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Abstract

We describe an automatic classifier of arrythmias based
on 12-lead and reduced-lead electrocardiograms. Our
classifier composes the scattering transform (ST) and a
long short-term memory (LSTM) network. It is trained
on PhysioNet/Computing in Cardiology Challenge 2021
data. The ST captures short-term temporal ECG modu-
lations while reducing its sampling rate to a few samples
per typical heart beat. We pass the output of the ST to
a depthwise-separable convolution layer which combines
lead responses separately for each ST coefficient and then
combines resulting values across ST coefficients. At a
deeper level, 2 LSTM layers integrate local variations of
the input over long time scales. We train in an end-to-end
fashion as a multilabel classification problem with a nor-
mal and 25 arrhythmia classes. We used canonical corre-
lation analysis (CCA) for transfer learning from 12-lead
ST representations to reduced-lead ones. For 12-, 6-, 4-,
3- and 2-leads, team “BitScattered” Challenge metrics on
the hidden validation set were 0.46, 0.44, 0.45, 0.46 and
0.43; and on the hidden test set were 0.10, 0.11, 0.10, 0.10
and 0.10, respectively, ranking 34th on the hidden test set.

1. Introduction

The World Health Organization estimates that cardio-
vascular diseases (CVDs) caused 17.9 million deaths
worldwide in 2016, and may reach 23.6 million in the year
2030. In this context, electrocardiography (ECG) plays
a vital role in CVD prevention, diagnosis, and treatment.
This is because each electrode in an ECG can reveal car-
diac abnormalities, which are risk factors for CVDs.

The main advantage of ECG is that its acquisition is
inexpensive and non-invasive. However, the visual in-
terpretation of ECG is tedious, time-consuming, and re-

quires expert knowledge. To address this, the Phys-
ioNet/Computing in Cardiology Challenge 2021 offers a
benchmark for automatic classification of cardiac abnor-
malities from 12-lead and reduced-lead ECGs.

Prior literature on ECG classification exhibits a method-
ological divide: signal processing versus machine learn-
ing. On one hand, digital signal processing methods in-
clude low-pass filters, fast Fourier Transform, and wavelet
transform. On the other hand, machine learning meth-
ods include random forests, support vector machines, con-
volutional neural networks and long short-term memory
(LSTM) networks. While feature engineering lacks flex-
ibility to represent fine-grain class boundaries, a purely
learned pipeline may lead to uninterpretable overfitting.

Our contribution to the Challenge aims to overcome the
divide by combining insights from signal processing and
machine learning. At a first stage, we extract time scat-
tering transform (ST) coefficients for each ECG channel.
Although this stage is not trainable, it offers numerical
guarantees of stability to time warps. At a second stage,
we train a depthwise separable convolution (DSC) net-
work, followed by a bidirectional long short-term mem-
ory (BiLSTM) network. While DSC combines scattering
coefficients from multiple leads simultaneously, the BiL-
STM can also capture longer-term trends in cardiac activ-
ity. We also investigated transfer learning to the reduced-
lead models using canonical correlation analysis (CCA).
Our system extends previous Challenge work(1) and is in-
spired from previous publications, which aimed at detect-
ing sleep arousals from polysomnographic recordings (2).

2. Methods

Figure 1 summarizes our proposed system; this section
explains the role of each system component in isolation.

Computing in Cardiology 2021; Vol 48 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2021.210



scattering transformscattering transform

depthwise convolution

BiLSTM

k-lead ECG

. . .

. . . . . .

. . .

pointwise convolution

. . . . . .

. . .

multilabel classification of arrhythmias

CCA 
projection

concatenation

Figure 1. System overview for k-lead ECG. Top: channel-
wise scattering transform. Arrow colors denote scattering
paths. Middle left: depthwise separable convolutional neu-
ral network, separated into depthwise and pointwise con-
volution layers. Middle (optionally, in violet): CCA pro-
jection of k-lead scattering uses coefficients precalculated
from 12-lead data before training. Bottom: bidirectional
long short-term memory network (BiLSTM) followed by
classification. Arrow styles denote output units.

