
Tcp

T
= 1

8
is used

in the CP-OFDM system, unless mentioned otherwise. Fre-
quency separation F = 15kHz is used for both CP-OFDM
and OFDM/OQAM, and Nr = 10 frames are packed in
one block and transmitted through tapped delay line chan-
nels. Each block contains one pilot frame for channel es-
timation and one-tap frequency domain equaliser (FDE)
is used together with a normal AWGN symbol detector.
In OFDM/OQAM systems, EGF with 4-tap filterbank and
halfcosine with 1-tap filterbank are used. The Gaussian pa-
rameter α in EGF is chosen via numerical solution by max-
imising the signal power (denoted as ES), or by minimising
the interference power (denoted as EI). The lower bound
α = 0.5 in EGF functions are chosen for reference.

Fig. 3 and Fig. 4 illustrates the BER performance of un-
coded transmission for OFDM/OQAM through time disper-
sive channels. When channel A is used, the distortion caused
by time dispersion is fully removed by cyclic prefix in CP-
OFDM and reduced by pulse shapes in OFDM/OQAM sys-
tems. The moderate gain of OFDM/OQAM compared with
CP-OFDM in low SNR region mainly comes from the energy

saved by not using the cyclic prefix (0.51dB for
Ncp

N
= 1

8
).

When channel B is used, OFDM/OQAM outperforms CP-
OFDM as the interference from “early” arrived paths can-
not be removed by the cyclic prefix. Besides, a moderate
spectral efficiency gain is achieved in OFDM/OQAM by
not using the cyclic prefix. It is a little bit surprising that
the performance of EGF with minimised interference power
(EI) performs worse than EGF with maximised signal power
(ES), as you can see in Fig. 3 and Fig. 4. One possible rea-
son is that the minimisation of interference power is based
on the assumption of perfect equalisation, while it is not
the case in our implementation with a one-tap FDE. Since
channel A and channel B are purely time dispersive, a pulse
with larger support in time domain will satisfy the require-
ment stated in (11), which means a smaller value of α for
EGF functions. Therefore EGF with α = 0.5Empirical ob-
servation shows that 2 performance the best among different
2α ∈ [0.5, 7.5] for EGF functions will give a good trade off
between time frequency localisation and orthogonality.
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Figure 3: BER vs. SNR over channel A with
F = 15kHz for OFDM (Ncp = N

8
) and OFDM/OQAM

with EGF (4 taps) and halfcosine (1 taps), 4QAM.

pulse shapes in OFDM/OQAM.

The uncoded BER performance over doubly dispersive chan-
nels are shown in Fig. 5. The performance degradation due
to channel variation are very significant in all the systems,
while OFDM/OQAM with different pulse shapes all out-
perform CP-OFDM. However, the difference between pulse
shapes is not resolvable. A more powerful detector, such as
minimum mean square error (MMSE) detector with succes-
sive interference cancellation [9], are needed to exploit the
benefit of higher signal to interference ratio.

6. CONCLUSIONS
The performance of pulse shape adaptation in OFDM/OQAM
systems over dispersive channels has been discussed and
evaluated by investigating the time frequency dispersion ro-
bustness, carrier frequency offset immunity, and sensitiv-
ity to parameter variation. Both analysis and simulation
results show that pulse shape adaptation with respect to
the channel state information can actually improve the sys-
tem performance. As the effect of α in EGF functions on
OFDM/OQAM performance turns out to be not significant
and therefore only an approximate value is enough. Since
η(α) ∝ 1

α
, reasonable approximation can be made in search-

ing of the proper value of α. With the help of the Gaussian
parameter α for EGF functions, pulse shape adaptation can
be easily realised.
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