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Abstract

Electrocardiogram (ECG) analysis is the standard of
care for the diagnosis of irregular heartbeat patterns,
known as arrhythmias. This paper presents a deep learn-
ing system for the automatic detection and multilabel clas-
sification of arrhythmias in ECG recordings. Our sys-
tem composes three differentiable operators: a scatter-
ing transform (ST), a depthwise separable convolutional
network (DSC), and a bidirectional long short-term mem-
ory network (BiLSTM). The originality of our approach
is that all three operators are implemented in Python.
This is in contrast to previous publications, which pre-
computed ST coefficients in MATLAB. The implementa-
tion of ST on Python was made possible by using a new
software library for scattering transform named Kymatio.
This paper presents the first successful application of Ky-
matio to the analysis of biomedical signals. As part of the
PhysioNet/Computing in Cardiology Challenge 2020, we
trained our hybrid Scattering—LSTM model to classify 27
cardiac arrhythmias from two databases of 12—lead ECGs:
CPSC2018 and PTB-XL, comprising 32k recordings in to-
tal. Our team “BitScattered” achieved a Challenge metric
of 0.536+0.012 over ten folds of cross-validation but this
result may be over-optimistic since we were not able to
rank and score on the hidden test set.

1. Introduction

The World Health Organization estimates that cardio-
vascular diseases (CVDs) caused 17.9 million deaths worl-
wide in 2016, and may reach 23.6 million in the year 2030.
In this context, electrocardiography (ECG) plays a vital
role in CVD prevention, diagnosis, and treatment. This
is because each electrode in an ECG can reveal cardiac ab-
normalities, which are risk factors for CVDs.
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The main advantage of ECG is that its acquisition is in-
expensive, painless, and non-invasive. However, the sub-
sequent task of interpreting an electrocardiograph is te-
dious and time-consuming. To address this issue, the Phy-
sioNet/Computing in Cardiology Challenge 2020 offers an
evaluation benchmark for automatic detection and classifi-
cation of cardiac abnormalities from 12-lead ECGs.

Prior literature on ECG classification exhibits a method-
ological divide: signal processing versus machine learn-
ing. On one hand, digital signal processing methods in-
clude low-pass filters, fast Fourier Transform, and discrete
wavelet transform. On the other hand, machine learning
methods include random forests, support vector machines,
convolutional neural networks and long short-term mem-
ory (LSTM) networks. Both families of methods have
their limitations: while feature engineering lacks flexibility
to represent fine-grain class boundaries, a purely learned
pipeline may lead to uninterpretable overfitting.

Our contribution to the Challenge aims to overcome the
aforementioned methodological divide by combining in-
sights from signal processing and machine learning. At a
first stage, we extract time scattering transform (ST) co-
efficients for each ECG channel. Although this stage is
not trainable, it offers numerical guarantees of stability to
time warps. At a second stage, we train a depthwise sep-
arable convolution (DSC) neural network, followed by a
bidirectional long short-term memory (BiLSTM) network.
While the DSC combines scattering coefficients from mul-
tiple electrodes simultaneously, the BILSTM can also cap-
ture longer-term trends in cardiac activity.

Our system is inspired from a previous publication,
which aimed at detecting and classifying sleep arousals
from polysomnographic recordings (1). However, whereas
the original publication resorted to a combination of pro-
gramming languages (MATLAB for scattering and Python
for machine learning), we implement all stages of compu-
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Figure 1.  Overview of the proposed system. Top:
channel-wise scattering transform of a 12-lead electrocar-
diogram (ECG). For simplicity, only two scattering trans-
form blocks are shown. Arrow colors denote scattering
paths. Middle: depthwise separable convolutional neu-
ral network (DSC), separated into a depthwise convolution
layer and a pointwise convolution layer. For simplicity,
only three scattering paths are shown and only two feature
maps are shown. Bottom: bidirectional long short-term
memory network (BiLSTM) followed by multilabel clas-
sification. Arrow styles denote output units. For simplicity,
only three BILSTM hidden units are shown, and only two
arrhythmia classes are shown. See Section 2] for details.

tation in Python. This is possible thanks to a new library
for scattering transforms in Python, named Kymatio

2. Methods

Figure|l|summarizes the different technical components
of our proposed system. This section explains the role of
each component in isolation.

