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Abstract

Noble-metal-based nanostructures can exhibit strong localized plasmon

resonance at optical frequency, which leads to efficient plasmonic light ab-

sorbers. Such an artificially engineered absorber can have potential appli-

cations in sensing, cancer diagnosis and therapy, and photovoltaic cells etc.

This thesis systematically studies a particular class of plasmonic absorber

based on gold nanoparticles deposited on top of a continuous gold substrate.

In our case studies, the nanoparticles have sub-wavelength sizes of less than

50 nm; their reflectances are examined over 400-800 nm light wavelength

range. With a 3D finite-element method, we identified that the resonance

at especially a long-wavelength position originates not from dipole reso-

nance of the particles, but from the inter-particle near-field coupling reso-

nance. The influences of particle size, particle shape, inter-particle distance,

particle-substrate spacer, particle lattice, number of particle layers etc on

the resonance are studied thoroughly. Experimentally, an absorber based

on chemically-synthesized Au@SiO2 core-shell nanoparticles was fabricated.

Measurement shows that the absorber has a characteristic absorption band

around 800 nm with an absorbance peak of ∼90%, which agrees surprisingly

well with our numerical calculation. The fabrication technique can be easily

scaled for devising efficient light absorbers of large areas.
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Chapter 1

Introduction

1.1 Plasmonic absorbers

Optical metamaterials (MMs) are artificially structured materials with nanoscale

inclusions and strikingly unconventional properties at optical frequencies [1]. No-

ble metals, like copper, silver, and gold are used as excellent mirror materials since

ancient time. However, when they are patterned in subwavelength nanostructure,

the reflectance may disappear because light can be transferred to the collective

electron excitations and henceforth damped through collision with lattice. The

collective electron oscillation excited by optical frequency electromagnetic wave

is known as localized surface plasmon resonances (LSPR) [2]. This resonant fre-

quency strongly depends on the size, shape, dielectric properties, and the sur-

rounding dielectric environment of the nanoparticles [3]. Thanks to the modern

nanofabrication technique such as electron-beam lithography (EBL) [4], focused-

ion beam milling [5], or self-assembly of colloids [6], the applications of optical

properties of LSPR have been explored enormously in recent years. For exam-

ple, based on the dependence of dielectric environment, Liu et al. demonstrated

a perfect absorber as plasmonic sensor for refractive index sensing [7]. Also, a

1



2 CHAPTER 1. INTRODUCTION

lot of research has focused on utilizing the energy absorption process to enhance

the efficiency of photovoltaic cells [8]. However, for a traditional metal-insulator-

metal(MIM) structure absorber operating in the visible regime, the dimensions

of the nanoparticles are under 50 nm. Even with EBL process, it’s a formidable

task to fabricate these tiny particles, especially when it comes to fabricate large

sample.

Recently, a perfect plasmonic absorber in a stack of metal and nanocomposite

showing almost 100% absorbance covering all the visible spectra range has been

demonstrated by Hedayati et al. [9]. It is fabricated by a cost-effective method and

compatible with current industrial methods for microelectromechanical systems

(MEMS). Absorbers fabricated in this way can be cheap and flexible. The goals

of this thesis are, first to simulate of this kind of nano-spheres based absorber

to investigate all the factors that may affect the optical response, and second to

design, fabricate ,and characterize a novel absorber based on Au@SiO2 core-shell

nanoparticles.

1.2 Overview of the thesis

In this thesis, Chapter 2 will introduce the electromagnetic theory of metal and

the background knowledge of LSPR. Effect of mean free path (MFP) on dielectric

properties of nano-spheres with diameter under 10 nm will also be introduced.

Chapter 3 focuses on the simulation results of the reported perfect plasmonic

absorber [9]. We will start with briefly introducing the numerical method used in

our simulations. It is followed by effects of several factors on the optical response

of the absorber.

In chapter 4, we propose a novel designed absorber based on nano-spheres. We

will also show the optical characterization of the fabricated absorber.



Chapter 2

Plasmonics

2.1 Introduction

The high absorbance of the plasmonic absorber is due to LSPR, which is basically

caused by interaction of electromagnetic field with metallic nanoparticles. This

interaction can be well understood in the classical electromagnetic theory based

on Maxwell’s equations. We will start with a briefly review of Maxwell equations

and several models of dielectric function of metal. The chapter will end with the

theory behind LSPR and effect of MFP.

2.2 Maxwell’s equations

According to classical electromagnetism, light is electromagnetic radiation, which

can be describe using two fields: the electric field E(r, t) and the magnetic induc-

3



4 CHAPTER 2. PLASMONICS

tion field B(r, t). Both of them are governed by Maxwell’s equations:

∇ ·E = 1
ε0
ρa (2.1a)

∇ ·B = 0 (2.1b)

∇×E = −∂B

∂t
(2.1c)

∇×B = µ0Ja + ε0µ0
∂E

∂t
(2.1d)

in which ρa is the charge density due to both separate charges and polarization

charges, and Ja is the current density due to free currents, currents related to

polarization charge and current related to magnetization.

By introducing two new fields: the electric displacement field D and the mag-

netic field H :

D = ε0E + P (2.2a)

H = B

µ0
−M (2.2b)

Maxwell’s equations in matter can then be written as:

∇ ·D = ρ (2.3a)

∇ ·B = 0 (2.3b)

∇×E = −∂B

∂t
(2.3c)

∇×H = J + ∂D

∂t
(2.3d)

Here, the source terms ρ and J contain only the free charges and free currents

respectively. In order to a solvable system, we have to find a relationship between

P and E and between M and B, which is given by constitutive relation.



2.2. MAXWELL’S EQUATIONS 5

Since we consider only nonmagnetic material, the magnetization field vanishes:

M = 0 (2.4)

then we get:

B = µ0H (2.5)

Most materials contain electrical dipoles or are polarized due to electric field.

Consequently, P should be a function of electric field E. Expand it into Taylor

series we get [10]:

P = P (0) + P (1) + P (2) + . . . (2.6)

in which P (0) is the static polarization, independent of electric field. P (1) is the

first-order polarization, which is proportional to the electric field. P (2) is the

second-order polarization, proportional to square of the electric field and so on.