2.1. Scattering transform

The scattering transform is a deep convolutional net-
work whose filters are defined a priori instead of being
learned from data. We refer to (3) for a mathematical in-
troduction and to (2) for a recent review of the state of the
art. Specifically, every layer contains filters of the form

ψj : t 7→ 2−j/Qψ(2−j/Qt), (1)

where ψ is a wavelet, Q is a constant number of filters
per octave, and the scale variable j is an integer ranging
between 0 and J . Hereafter, we take the “mother wavelet”
ψ to be a Morlet wavelet with a quality factor ofQ = 1 and
a center frequency of ξ = 200 Hz. The Morlet wavelet is a
complex-valued function with a Gaussian envelope while
being approximately analytic, i.e., with negligible Fourier
coefficients outside of the half-line of positive frequencies
(ω > 0) . Furthermore, we set the maximum wavelet scale
to J = 11 after a process of trial and error.

Let φT be a Gaussian filter of cutoff frequency equal to
1/T . The first two orders of the scattering transform are

S1x(t , j1 ) = |x ∗ψj1 | ∗ φT (t) and

S2x(t , j1 , j2 ) =
∣∣∣|x ∗ψj1 | ∗ψj2

∣∣∣ ∗ φT (t), (2)

where the vertical bars and the asterisk denote complex
modulus and convolution product respectively.

For every discretized value of time t, we concatenate
first-order coefficients S1x(t , j1 ) and second-order coef-
ficients S1x(t , j1 , j2 ) to produce a multidimensional time
series Sx(t , p); where the multiindex p, known as scatter-
ing path, either denotes an singleton (j1) or a pair (j1, j2).
With J = 11, this results in 12 first-order and 63 second-
order paths for a total number of P = 75 paths.

To control the degree of time invariance, we modified
the Python scattering package Kymatio1 to set the time
scale of Gaussian averaging to T = 62.5 ms. Note that
this T is less than the customary 2J/ξ. Rather, the fil-
terbank {ψj}j covers the frequency range [2−Jξ; ξ] =
[0.1 Hz; 200 Hz] whereas the scattering transform is dis-
cretized at a Nyquist rate of 2/T = 32 Hz. This rate is
chosen to be higher than typical patient heart rates yet con-
siderably lower than the ECG acquisition rate (500 Hz).

We apply a pointwise compressive nonlinearity to the
output of the ST, namely an offset log function: log(x+ ε)
where ε = 1e−4. Then per-path normalization subtracted
the mean and divided by the standard deviation. Figure
2 illustrates the scattering transform of normal and atrial
fibrillation ECG recordings, for the first two orders.

2.2. Depthwise separable convolution

A depthwise separable convolution (DSC) splits the
computation into two operations: depthwise convolution
X linearly combines the leads for each ST path while the
pointwise convolution Y linearly combines these trans-
formed paths, as in equations (3) and (4)

X [p] =

L∑
l=1

S [l, p]F [p, l] (3)

Y [n] = β

[
B [n] +

P∑
p=1

X [p]G [p, n]

]
(4)

where L ∈ {12, 6, 4, 3, 2} and P represent the number of
leads and paths, respectively. F and G refer to the filter
maps, N is the number of pointwise mixes, B is the bias
and β represents the activation function. The total number
of convolution coefficients including the bias weights is
therefore P × L+ (P + 1)×N . This is often a reduction

1Official website of Kymatio: https://www.kymat.io
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Figure 2. Scattering transform of ECG lead I 10 s recordings for (left) normal sinus rhythm (A0002) and (right) atrial
fibrillation (A0023). Top to bottom: input ECG (linear scale), 12 first-order and 63 second-order ST paths (log scales).

in parameters compared to regular convolution. We used a
DSC layer with N = P = 66 (chosen to be on the order
of the number of paths) and ReLU activation.

2.3. Transfer learning for reduced-lead
models

For reduced-lead models, we apply transfer learning
from the 12-lead data using canonical correlation analy-
sis (CCA). CCA finds a pair of linear transformations for
two sets of multidimensional variables (views Si), such
that the linear projections of the two views, (S1w1, S2w2)
are maximally correlated (4). In our case, view Si is the
scattering of lead sets: S1 corresponds to the lead set used
for prediction (2, 3, 4 or 6 leads) and S2 corresponds to
the respective complements (10, 9, 8 and 6 leads). This is
done by maximizing the following equation:

ρ = max
w1,w2

corr (S1w1, S2w2)

= max
w1,w2

wT
1 Σ12w2√

wT
1 Σ11w1wT

2 Σ22w2

(5)

where Σ11, Σ22 and Σ12 are the covariances and cross-
covariance of S1 and S2; and w1 and w2 are determined
by singular-value decomposition.