LOfficial website of Kymatio: https://www.kymat.io

2.1.  Scattering transform

The scattering transform is a deep convolutional net-
work whose filters are defined a priori instead of being
learned from data. Specifically, every layer in the scat-
tering network contains filters of the form:

Py t— 279/ Qqp(279/Q), (1)

where 1) is a wavelet, () is a constant number of filters
per octave, and the scale variable j is an integer ranging
between 0 and J. Hereafter, we take the “mother wavelet”
1) to be a Morlet wavelet with a quality factor of () = 1 and
a center frequency of & = 200 Hz. The Morlet wavelet is a
complex-valued function with a Gaussian envelope while
being approximately analytic, i.e., with negligible Fourier
coefficients outside of the half-line of positive frequencies
(w > 0) . Furthermore, we set the maximum wavelet scale
to J = 11 after a process of trial and error.

Let ¢ be a Gaussian filter of cutoff frequency equal to
1/T. The outputs of the scattering transform at orders one
and two respectively are

Six(t,j1) = |z *p; | * dp(t) and
Sax(t,j1,j2) = || * "/’j1| k| * or(t), (2

where the vertical bars and the asterisk denote complex
modulus and convolution product respectively.

The earliest application of the scattering transform to
cardiology is due to (2), in the context of fetal heart rate
classification. We refer to (3) for a mathematical introduc-
tion and to (1) for a recent review of the state of the art.

For every discretized value of time ¢, we concatenate
first-order coefficients Sy (¢, j; ) and second-order coef-
ficients S1x(¢, 51, j2) to produce a multidimensional time
series Sx(t, p); where the multiindex p, known as scatter-
ing path, either denotes an singleton (j;) or a pair (j1, j2).
With J = 11, this results in 12 first-order and 63 second-
order paths for a total number of P = 75 paths.

Hereafter, we set the time scale of Gaussian averaging
to T" = 250 ms. Note that T is not equal to 2‘7/5, as is cus-
tomary. Rather, the filterbank {1);}; covers the frequency
range [277¢; ] = [0.1 Hz; 200 Hz] whereas the scattering
transform is discretized at a Nyquist rate of 2/7T = 8 Hz.
This rate is chosen to be higher than the heart rate of pa-
tients (1-4 Hz) while being considerably lower than the
acquisition rate of ECG (500 Hz).

We apply a pointwise compressive nonlinearity to the
output of the ST, namely the inverse hyperbolic sine func-
tion: asinh : x — log(x + vx?+1). Previous liter-
ature has shown that such compressive nonlinearities can
bring the empirical histogram of scattering transform mag-
nitudes closer to Gaussian and improve classification accu-
racy (4). Figure [2|illustrates the scattering transform of an
ECG channel sample, for the first two orders.
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Figure 2. Scattering transform results for AO004 channel
1 ECG recording. From top to bottom: normalized input
signal, 12 first-order ST paths, 63 second-order ST paths.

2.2.  Depthwise separable convolution

A depthwise separable convolution (DSC) splits the
computation into two operations: depthwise convolution
applies a single convolutional filter per each ST input
channel while the pointwise convolution linearly combines
these transformed channels. Equations (3) and (4) describe
the two steps mathematically.

=Y Sle,plFlpe]  3)

Ynl=p|Bn+> X [pGp,n] “

where F and P represent electrodes and paths, respec-
tively. F' and G refer to the filter maps, N number of paths,
B is the bias and p represents the activation function. The
total number of convolution coefficients including the bias
weights is therefore P x E + (P + 1) x N. This is often a
reduction in parameters compared to regular convolution.

We used a DSC layer with N = P = 66 (chosen to be
on the order of the number of paths) and the rectified linear
activation function (ReLU).

2.3. Long-short term memory (LSTM)

An LSTM is a type of Recurrent Neural Network (RNN)
specially designed to model temporal sequences. It pre-
serves information from inputs that has already passed
through it using the hidden state. An LSTM unit contains
one or more self-connected memory cells and three gates
for the input, output and forget units that provide contin-
uous analogues of write, read and reset operations for the
cells. Given a sequence x = (21, ..., 21 ), an LSTM com-
putes the hidden vector sequence h = (hq,...,hr) and

005
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0.004
0.002
0.000

output vector sequence y = (y1, ..., yr) by repeating the
following equations from ¢ = 1 to 1"

hy = H(Wynae + Whphe—1 + by)
Yt = Whyhe + by, &)

where W, b and H denote weights, bias vectors and hidden
activation, repectively, implemented as follows:

iy = o(Waims + Whihs 1 + Weier 1 + by)
fi=0Wysxy + Whrhi—1 + Wepe—1 + by)
et = freoo1 +igtanh(Waewy + Wiehy 1 + be)
0t = 0(Waows + Whohi—1 + Weocs + o)

)

hy = o tanh(c; (6)

where W, is the input-output gate matrix, Wp; is the
hidden-input gate matrix, ¢, f, o and ¢ represent respec-
tively the input gate, forget gate, output gate and cell acti-
vation vectors, and o denotes the logistic sigmoid function.