In general the nth order polarization is

P
(n)
i (r, t) = ε0

∫∫∫
V

dr1 · · ·
∫∫∫
V

drn

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtnχnij1···jn(r, r1, . . .

rn, t, t1, . . . , tn)Ej1(r1, t1) · · ·Ejn(rn, tn) (2.7)

with χ(n) the nth order susceptibility which is a tensor of rank n+1. If we assume

that the materials are homogeneous and stationary, the constitutive relation can
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be rewritten as:

P
(n)
i (r, t) = ε0

∫∫∫
V

dr1 · · ·
∫∫∫
V

drn

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtnχnij1···jn(r − r1, . . .

r − rn, t− t1, . . . , t− tn)Ej1(r1, t1) · · ·Ejn(rn, tn) (2.8)

To make it simple, we further assume that the material is linear and isotropic,

which means only the first-order of all the susceptibilities remain and the polar-

ization field must always be parallel to electric field, then we get:

P (r, t) = ε0

∫∫∫
V

dr1

∫ ∞
−∞

dt1χ(1)(r − r1, t− t1)E(r1, t1) (2.9)

Applying Fourier transform, the constitutive relation in the frequency domain

becomes:

P (k, ω) = ε0χ(k, ω)E(k, ω) (2.10)

substitution of (2.10) in (2.2a) gives:

D = ε0(1 + χ(k, ω))E(k, ω) = ε0εr(k, ω)E(k, ω) (2.11)

in which εr is the relative permittivity of the material. Inserting it into (2.3) for a

material without free charge, currents or magnetization yields

∇ ·D = 0 (2.12a)

∇ ·B = 0 (2.12b)

∇×E = −∂B

∂t
(2.12c)

∇×B = −ε0εrµ0
∂E

∂t
(2.12d)
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Taking the curl of (2.12c) and substituting the time derivative of (2.12d) yields

∇× (∇×E) = −εoεrµ0
∂2E

∂t2
(2.13)

From vector calculus we know that

∇×∇×E = ∇(∇ ·E)−∇2E (2.14)

Further manipulation leads to:

∇(∇ ·E)−∇2E + εr(k, ω)ω
2

c2 E = 0 (2.15)

For transverse wave, ∇(∇ ·E) = 0, Eq. (2.15) yields

∇2E − εr(k, ω)ω
2

c2 E = 0 (2.16)

Introducing

k2 = εr
ω2

c2 (2.17)

one has

∇2E − k2E = 0 (2.18)

For longitudinal waves, Eq. (2.15) implies that

εr(k, ω) = 0 (2.19)

indicating that longitudinal wave solution occurs at frequencies corresponding to

εr(ω) = 0.
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2.3 Dielectric function of nobel metals

2.3.1 Drude free-electron model

In order to investigate the interaction between electric field and metallic nanopar-

ticles, we have to know the optical response of metal, which is described by εr in

the eigenvalue problem (2.16).

In 1900, Paul Drude developed a theory to explain the electrical and thermal

conductivities in metal [11, 12]. Drude model takes a metal as a free gas of electrons

and applies kinetic theory of gases. In our discussion of the Drude model, we shall

simply assume that, in the formation of a metal, the valence electrons become

detached and wander freely through the metal, while the metallic ions remain

intact and act as immobile positive particles, as show in Fig. 2.1.

Valence Electrons Core Electrons

Nucleus

(a) (b)

Figure 2.1. (a) Metal atom; (b) View of metal in Drude model.

Several basic assumptions have been made in Drude model [13, 14]: (1) Be-

tween collisions, the interaction of a given electron, both with the others and with

the ions, is neglected. Fig. 2.2 shows schematically the trajectory of a scattering

conduction electron. (2) Collisions in the Drude model, as that in kinetic the-
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ory, are instantaneous events that abruptly alter the velocity of an electron. (3)

An electron experiences a collision with a probability per unit time 1/τ and the

collision probability in time interval is dt/τ . τ is the collision time, relaxation

time or the mean free time, which can be expressed by 1/τ = vF/l∞. vF is the

Fermi velocity and l∞ is the bulk mean free path of the material. (4) Electrons

are assumed to achieve thermal equilibrium with their surroundings only through

collisions. These collisions are assumed to maintain local thermodynamic equilib-

rium in a particularly simple way: immediately after each collision an electron is

taken to emerge with a velocity that is not related to its velocity just before the

collision, but randomly directed and with a speed appropriate to the temperature

prevailing at the place where the collision occurred.

Figure 2.2. Trajectory of a conduction electron scattering off the ions

According to the assumptions, the momentum increase if no collision occurred

between t and t+ dt is

pnocoll(t+ dt) = (1− dt
τ

)[p(t) + f(t)dt+O((dt)2)] (2.20)
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in which 1− dt
τ
is the fraction of the total number of electrons that do not collide

and f(t) is the force acting on the electron.

For the electrons that undergo collisions between t and t+ dt, the momentum

increase is

pcoll(t+ dt) = dt
τ

[f(t)dt+O((dt)2)] (2.21)

Combing (2.20) and (2.21) and rearranging it, we have

p(t+ dt)− p(t)
dt = −1

τ
p(t) + f(t) (2.22)

Taking the limit d(t)→ 0, we obtain

dp(t)
dt = −1

τ
p(t) + f(t) (2.23)

Form (2.23), we see that the effect of individual electron collision introduce a

damping term into the equation of motion for the momentum per electron. To see

the response of metal to electric field, we assume that the metal is subject to a

electric field, which has only a Fourier component

E(t) = Re[E(ω)e−jωt] (2.24)

The force on electrons then can be written as

f(t) = −eE(t) (2.25)

Substitution of (2.25) into (2.23) yields

dp

dt = −1
τ

p− eE (2.26)
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Seeking a solution of the form p(t) = Re[p(ω)e−jωt], we obtain

−jωp(ω) = −1
τ

p(ω)− eω (2.27)

thus,

p(ω) = − eE(ω)
1/τ − jω (2.28)

From j(t) = −nep(t)/m, we have

J(w) = −nep(ω)
m

= ne2m

1/τ − jwE(ω) (2.29)

Comparing (2.29) with Ohm’s law

J(ω) = σ(ω)E(ω), (2.30)

we obtain

σ(ω) = ne2τ

m

1
1− jωτ (2.31)

Then the relative permittivity becomes:

εr(ω) = 1 + jσ(ω)
ε0ω

= 1− ne2

mε0

1
ω2 + jω/τ

(2.32)

Introducing plasmon frequency ω2
p = ne2

ε0m
and collision frequency γ = 1/τ , we

obtain

εr(ω) = 1−
ω2
p

ω2 + jωγ
(2.33)
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For nobel metals, like Au, the response to electric field is dominated by free elec-

trons in s band in the region ω > ωp, since the filled d band close to the Fermi

surface causes a highly polarized environment. This effect can be described by a

dielectric constant ε∞, and we can write

εr(ω) = ε∞ −
ω2
p

ω2 + jωγ
(2.34)

Usually, ε is in the range of 1 to 10. The dielectric function described by free

electron model is shown in Fig. 2.3 (a) and (b).

2.3.2 Lorentz oscillator model

In Eq. (2.34), only free electron gas model and the polarization of the ion core

have been taken into consideration. However, for nobel metals like gold, silver

or copper, interband transition occurs at high frequency. For gold, the electronic

configuration is 5d106s1. And threshold of transition from d band into conduction

band is approximate 2.38 ev, which lies somewhere in the green part of visible

spectrum. As a result, Eq. (2.38) cannot describe the optical properties properly

in the visible regime. In Lorentz’s theory, such interband transition can be describe

as a restoring force modeled by Hooke’s law.