We calculate w1 and w2 from fold training data prior to
network training. CCA uses S1 and S2 to find the projec-
tion vectors corresponding to the k highest left- and right-
singular values, and k = P × L was chosen to include all
the singular values.

During training and prediction, S1 is projected with
fixed w1. This projection is intended to transfer infor-
mation from (possibly unavailable) S2, correlated with

the complementary lead set, such that classification of
reduced-lead ECG records is improved.

2.4. Data

The PhysioNet/CinC Challenge 2021 data (5) includes
88,000 public and 26,000 private ECG records. Each
record is assigned one or more diagnosis by experts. We
excluded subsets St. Petersburg having long durations (30
min) and PTB having non-uniform acquisition rates and
low class coverage (5/26).

2.5. Implementation

Although the ECG recording lengths in the training
set were as long as 120 s, the vast majority (78,181 of
87,663≈89%) were 10 s or less. Therefore to reduce com-
putational requirements, we reduced the time span of the
learning batches to 10 s. Longer recordings were truncated
at 10 s or split into multiple training sub-sequences of 10 s.
We applied a padding target for sub-sequences of duration
less than 10 s to remove their unused samples from partic-
ipation in the loss function. 24 Georgia and 388 Ningbo
records were omitted from training because NaN values in
the ECG recordings prevented convergence.

We used two BiLSTM layers of 100 hidden units. The
dense layer used binary cross-entropy loss to support mul-
tiple classes. Predictions were averaged over time, and
over sub-sequences if present. Our decision rule chose any
class that exceeded probability threshold p = 0.5; other-
wise the maximum probability class was chosen.

The 10-fold cross-validation data partitions were 90%
training and 10% testing for each fold. The validation set,
10% of training, was used for early stopping (60 epochs).
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Model Cross-validation Validation Test
Base12 0.601± 0.015 0.46 (23) 0.10 (34)
Base6 0.584± 0.007* 0.44 (23) 0.11 (33)
CCA6 0.573± 0.010
Base4 0.582± 0.015 0.45 (21) 0.10 (34)
CCA4 0.581± 0.009
Base3 0.583± 0.006 0.46 (21) 0.10 (34)
CCA3 0.576± 0.009
Base2 0.570± 0.008 0.43 (22) 0.10 (34)
CCA2 0.564± 0.010

Table 1. Challenge metric (5; 6) for baseline and CCA
lead models on cross-validation and hidden validation and
test sets (ranking out of 40 teams in parentheses). * indi-
cate two-sided t-test p < 0.01 compared to previous row.

Figure 3. Class incidence (red) and cross-validation per-
formance (F-measure, blue) for model Base12. The highest
incidence class was normal sinus rhythm (NSR).

3. Results

Table 1 shows cross-validation and hidden validation re-
sults for our baseline and CCA models using 10 s trunca-
tion. Our submitted entry completed training of the base-
line models in just over 18 h and prediction of the hidden
validation set in 18 min, within the maximum allowable
times of 48 h and 24 h, respectively. Fig 3 shows the class
incidence in the training data and cross-validation perfor-
mance for the 12-lead model Base12.

4. Discussion

Our approach achieved experimental success without
need for feature engineering and with few parameters to se-
lect. We observe slight performance degradation for mod-
els with decreasing numbers of leads, suggesting that the
correlation between leads is considerable. CCA did not
significantly improve results but warrants further analysis.

Performance was only somewhat reduced on the hid-
den validation set compared to cross-validation, indicating

good generalization; however hidden test set performance
was drastically low in comparison, suggesting that the test
set was quite different from the training and validation sets
or that there was a systemic error in our processing of the
test set. We anticipate that the organizers will provide fur-
ther information to better assess these results.

Splitting rather than truncating records did not affect re-
sults, although benefits may have been masked by the pre-
ponderance of 10 s recordings.

We note that higher incidence classes tended to perform
better, especially normal sinus rhythm (28,891 of 87,663
training records≈33%). Considering this imbalance could
improve results for low incidence classes.

Extensions to our approach to explore include: improv-
ing the decision rule; exploring alternate loss functions;
searching hyperparameters; and using age and sex demo-
graphic data, recognized risk factors for cardiac pathology.
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