Bidirectional LSTMs (BiLSTM) process data in forward
and reverse directions to capture both past and future con-
texts with two separate hidden layers, which are then fed
forward to the same output layer. Our system composes
two layers of BiLSTM, each containing 100 hidden units.

2.4. Prediction

The sequence learning applies the BiLSTM output to a
final dense layer with sigmoid activation to calculate the
final predictions. The Adam optimizer algorithm was used
to handle sparse gradients on noisy ECG data.

The dense layer used binary cross-entropy loss during
training to support multiple arrhythmia classes. Predic-
tions were averaged over time and our decision rule chose
any class that exceeded the probability threshold p = 0.5;
otherwise the maximum probability class was chosen.

2.5. Data

The PhysioNet/CinC Challenge 2020 database includes
43,101 annotated ECG recordings. The training data was
obtained from four sources publicly, while the hidden test-
ing data comes from three sources (5):

« CPSC2018: the China Physiological Signal Challenge
2018 (CPSC2018). This source includes two databases: a
public training dataset (CPSC) and unused data (CPSC2).
o St. Petersburg Institute of Cardiological Technics.

o PTB and PTB-XL: the Physikalisch Technische Bunde-
sanstalt (PTB) Database, Brunswick, Germany.

o G12EC: The Georgia 12-lead ECG Challenge (G12EC)
Database, Emory University, Atlanta, Georgia, USA.

« Undisclosed: this is hidden test data that comes from an
American institution.
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2.6. Implementation

Keras with Tensorflow as backend was used for build-
ing the neural networks. We used a machine with 32 GB
of system memory and two GPUs with 12 GB of mem-
ory each, using Tensorflow class MirroredStrategy
to distribute the training amongst the two GPUs.

We used the analog-to-digital gain (ADG) in the input
headers to obtain physical (mV) units.

Although the longest ECG recording in CPSC dataset
was 60 s, to reduce computational requirements, we re-
duced the time span of the learning batches to 30s. ST
paths of sequences longer than this were truncated at 30 s.

We collapsed the three pairs of equivalent classes, as de-
scribed in (3)), to obtain a total of 24 target classes for train-
ing. In addition, we applied a padding target for recordings
of duration less than the batch size to remove their unused
samples from participation in the loss function.

Training data was randomly split into training (90%)
and testing datasets (10%). 10% of the training dataset was
used as a validation set, using 20 early stopping epochs. Fi-
nal model selection was based on ten-fold cross-validation
results with various configurations. We used the Challenge
Metric Syormalized described in (S)) to assess performance.

We found that training converged in isolation for
the CPSC, CPSC2 and PTB-XL datasets. The other
datasets did not converge and so we used the composite
dataset CPSC, CPSC2 and PTB-XL in subsequent cross-
validation. Therefore, our experiments used 32,167 of the
available 43,101 ECG recordings, or 75%. Due to time
limitations, we were not able to submit a working submis-
sion using the docker environment and therefore we could
not report results on the hidden test set.

3. Results

The results for our final model are shown in Table 1.
Training stretched the limits of our machine configuration
with per-fold training times of approximately 18 hours.

4. Discussion

Our approach achieved experimental success without
need for feature engineering and with few parameters to
select. Nevertheless, future research is needed to perform a
wider search of key hyperparameters, especially the max-
imum ST scale, the downsampling factor, the number of
DSC filters, and the number of LSTM units and layers.

We note that our approach did not generalize to all
datasets. In particular, using ADG may not have been reli-
able for the large Georgia dataset, as was discussed on the
Challenge discussion forum. In addition, one of the most
frequent classes, namely sinus rhythm, has a poor classifi-
cation rate: this fact merits further investigation.

Fold Training Validation Testing
1 0.600 0.548 0.541
2 0.579 0.517 0.533
3 0.580 0.530 0.527
4 0.617 0.570 0.552
5 0.585 0.530 0.543
6 0.648 0.542 0.545
7 0.601 0.561 0.528
8 0.602 0.542 0.549
9 0.577 0.525 0.512
10 0.572 0.534 0.527

pwEto 0569+0.014 0.540+0.016 0.536+0.012

Table 1. Spormalizea metric for each partition per fold; mean
1 and standard deviation o over all folds.

In future work we wish to complete debugging of the
docker submission container.
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