F = −kr = −mrω2
0 (2.35)

Then, in the time-dependent electric field, the motion of an electron oscillator can

be written as

d2r

dt2 + γ
dr

dt + ω2
0r = −eE0

m
e−jwt (2.36)
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We now find the solution of the form r = r0e
−jωt. The solution is then given by

r = (eE0/m)e−jωt
ω2 − ω2

0 + jγω
(2.37)

Each oscillator carries a dipole moment p = −er, then the polarization density is

given by

P = np = −ner = (ne2E0/m)e−jωt
ω2

0 − ω2 − jγω
(2.38)

From the definition of polarizability α = P /E, we get

α = ne2/m

ω2
0 − ω2 − jγω

(2.39)

Substitution of (2.39) into Clausius-Mossotti relation yeilds

ε(ω) ≈ 1− Ne2/m

ω2
0 − ω2 − jγω

(2.40)

In metal, each oscillator contributes differently in general. To characterize the

contributions of different oscillators, we introduce the oscillator strength fj for

thejth order of oscillator with the natural frequency ωj and the damping lefttime

1/γ.Taking contributions from all oscillators into account, we have

εr−oscillator(ω) =
k∑
j=1

fjω
2
p

(ω2
j − ω2) + jωγj

(2.41)

Thus, the relative permittivity of gold can written as

εr(ω) = ε∞ −
ω2
p

ω2 + jωγ
+

k∑
j=1

fjω
2
p

(ω2
j − ω2)− jωγj

(2.42)
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Table 2.1. Values of the LD Model Parameters for gold

f1 γα1 ωα1 f2 γα2 ωα2 f3 γα3 ωα3
0.025 0.241 0.415 0.010 0.345 0.830 0.071 0.870 2.969
f4 γα4 ωα5 f5 γα5 ωα5
0.601 2.494 4.304 4.384 2.214 13.32

αIn electron volts

Using the date get from experimental measurements that was given in table

2.1 [15], we plot the real and imaginary part of relative permittivity of gold as

shown in Fig. 2.3(a) and (b), respectively. After considering the interband tran-

sitions and core effects, the model fits the experimental results [16].
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Figure 2.3. (a) Real part of relative permittivity of gold; (b) Imaginary

part of relative permittivity of gold.

2.3.3 Effect of mean free path

All the discussions above are based on bulk metal, we haven’t taken any size

effects into consideration. However, if the size of the particle is smaller than the

mean free path of electrons in the metal, the electrons will scatter at the particle

surface, which leads to a modification of the dielectric function of the metal. The
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additional scattering process made the size-dependent effective mean free path lR
smaller than the bulk mean free path l∞.

Several approaches has been reported to calculate lR. The common character

of them is that the additional contribution to bulk collision frequency γ∞ is pro-

portional to 1/R. Thus, the modified size-dependent collision frequency can be

expressed by

γmod = γ∞ +4γ(R) = γ∞ + A
vF
R

(2.43)

in which R is the radius of the spherical nanoparticle, and A, which is affected

by the shape and the surface condition of the nanoparticle, is used to account for

the angular nature of the electron scattering. As shown in Fig. 2.3, the dielectric

properties of realistic metal can be described by (2.42), which is approximately

equal to the experimental results . We replace the collision frequency by (2.43),

then we get the modified relative permittivity [17]

ε(ω,R) = εepx +
ω2
p

ω2 + jωγ
−

ω2
p

ω2 + jωγmod
(2.44)

Here the εepx we use is from Johnson and Chrisy’s paper [16] and the plots of

relative permittivity of gold sphere for R = 3nm, and R = 4nm with A = 1.2

are shown in Fig. 2.4. The mean free path effect does not affect the real part of

the relative permittivity so much, however comparing to the bulk material, the

imaginary part increases due to the size effect. In addition, the increase is larger

for smaller particle size.
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Figure 2.4. (a) Real part of size-dependent relative permittivity of gold

sphere; (b) Imaginary part of size-dependent relative permittivity of gold

sphere.

2.4 Localized surface plasmon resonances

Localized surface plasmons are none propagating excitations of the conduction

electrons of metallic nanostructures coupled to the electromagnetic field [18]. Con-

sider a metallic structure whose size is much smaller the wavelength of the elec-

tromagnetic field. When such a metallic structure interacts with an oscillating

electromagnetic field the field both inside and near-field zone outside the structure

is enhanced due to the resonance of electrons on the its surface. The resonance is

called the LSPR.

2.4.1 Mie theory

To investigate the interaction between a metallic structure with oscillating elec-

tromagnetic field we have to solve the Maxwell’s equations. According to Mie [19]

or Debye’s [20] work on the diffraction problem of a single sphere, the scalar elec-
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tromagnetic potentials ψ are the solutions of

∇2ψ + k2ψ = 0 (2.45)

which has the form of Helmholtz Equation. Writing in spherical coordinate system

gives

1
r2

∂

∂r
(r2∂ψ

∂r
) + 1

r2 sin θ
∂

∂θ
(sin θ∂ψ

∂θ
) + 1

r2 sin θ
∂2ψ

∂φ2 + k2ψ = 0 (2.46)

Separating the variables to find solutions of the form

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (2.47)

we obtain three separated equations:

d2φ

dφ2 +m2φ = 0 (2.48)

1
sin θ

d
dθ (sin θdΘ

dθ ) + [l(l + 1)− m2

sin2 θ
]Θ = 0 (2.49)

d
dr (r2 dR

dr ) + [k2r2 − l(l + 1)]R = 0 (2.50)

Mathematically, the general solutions can be written as

ψ(r, θ, φ) =

 cos(mφ)

sin(mφ)

 ·

√

π
2xJl+ 1

2
(x)√

π
2xNl+ 1

2
(x)

 · Pm
l (cos θ) (2.51)

in which m = 0, 1, 2 · · · l, l = 0, 1, 2 · · · , and x = kr. Pm
l (cos θ) is the associated
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Legendre polynomials. J and N are spherical Bessel functions. By applying

appropriate boundary conditions and rewriting the incident electromagnetic wave

in the form of multipole expansions, we can get the field distribution [19]. The

solutions consist of two parts, the field inside the sphere, and the field outside the

sphere which includes the incident filed and the scattered field. The total Mie

extinction spectrum contains dipolar, quadrupolar and higher modes of electronic

excitation. Each multipole contributes to the scattering and absorption loss [17].

2.4.2 Quasi-static approximation of sub-wavelength metal

particle

Figure 2.5. Nano-sphere in electrostatic field

Mie theory can give us the exact solution of the scattering problem of spheres,

however the math is cumbersome. Considering a sphere with a radius a, which

much more smaller than the wavelength, embedded in a nonconducting material,

the phase retardation of the oscillating field over the sphere can be neglected.

Thus the field can be approximately treated as an electrostatic field E = E0ẑ as

shown in Fig. 2.5. εm and ε(ω) are the relative permittivity of the surrounding

medium and that of the sphere respectively. By introducing the potential φ, we

can write the electric field as −∇φ. To get the electric field distribution, we firstly
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need to get φ, which is the solution of Laplace equation

∇2φ = 0 (2.52)

Assuming the sphere is isotropic and homogeneous, thus it is symmetric in the

azimuthal direction. The general solution is given by

φ(r, θ) =
∞∑
l=0

[Alrl +Blr
−(l+1)]Pl(cos θ) (2.53)

In which Pl is Legendre polynomials of the lth order. We first start will the

potential inside the sphere. When r → 0, the potential should be finite. So we

obtain Bl = 0. The solution inside the sphere becomes

φin(r, θ) =
∞∑
l=0

Alr
lPl(cos θ) (2.54)

For the field outside the sphere at a distance r � a, the term Blr
−(l+1)Pl(cos θ) in

(2.53) is smaller enough to be omitted. We obtain

φout(r, θ) =
∞∑
l=0

Clr
lPl(cos θ) (2.55)

And from electrostatic field theory we have

φout|r→∞ ∼ −E0r cos θ = −E0rP1(cos θ) (2.56)

Comparing (2.55) to (2.56) we obtain

C1 = E0, Cl = 0. (l 6= 0, 1) (2.57)
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The solution outside the sphere then can be written as

φout = C0 − E0rP1(cos θ) +
∞∑
l=0

Dl
1
rl+1Pl(cos θ) (2.58)

The continuous of potential at the interface between the sphere and the surround-

ing medium yields

φin|r=a = φout|r=a (2.59)

Moreover, the continuous of normal component of displacement gives

ε0εm
∂φout
∂r
|r=a = ε0ε

∂φin
∂r
|r=a (2.60)

Substitution of (2.59) (2.60) into (2.54) (2.58) and comparing the coefficient of the

same order yields


D0 = 0,

C0 = A0;


A1 = − 3εm

ε+2εm ,

C1 = ε−εm
ε+2εma

3E0;


Al = 0,

Bl = 0;
(l 6= 0, 1) (2.61)

then the solution becomes

φin = A0 − 3εm

ε+2εmE0r cos θ,

φout = A0 − E0r cos θ + ε−εm
ε+2εma

3E0
1
r2 cos θ.

(2.62)

By introducing dipole moment

p = 4πε0εm
ε− εm
ε+ 2εm

E0 (2.63)
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the potential outside the sphere can be rewritten as

φout = A0 − E0r cos θ + p · r
4πε0εmr3 (2.64)

Comparing (2.63) to

p = ε0εmαE0 (2.65)

yields

α = 4πa3 ε− εm
ε+ 2εm

(2.66)

in which α describe the polarizability of the nano-sphere. The resonance occurs

at

Re[ε(ω)] = −2εm (2.67)

which is also called Fröhlich condition [18] and the mode is the dipole surface

plasmon. Applying E = −∇φ on (2.62) gives us the electric field distribution


Ein = 3εm

ε+2εm E0

Eout = E0 + 3n(n·p)−p
4πε0εm

1
r3

(2.68)

The fields both inside and outside the sphere are enhanced due to the dipole

resonance. Bohren and Huffman [21] also give the expression for cross section of
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scattering Csca and absorption Cabs

Csca = 8π
3 k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 (2.69a)

Cabs = 4πka3Im
[
ε− εm
ε+ 2εm

]
(2.69b)

The extinctions efficiency Qext can be describe by

Qext = Cext
S

= Csca + Cabs
πa2 (2.70)

in which πa2 represent the geometrical square of the spherical particle. Fig.

2.6(a) shows the extinction efficiency of spherical gold particle, with a radius of

5nm,embedded in silica (refractive index 1.5) for both with and without consider-

ing MFP effect. Fig. 2.5(b) shows the extinction for the particle in silica and air.

From the figures we obtain that the MFP effect broaden the extinction spectrum

and lower the peak and the increase of the dielectric function of the surrounding

medium leads to the red-shifts of the LSPR.
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Figure 2.6. Extinction efficiency of spherical gold particle embedded (a) in

silica with and without considering MFP effect; (b) in air and silica.



Chapter 3

Simulation Results and Discussion

3.1 Introduction

In this chapter, we will mainly study the properties of nano-sphere absorbers

based on the broadband abosrber which is demonstrateed by Hedayati et al. [9].

In the paper, they explained that the broadband absorption was attributed to two

factors: one is the coupling between the broad Mie resonance of the nanoparticles,

the other is the interaction within the nanoparticle plasmon resonances in the

composite and their dipole images on the gold reflector. However, there are two

more factors may also lead to the resonance of the absorber, the dipole resonance

of individual nanoparticle, and the Fabry-Pérot resonance [22]. Additionally, in

the range about from 400 nm to 500 nm, the interband transition of gold will also

contribute to the high absorption.

In our work, we use numerical method to investigate which resonance con-

tributes to the broad and high absorption of the absorber through looking into

the field distribution at resonant frequencies. The three-dimensional schematic

view of the absorber which we simulated is shown in Fig. 3.1. A periodic array

of nano-spheres, which are embedded in a silica layer, are distributed according

23
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(a) (b)

Figure 3.1. (a) Three-dimensional schematic view of the gold nano-spheres
based absorber; (b) Top view of the distribution of the gold nano-spheres.

to a triangular lattice on a continuous gold reflector. The nano-spheres and the

gold reflector are separated by a spacer, which is a part of the silica film. In our

simulations the parameters used are as followed unless otherwise specified.

• relative permittivity of silica: εSiO2 = 1.52

• relative permittivity of gold : εAu is from the experimental data by P. B.

Johnson and R. W. Christy [16]

• r=4 nm: the radius of the nano-sphere

• ld=35 nm: the total thickness of the silica film

• spacer=10 nm: the distance from the bottom of the sphere to the bottom

of the silica thinfilm

• lm=100 nm: the thickness of the gold reflector

• gap=1 nm: the distance between the nearest neighboring spheres

• alpha = 0◦: the incident angle

• beta=90◦: beta=0◦ and beta=90◦ indicate the electric field along x and y

direction respectively

• lattice: equilateral triangular lattice
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• reference surface: the interface between the gold reflector and the silica

layer, which is in x-y plane at z = 0

3.2 Simulation method

To investigate the distribution of the electromagnetic field inside and outside the

structure at the resonant frequencies, we need to solve the Maxwell’s equations.

Due to the complexity of the structure, it is difficult to find an analytical solu-

tion. Thus, we use Finite Element Method (FEM), which is a numerical method

to solve the partial differential equations, to solve the Maxwell’s equations in fre-

quency domain. The basic philosophy of FEM is to approximately treat continuous

quantities as a set of quantities at discrete points, which are at nodes and edges.

The more dense the mesh is, the more elements one has solving the problem; cor-

respondingly one needs more memory and time. In our work, we use RF module

for 3D structure of Comsol Multiphysics 4.2. Floquet periodic boundary condition

and perfect match layer (PML) have been used in our study.

Moreover, we find the resonance frequency by calculating the absorbance of the

structure from 400 nm to 800 nm. The absorbance is defined by A = 1− T − R,

in which T and R represent transmittance and reflectance respectively. T and R

are calculated by performing surface integral of Poynting vector on the surface

under the gold reflector and on the interface between the silica layer and the air.

Since the 100 nm gold reflector is sufficiently thick to block the light from passing

through the absorber, normally there is less than 1% leaking power.
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3.3 Influence of geometry and dielectric

environment

3.3.1 Sphere radius and gap

As radius is an important geometry dimension of an individual sphere, which

affects all the four kinds of resonance we have mentioned above, we first simulate

the structure with ld=35 nm, spacer= 10 nm, alpha=0◦, beta=90◦, and gap=1

nm/3 nm to investigate the influence of r on the resonant wavelength.
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Figure 3.2. Calculated (a) absorption spectra of the absorber as a function

of sphere radius with gap=1 nm; (b) resonant wavelength as a function of

sphere radius both with gap=1 nm and 3nm.

As shown in Fig. 3.2 (a), an increase in sphere radius shifts the resonant

wavelength to the red. Additionally, Fig. 3.2(b) shows that the shifts in the

resonant wavelength increase approximately linearly with increasing radius in this

short range and it shifts faster for smaller gap structure.

For the sphere with a diameter less than 10 nm, we can neglect the phase
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retardation effect and apply quasi-static approximation. Thus, if the resonance is

due to dipole surface plasmon resonance of individual sphere, the resonant wave-

length should satisfy the relation Re[εAu] + 2εSiO2 = 0 [18], which is located at

around 530 nm and does not shift much with increasing sphere radius. However,

the calculated resonant wavelength shows pronounced red-shift compared to that

of individual sphere as predicted by quasi-static approximation. To find the rea-

son, we further look into the field distribution at the resonance. The electric field

distributions of the structure with r=4 nm, ld=35 nm, gap=1 nm, alpha=0◦ both

for Ex and Ey polarized light are shown in Fig. 3.3. Because the gold nano-spheres

are placed in close proximity to each other, the near-field interparticle coupling

becomes dominant [23]. For Ex polarized light, the resonance is mainly caused

by the coupling between the neighbouring nano-spheres along x direction and for

Ey polarized light, it is mainly due to the coupling between the middle sphere

and the corner spheres. The electric field are well confined in the gap between

neighbouring nano-spheres with thousands orders of magnitude higher than the

incident field, which leads to the higher absorption of absorber. Moreover, we

didn’t see any couplings between the nano-spheres and the gold reflector, which is

not the case for MIM structure absorber.

We further study the influence of the gap between neighbouring spheres. Fig.

3.4(a) shows the absorption spectra of the absorber for the structure with fixed

r=4 nm as a function of gap. The increases in the gap contribute to the blue-

shifts of resonant wavelength. Fig. 3.4 (b) also shows that, the shifts in resonant

wavelength decay with increasing gap.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3. (a) Electric field x component in x-y plane at z=spacer+r; (b)

Electric field x component in x-z plane at y=0; (c) Electric field z component in

x-z plane at y=0 for Ex polarized incident field; (d) Electric field x component

in x-y plane at z=spacer+r; (e) Electric field y component in diagonal plane;

(f) Electric field y component in diagonal plane for Ey polarized incident field.
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Figure 3.4. (a)Calculated absorption spectra of the absorber as a function

of gap with r=4 nm; (b) Calculated relationship between gap and resonant

wavelength with r= 4nm.

To explain the influence of r and gap, we can apply dipolar coupling model [17].

Since the nano-spheres are subwavelength, the polarizability of an isolated gold

particle with silica surrounding medium in quasi-approximation can be described

by

α = ε0V (1 + κ) εAu − εSiO2

εAu + κεSiO2

(3.1)

in which V is the volume of the particle, εAu and εSiO2 are the relative permittivity

of gold and silica respectively, and κ is a shape factor described the geometry

of the particle. As we have discussed in Chapter 2, for a sphere κ = 2 [see

Eq.(2.65)]. Here we simplify the problem as a two-sphere system. In the presence

of a neighboring sphere, the electric field felt by each sphere

E ′ = E + p′

2πεSiO2ε0d3 (3.2)
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consists of two part, one is the incident electric field E and another is the near

field of the dipole electric field of the other sphere. Here d represents the distance

from the sphere. Applying Eqs. (2.65), (3.1), (3.2) and V = 4
3πR

3, we obtain [?]

α′ = 16πε0R
3(εAu − εm)

εAu(4− (2R)3

d3 ) + εSiO2(8 + (2R)3

d3 )
(3.3)

Thus the LSPR condition can be expressed by

εAu = −εSiO2

8(s/2R + 1)3 + 1
4(s/2R + 1)3 − 1 (3.4)

in which s=d-D is the interparticle surface-to-surface separation. For the case of

isolated particle which s → ∞, Eq.(3.4) becomes Eq.(2.66). The effective κ can

be written as

κtwo−particle = 8(s/2R + 1)3 + 1
4(s/2R + 1)3 − 1 (3.5)

The relationship between radius and effective κ, and gap and effective κ are plotted

in Fig. 3.5(a) and (b) respectively. The effective κ increases with increasing radius

and decreasing in gap. As the real part of relative permittivity decrease when the

wavelength shifts to the red, Eq. (3.4) can well explain the shifts in Fig. 3.2(a) and

3.3(a). Moreover, the change in effective κ is much faster for the same variation in

gap than r. That’s why we can see the shift with changing gap is more significant

than that of changing r.
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Figure 3.5. Relationship between (a) r and effective κ with gap=1 nm; (b)
gap and effective κ with r=4 nm.

3.3.2 Dielectric environment
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Figure 3.6. Calculated absorption spectra of the absorber for the structure

with r=4 nm (a) gap=1 nm; (b) gap=2 nm.

From Eq. (3.4) we know that besides the radius and gap the resonant wavelength

also depends on the dielectric function εr of the surrounding medium. Fig. 3.6(a)
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and (b) show the effect of the changing in εr for the structure with r=4 nm, gap=1

nm/2 nm.

As increase in dielectric function of the surrounding medium shifts the resonant

peak to the red, which matches the prediction by Eq.(3.4). Moreover, the shifts for

the structure with a smaller gap is more obvious that that for the structure with

a larger gap. This advantage shows great potential of the structure with smaller

gap size for sensing the variation in refractive (e.g. changing in concentration of

the solution).

3.3.3 Spacer

Since we do not see any coupling between the nano-spheres and the gold reflector,

we further change the thickness of spacer to see if there is any coupling. First, we

fix r=4 nm, gap=1.8 nm, and the total thickness of the silica layer (include the

layer with spheres) to be spacer + 25 nm.

(a) (b)

Figure 3.7. Calculated absorption spectra of the absorber as a function of

spacer with ld=spacer+25nm, r=4 nm, gap=1.8 nm for the structure with

gold reflector (a) in silica; (b) in air.
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The absorption spectra are shown in Fig. 3.7(a) and (b) for the structure with

silica and air surrounding medium respectively. As shown in the figure, both of

the absorption spectra change periodically with increasing spacer. In Fig. 3.7(a),

the resonant peak is at around 620 nm with maximum absorbance 99.7% with

the spacer ≈ 210 nm. With this spacer, the total phase shifts of the incident

field in the spacer is 4φ = 2π
λ
· 2n · spacer ≈ 2π, which leads to the constructive

interference. Moreover, at some spacer thickness the absorption peak shifts to the

blue. However, this is due to the overlap of the tail of the absorption spectra of

the intrinsic absorption of gold and the absorption due to near-field interparticle

coupling. It’s because that when the spacer changes from 0 nm to around 180nm,

the constructive interference at longer wavelength of overlap tail become dominate

and when it increases to about 210 nm the constructive interference at shorter

wavelength dominate again. We also carried out a simulation for the case of

air surrounding medium, we don’t see this small shift because of the peak due

to near-field interparticle coupling and the intrinsic absorption are pretty near.

Additionally, the peak due to interparticle coupling is not too much larger than

the overlap part. As a result the shift is not obvious, but the changing is also

periodic.

We further simulate the same structure in silica but without gold reflector. The

absorption spectra of this structure are shown in Fig. 3.8. The spectra also change

periodically with increasing spacer thickness and the period is nearly the same as

that for the structure with gold reflector. The maximum value of the peak due to

near-field interparticle coupling is about half of that for the structure with gold

reflector. However ,the absorption is less than half of that for the structure with

gold reflector. This is because the gold reflector also contributes to the absorption

in the intrinsic absorption region. Thus basically the spacer act as a Fabry-Pérot

Étalon. Besides, comparing to the structure with gold reflector, the peak due to
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Figure 3.8. Calculated absorption spectra of the absorber as a function of
spacer with ld=spacer+25nm, r=4 nm, gap=1.8 nm for the structure without
gold reflector in air

interparticle coupling slightly shifts to the blue.

3.4 Influence of incident angle and polarization

(a) (b)

Figure 3.9. Calculated absorption spectra of the absorber with r=4 nm and
gap=1.8 nm as a function of (a) incident angle; (b) polarization angle.
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Generally for many applications, it is desirable for an absorber to have ab-

sorption independent of incident or polarization angle. We simulate the absorber

for the structure with r=4 nm and gap=1.8 nm. The absorption spectra of the

absorber as a function of incident angle and polarization are shown in Fig. 3.9

(a) and (b) respectively. For the incident angle from 0◦ to 70◦, and polarization

from 0◦ to 90◦, we get nearly the same optical response. We attribute this to the

symmetric configuration of the nano-spheres.

3.5 Influence of lattice

All absorbers which we have discussed above have an equilateral triangular lattice.

Here we stretch equilateral triangular lattice along x direction. After stretching,

the gap between the middle and the four corner spheres is still 1.8 nm. However,

the gap between the neighbouring spheres along x-axis direction becomes 1.8 nm.

Thus the equilateral triangular lattice is changed to an isosceles triangular lat-

tice. Here with simulated the structure with with this isosceles triangular lattice,

r=4 nm. Fig. 3.10(a) shows the calculated absorption spectra of the absorber

for both the structure with equilateral triangular and isosceles triangular lattice.

The isosceles triangular breaks the symmetry of the configuration, thus it is not

polarization-independent. Although the gaps between the middle and the four

corner spheres are the same for these two lattice structures, the response for both

Ex and Ey polarized incident are not the same. It is because we cannot simply

think that the absorption is only due to the coupling between the neighbouring

spheres along the electric field. The coupling along other direction also contribute

to the absorption (see Fig. 3.11).

We further change the lattice of the structure to a square lattice with a lattice

constant d and r=4 nm. As show in Fig. 3.10 (b), as increasing lattice constant,
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Figure 3.10. Calculated absorption spectra of the absorber (a) for both of
structure with equilateral triangular lattice and isosceles triangular lattice in
Ex and Ey polarized incidence; (b) for the structure with a square lattice as
a function of lattice constant d.

which means the gap between the neighboring spheres are getting larger, the reso-

nant wavelength shifts to the blue. In addition, when the lattice constant becomes

larger and larger, the resonance is getting closer to the pure dipole resonance of

an individual sphere.

(a) (b)

Figure 3.11. Electric field arrow plot for the structure with r=4 nm, gap=1.8
nm, and equilateral triangular lattice in (a) Ex polarized field; (b) Ey polarized
field.
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3.6 Spheres of different sizes
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Figure 3.12. Calculated absorption spectra of the absorber for the structure

with different sphere sizes (a) as a function of gap; (b) at gap=1 nm.

In last session, we break the symmetric of the absorber by changing the lattice

structure. Here, we break it by introducing nonuniformity in sphere sizes because

it is too difficult to fabricate all the spheres of a same size. Instead of changing

lattice structure, we change the size of four corner spheres, as shown in the inset of

Fig. 3.1 (b), to 5 nm and keep the middle sphere radius at 4 nm. Our objective is to

see whether the nonuniformity in sphere size will lead to a broadband absorption.

Fig. 3.12 shows the absorption spectra of the absorber with this structure has two

peaks at smaller gap. For the structure with gap=1 nm in Ex polarized incidence

case, the gap between the middle spheres become 3 nm, thus it may have two

absorption peaks due to different gap and r. However, as the gap increases, both

of the blue-shifts of resonant wavelength due to decrease in r decay(see Fig. 3.2

and 3.4). As a result, for larger gap the absorption band can not be separated by

a small change in sphere radius. The nonuniformity in both radius and gap have
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the potential to broaden the absorption peak.

3.7 Influence of particle shape

(a) (b)

Figure 3.13. (a) Three-dimensional schematic view of the gold nano-oblate

spheroid based absorber; (b) Dimension of the oblate spheroid.

For traditional MIM absorbers, e.g. a rectangular shape nanoparticle based MIM

absorber demonstrated by J. Hao et al. [24] with nearly total absorption, the

bottom surface of nanoparticle is always parallel with the gold reflector surface.

However, for a spherical nanoparticle it has a curved surface and this may be

the reason why we didn’t see any interaction between the nanoparticle and the

gold reflector. To further investigate it, we simulate a structure with gold oblate

spheroid embedded in silica on a gold substrate. As shown in Fig. 3.13, semi-

major axis is 70 nm, the semi-minor axis is c, the lattice constant is 310 nm, the

distance between the bottom point of the oblate spheroid is spacer which is fixed

at 10 nm, the thickness of gold substrate is 50 nm, and the total thickness of the

silica layer is equal to 2(spacer+ c). In addition, the incident electric field is along

the major axis with normal incidence. We gradually change the ratio r of minor
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axis to major axis from 1:7 to 1, which means the shape of the particle changing

from more oblate to more spherical.

The absorption spectra of the absorber for this structure is shown in Fig. 3.14.

And the electric field distribution for the structure with c=20 nm at resonant

frequencies are plotted in Fig. 3.15. We can clearly see the dipole resonance

electric field pattern at 940 nm [see Fig. 3.15(a) (b) (c)], and the higher order

resonance field pattern [21] at 580 nm [see Fig. 3.15(d) (e) (f)]. Two important

conclusions can be drawn. First, the dipole resonance strongly depends on the

geometry shape of the particle. With increasing the ratio r, the dipolar plasmon

resonant wavelength shifts to the blue, which means comparing a sphere to an

oblate spheroid with the same dimension along the electric field, the dipole plasmon

resonant wavelength for a sphere is on the blue side of that of an oblate spheroid.

Second, the higher order resonance at around 580 nm doesn’t shift much with

increasing r. In addition, as the ratio r increased, the dipole resonance become

negligible when compared to higher order term.
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Figure 3.14. Calculated absorption spectra of the gold nano-oblate absorber
as a function of c



40 CHAPTER 3. SIMULATION RESULTS AND DISCUSSION

(a) (b)

(c) (d)

(e) (f)

Figure 3.15. (a) Electric field x component in x-y plane at z=spacer+c

for λ = 940 nm; (b) Electric field arrow plot in x-y plane at z=spacer+c for

λ = 940 nm; (c) Electric field z component in x-z plane at y=0 for λ = 940 nm;

(d) Electric field x component in x-y plane at z=spacer+c for λ = 580 nm;

(e) Electric field arrow plot in x-y plane at z=spacer+c for λ = 580 nm; (f)

Electric field z component in x-y plane at at y=0 for λ = 580 nm.
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To give a general idea for the reason of the shifts due to variation in ratio r, we

simply considering ellipsoid in the electrostatic approximation. The polarizabilities

can be expressed by [21, 17]

αi = 4π
3 abc

ε− εm
εm + Li(ε− εm) (3.6)

Li is the geometrical depolarization factor that depends on the shape of the particle

with i = a, b, c [25]. Moreover ∑i Li = 1, thus among La, Lb and Lc, only two are

independent. For the oblate we have a=b and La = Lb. The depolarization factor

La = Lb = g(e)
2e2 [π2 − tan

−1g(e)]− g2(e)
2 (3.7)

and

g(e) = (1− e2

e2 )1/2 (3.8)

in which e is the eccentricity which is equal to
√

1− c2

a2 . When a=c, which is the

case for a sphere, we get La = Lb = Lc = 1
3 . For the case of a oblate we have

La = Lb <
1
3 . The zeros of the denominator in Eq.(3.6) determine the resonant

wavelength, thus

Re[ε] = Re[(1− 1
La

)]εm (3.9)

Because the real part of relative permittivity of gold increases with blue shifts

in wavelength, that’s why the resonant peak of s sphere is on the blue-side of

that of an oblate. In order to see the effects of substrate, we simulated the same

structure but without gold reflector. The arrow plots in Fig. 3.16 clearly shows

that the resonance at around 630 nm shown in Fig. 3.17 is due to dipole resonance.

However, comparing the absorption spectra of the structure with gold reflector to
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(a) (b)

Figure 3.16. Arrow plot of (a) electric field; (b) electric displacement field
arrow plot for the gold nano-oblate absorber in x-y plane at z=spacer+c.

the structure without gold reflector, we can see significant red-shifts in dipole

resonance peak. This is due to that the gold reflector breaks the symmetry of

the medium. This can be described by introducing a mirror-image dipole which

causes Van der Waals-like interactions with the particle [17]. It contributes to the

red-shifts [26]
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Figure 3.17. Calculated absorption spectra of the nano-oblate absorber with
c=30 nm both for the structure with and without reflector
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3.8 Multi-layer structure

(a) (b)

Figure 3.18. Calculated absorption spectra of the nano-spheres based ab-
sorber for the structure with three layers of spheres with (a) the same radius
r=5 nm; (b) with different size of spheres, from the top to the bottom layer,
r=4.5 nm, r=4nm, r=3.5 nm respectively.

We also increase the layer of sphere to see if it can also improve the absorption

of the absorber. We extend the structure in z direction and the nano-spheres are

distributed in FCC like lattice. Fig. 3.18(a) and (b) show the absorption spectra

for the structure with 3 layers of spheres. The former one is for 3 layers of sphere

with r=5 nm. The latter is for the structure with 3 layers of spheres with r=4.5

nm, r=4 nm, r=3.5 nm respectively. From Fig. 3.18(b) we can see that the

absorption band is nearly cover the whole visible range with a lowest absorption

larger than 50% for gap ≈ 1 nm. The multi-layers structure also provides us a

possible way to broaden the absorption band.

3.9 Effective medium approximation

In 1904, J.C. Maxwell Garnett explains the color of gold ruby glass [27]. Since our

silica layer is similar as the gold ruby glass, we follow Maxwell Garnett approxi-
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mation to treat the silica film, which contains gold nano-spheres, as an effective

medium. Since the gold particles are distributed homogeneously in the film, the

optical response of the film can be assumed to be the average of the two com-

ponents. For the absorber with multi-layers of our lattice structure, the volume

fraction of gold can be written as

φ = 4/3πr3 × 4
(2r + gap) ·

√
3(2r + gap) ·

√
3(2r + gap)

≈ 0.585r3

(2r + gap)3 (3.10)

then we obtain the average electric field

Eav = (1− φ)Em + φEI (3.11)

and the average polarization

Pav = (1− φ)(εSiO2 − 1)ε0Em + φ(εAu − 1)ε0EI = (εav − 1)ε0Eav (3.12)

in which εSiO2 and εAu are the relative permittivities of silica and gold respectively,

and EI and Em are the electric fields inside the sphere and within the matrix

respectively. Moreover, the relationship between the field inside and outside the

sphere can be described by

EI = 3εSiO2

εAu + 2εSiO2

Em (3.13)

Hence, the average electric field becomes

Eav = (1− φ)Em + 3φεSiO2

εAu + 2εSiO2

Em (3.14)
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Combination of (3.2)(3.2)(3.4)(3.5) yields

εav = εSiO2

εAu(1 + 2φ) + 2εSiO2(1− φ)
εAu(1− φ) + εSiO2(2 + φ) (3.15)

The real part and imaginary part of the relative permittivity of the effective thin

film based on Maxwell Garnett approximation are shown in Fig. 3.19(a) and

(b) respectively. We use the dielectric function calculated from Maxwell Garnett
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Figure 3.19. (a) Real part of relative permittivity of the effective thin film
vs silica; (b) Imaginary part of relative permittivity of the effective thin film
vs gold.

approximation and treat the silica layer containing gold nano-spheres as an effec-

tive thin film to simulate nano-spheres absorber for the structure with 6 layer of

spheres, r=5 nm, gap=2.5 nm, film thickness=65 nm and spacer =10nm both for

the structure with and without gold reflector. The calculated absorption spec-

tra for the structure without gold reflector and with gold reflector are shown in

Fig. 3.20(a) and (b) respectively. Generally, the absorption spectra calculated us-

ing Maxwell Garnett approximation fit the calculated results of the nano-spheres

structure well. However, in the region from 550 nm to 600 nm, there is a small

peak. We attribute this to the resonance in dielectric function of the effective layer,
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Figure 3.20. Calculated absorption spectra of the nano-spheres absorber for
the structure (a) without gold reflector; (b) with gold reflector.

which is resulted from Maxwell Garnett approximation, as shown in Fig 3.19.

3.10 Influence of MFP effect

At last, we study the influence of MFP effect on the optical response of our struc-

ture. We use the relative permittivity from Fig. 2.4(a) to simulate the single layer

structure with r=4 nm. Fig. 3.21(a) and (b) the absorption spectra as a function

of gap.

The MFP effect mainly contributes to the broadening of the absorption band,

but in the meantime it will lower the maximum absorption value by about 10%.

This is due to that the MFP effect increases the imaginary part of the relative

permittivity for smaller particles [see Fig. 2.4(b)].
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(a) (b)

Figure 3.21. Calculated absorption spectra of the nano-spheres absorber for

the structure with r=4nm (a) without considering MFP effect; (b) considering

MFP effect.





Chapter 4

Fabrication and Characterization

4.1 Au@SiO2 core-shell nanoparticles based

absorber
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Figure 4.1. (a) Three-dimensional schematic view of Au@SiO2 core-shell
nanoparticles based absorber ; (b) The cross section view of the Au@siO2
nanoparticles.

Based on the simulations we have presented in Chapter 3, we proposed a novel

design of a plasmonic absorber based on Au@SiO2 core-shell nanoparticles. Fig.

49
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4.1(a) shows the three-dimensional schematic view of the absorber. The radius

of the Au particle is 10 nm and the silica shell thickness is 1 nm. The resonant

wavelength was designed at around 780 nm (see Fig. 4.5(a)).

4.2 Fabrication process

4.2.1 Substrate preparation

4 nm titanium, 100 nm gold and followed 3 nm aluminium oxide were deposited on

silicon dioxide substrate using Provac PAK 600 Coating System which uses Elec-

tron beam physical vapor deposition(EBPVD) method to perform the deposition.

The chamber base pressure is 5E-7 mbar and process pressure is 5E-6 mbar. The

deposition speed for titanium, gold , and aluminium oxide are 0.5 Å/s, 1 Å/s and

0.5 Å/s respectively.

4.2.2 Au@SiO2 core-shell nanoparticles preparation

Gold nanoparticles were prepared chemically via a sol-gel method [28], by reduc-

ing 10 mM hydrochloroauric acid (HAuCl4) using 20 mM ascorbic acid and 1 mM

sodium borohydride (NaBH4) in the presence of aqueous solution of cetyltrimethyl

ammonium bromide (CTAB, 0.2 M) and silver nitrate (AgNO3, 2 mM) at room

temperature. The mixture was stirred for one hour and kept at 25◦ overnight.

To coat the gold nanoparticles with silica shell, 1 mL of obtained suspension

of gold nanoparticles was diluted to 20 mL and the pH was tuned to ca. 12.

When the temperature of this suspension was elevated to 70◦ , 5 µL of tetraethyl

orthosilicate (TEOS) was added, and the solution was collected after 1 h reac-

tion and centrifuged to obtained silica-coated gold nanoparticles (Au@SiO2). The

morphology of Au and Au@SiO2 nanoparticles, as shown in Fig. 4.2, was char-
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Figure 4.2. TEM micrographs of (a) Au nanoparticles;(b) Au@SiO2 core-
shell nanoparticles

acterized by JEM-2100F field emission transmission electron microscope (TEM)

operating at accelerating voltage of 200 kV. The concentration of gold in colloidal

suspensions was measured by Inductively coupled plasma atomic emission spec-

troscopy (ICP-AES). The concentration of gold (element) and number of nanopar-

ticles in Au@SiO2 suspension are about, Au: 120ppm(µg/mL); nanoparticle:

1.505 × 1022/mL. In addition, the Au@SiO2 nanoparticles in aqueous solution

have a dark red color(see Fig. 4.3).

4.2.3 Particle deposition

We first tried to deposit the Au@SiO2 nanoparticles by spinning. The particles

were deposited onto the substrate by using a 100 µl pipette drop by drop during

spinning. However, due to the hydrophobicity of Aluminium oxide we failed to

achieve that. At lower rotation speed around 800 rpm the the drop cannot be

spread out. However, at higher speed the drop is quickly span away. We didn’t

find a speed in between which can well spread the particles on the substrate.

Finally, we use a 10 µl pipette to deposit the particles on the substrate without
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Figure 4.3. Appearance of the Au@SiO2 suspensions

spinning. Totally 170µl Au@SiO2 colloidal suspensions have been put on the

substrate. After that, we bake it in the oven for 2 hours at 70◦ at low pressure.

4.3 Optical properties

CCD

Source
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P: pinhole

L: lens
OSA

FH:  fiber holder

C
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L L

L

Sample

FH

Figure 4.4. Schematic setup for the reflectance measurement

The setup for measuring reflectance is demonstrated in Fig. 4.4. A white light

source (NKT superK Compact) with a repetition rate of 27 KHz is connect with
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a reflective collimator through a multi-mode fiber. The collimated beam diameter

is about 8.5 mm. The collimated beam is then pass through a 600µm pinhole.

And then the beam is focused by an aspherized achromatic lens (f=45 mm) on

to the sample. On the back side of the sample, a 20× objective (f=200mm) and

a CCD camera monitored with a PC are used to track the position of the beam.

The reflected light was focused by another aspherized achromatic lens on the fiber

core to couple the reflected light into a multi-mode fiber which connected to the

OSA.
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Figure 4.5. Measured absorption spectra of the fabricated absorber (a) with
focusing lens ; (b) Without focusing lens.

Fig. 4.5(a) and (b) show the measured absorption spectrum of the fabricated

sample at 15◦ incident angle using the system with focusing lens (0.1 mm beam di-

ameter) and without focusing lens (2 mm beam diameter) respectively. As shown

in Fig. 4.5(a), the shape of simulated and measured absorption spectra are similar.

Due to the inhomogeneous distribution of Au@SiO2 nanoparticles, the high ab-

sorption only occurred at several certain positions. We make a mark around these

positions and capture it with the CCD camera [see Fig. 4.6(a)]. SEM image with

respect to the captured beam position is shown in Fig. 4.5(b). The coverage of
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these areas is around 80% which is better than most of the other parts. However,

the measured the absorption band is broader than that of the simulated one. We

attribute this to the inhomogeneous in gold sphere radius, silica shell thickness and

also the arrangement of Au@SiO2 core-shell particles [see Fig. 4.7(a)]. Because of

surface roughness, not all of the scattered light was coupling into the fiber. As a

result, the absorbtion is higher than we get from simulations. For the absorption

(a) (b)

Figure 4.6. (a) CCD captured view of the beam position ; (b) SEM image
of Au@SiO2 particles according to the beam position area.

spectra measured without lens (2 mm beam diameter), the average absorption

value is lower but more broader than the well covered small area measured with

lens. It’s because the variation in particle size and arrangement are of a wider

range than that of a small area [see Fig. 4.7].
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(a)

(b)

Figure 4.7. SEM image of (a) Au@SiO2 particles at good coverage area ;
(b) Au@SiO2 particles at bad coverage area.





Chapter 5

Conclusion and Outlook

5.1 Conclusion

Due to the strong near field interparticle coupling, nano-spheres based plasmonic

absorber strongly confines the electromagnetic field between neighbouring parti-

cles, which leads to a polarization-independent and wide angle absorption. The

absorption spectra range can be tuned from visible to near-infrared by simply

change the size of the particle or the separation between each particle. Difference

in sphere size, gap and multi-layer structure supply us a great opportunity to

achieve broad-band absorption. Moreover, for the structure with smaller interpar-

ticle separation, the resonant wavelength is much more sensitive to the change of

dielectric function of the surrounding medium. This property can be further uti-

lized in sensing the change in refractive index. The function of the spacer and gold

reflector is not the same as traditional MIM absorbers. The gold particle layer,

spacer, and the gold reflector form a Fabry-Pérot Étalon. We also treat the gold

nanoparticles layer as a effective thin film layer using Maxwell Garnett approxi-

mation and as the number of layer increases, the predicted resonant wavelength

are well matched with the simulation results.

57
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We fabricated a Au@Si2 core-shell nanoparticle based absorber which has more

than 50% absorption from 600nm to 900 nm, the peak is centered at around 800

nm. However, due to the inhomogeneous in particle coverage, this good perfor-

mance can only be observed in several of these certain areas.

5.2 Outlook

The inhomogeneous distribution of the nanoparticles need to be solved in order to

make a better performance absorber. We can also decrease the particles to tune

it into visible regime. Moreover, the properties of this kind of absorber needs to

be exploited in sensing use. We also need to built up a new setup for measuring

the absorbance more precisely and also in the visible regime in the future.
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