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Abstract

Dynamical processes in biology are studied using an ever-increasing number of techniques,

each of which brings out unique features of the system. One of the current challenges is to

develop systematic approaches for fusing heterogeneous datasets into an integrated view

of multivariable dynamics. We demonstrate that heterogeneous data fusion can be success-

fully implemented within a semi-supervised learning framework that exploits the intrinsic

geometry of high-dimensional datasets. We illustrate our approach using a dataset from

studies of pattern formation in Drosophila. The result is a continuous trajectory that reveals

the joint dynamics of gene expression, subcellular protein localization, protein phosphoryla-

tion, and tissue morphogenesis. Our approach can be readily adapted to other imaging

modalities and forms a starting point for further steps of data analytics and modeling of bio-

logical dynamics.

Author summary

A wide range of problems in biology require analysis of multivariable dynamics in space

and time. As a rule, the multiscale nature and complexity of real systems precludes simul-

taneous monitoring of all the relevant variables, and multivariable dynamics must be syn-

thesized from partial views provided by different experimental techniques. We present a

formal framework for accomplishing this task in the context of imaging studies of pattern

formation in developing tissues.

Introduction

The need to synthesize data from different observations into coherent multivariable trajecto-

ries is discussed in multiple contexts, from physics to social sciences, but systematic

approaches for accomplishing this task have yet to be established [1–5]. Here we address this
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task for imaging studies of developing tissues, where patterns of cell fates are established by

complex regulatory networks [6–8]. Advances in live imaging continue to provide new insights

into the dynamics of individual components in these networks, but imaging more than three

reporters at the same time is still challenging and limited to model genetic organisms [9, 10].

Furthermore, in the absence of reliable live reporters, dynamics of some state variables can

only be inferred from fixed tissues. Because of these limitations, extracting the multivariable

dynamics from the heterogeneous datasets collected by imaging of live and fixed tissues

becomes a non-trivial task [11, 12].

The problem can be illustrated by an imaging dataset from the early Drosophila embryo

(Fig 1A and 1B), a model system in which a graded profile of the nuclear localization of tran-

scription factor Dorsal (Dl) establishes the dorsoventral (DV) stripes of gene expression that

control cell fates and tissue deformations [13–15]. Current mechanisms of the DV patterning

system invoke multiple state variables, such as the levels of gene expression and protein phos-

phorylation [16] (Fig 1C). These mechanisms were elucidated in studies that reveal only a

small subset of the full state space, most commonly 2-3 variables per experiment. Can these

partial views be fused into a consistent multivariable trajectory? This is a general question that

applies to essentially all developmental systems.

We realized that this question can be addressed by casting the task of data fusion as a matrix

completion problem (Fig 1D). Specifically, an image of a fixed embryo or a frame from a live

imaging movie can be viewed as a column in a matrix where rows correspond to the relevant

variables, such as developmental time or the level of gene expression at a given position.

Because of limitations in the number of states that can be accessed simultaneously, the matrix

is incomplete. For example, live imaging of gastrulation provides information about nuclear

positions as a function of time, but is silent about the levels of gene expression. On the other

hand, an image of a fixed embryo reveals the distribution of an active enzyme but has no direct

temporal information. Thus, multivariable data fusion requires completing this matrix, filling

in the missing components by estimates informed by the rest of the data. Below we show how

this task can be accomplished by solving a suitably posed semi-supervised learning problem.

We first provide a closed-form solution to this problem and then demonstrate its successful

performance on synthetic and experimental datasets.

Results

Semi-supervised learning framework for matrix completion

We assume here that all experiments contain a common variable, which is sufficient to deter-

mine all other variables that can be measured or to be predicted. For instance, this variable is

revealed by a signal that reports positions of nuclei. This means that the first row in the matrix

is complete. To complete other rows, we must establish the mappings between the common

variable and each of the target variables. These mappings can be found within a semi-super-

vised learning framework, in which the values of the variables in the incomplete rows are esti-

mated from a training dataset [17, 18].

As an example, consider images from fixed embryos that are stained to reveal the spatial

pattern of an active enzyme, visualized using a phosphospecific antibody (Fig 2). They provide

labeled data points that contain information about the common variable and a specific target

variable. On the other hand, images without this staining, such as the frames from live imaging

of morphogenesis, provide unlabeled data points with only the common variable. By finding a

mapping between the common and target variables, we can essentially “color” the frames of a

live imaging movie by snapshots of molecular patterns from fixed embryos.

Synthesizing developmental trajectories
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Fig 1. Stating the problem of data fusion. (A-B) Example datasets of molecular signals and morphology during the DV patterning of

Drosophila embryo; all images are collected from optical cross-section along the DV axis, * 15% from the posterior pole of the embryo.

(A) Frames from a live imaging movie, showing positions of nuclei during the early stages of gastrulation. (B) Images of fixed embryos,

stained with probes and antibodies revealing the spatial patterns of nuclear Dl (pink), Twi (green), dually phosphorylated ERK (red), and

transcripts of rho (yellow) and ind (blue). (C) A fragment of a DV patterning network in the early Drosophila embryo. (D) Data fusion as a

Synthesizing developmental trajectories
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matrix completion problem: Each row corresponds to a variable, e.g. nuclear positions, gene expression levels, time stamp, revealed by

visualizing different molecular or cellular components, nuclei, transcripts, or protein phosphorylation. Each column of the matrix

corresponds to an image giving access to some of the states through various channels. The remaining states, labeled with a question

mark, must be estimated from other datasets.

https://doi.org/10.1371/journal.pcbi.1005742.g001

Fig 2. Learning a mapping from a common channel. An experimental image can be decomposed into

various channels. E.g., red: dpERK, visualized with a phosphospecific antibody, gray: nuclei, visualized

through either DAPI (in fixed images) or Histone-RFP (in live imaging). The training ensemble of labeled

images (A) is used to predict the labels on a set of unlabeled images (B) using common information, the

morphology obtained through the nuclei signal in this case. Morphological proximity yields similar labels.

https://doi.org/10.1371/journal.pcbi.1005742.g002
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A critical assumption in finding the mappings is that the multivariable dynamics of the pat-

terning process are both low-dimensional and smooth with respect to the underlying parame-

ters. This assumption is supported by studies with mathematical models of specific biological

systems and by computational analysis of datasets from imaging studies of development

[19, 20]. More formally, we consider a set of data points (x1, . . ., xl, xl+1, . . ., xl+u) belonging to

a space X . These points correspond to the values of the common variable in the complete row.

On the other hand, a row corresponding to any one of the target variables is incomplete. The

values in the filled columns of this row are called labels. These are denoted (y1, . . ., yl) and

belong to a target space Y. The semi-supervised learning techniques transfer the information

contained in the labeled data points ((x1, y1), . . ., (xl, yl)) to the unlabeled points (xl+1, . . ., xl+u),

while preserving the intrinsic structure of the dataset [18]. Stated otherwise, these techniques

learn the mapping y = f(x) assuming that the considered process is smooth, which means that

similar values of x give rise to similar values of f(x).

The missing values, corresponding to the unlabeled data points in each of the incomplete

rows, are found by solving the following optimization problem:

~f ¼ argmin
~f 2Y lþu

8i�l;fi¼yi

Xlþu

i;j¼1

wi;jk fi � fj k
2

ð1Þ

where~f ¼ ðf1; :::; flþuÞ are the values of the target variable on the data points (x1, . . ., xl+u), the

considered norm in Y is the Euclidean distance and the weights wi,j represent the similarity

between two data points xi and xj. The norm in the space X can for example be the Euclidean

distance in the space where each dimension corresponds to an image pixel or some coordinate

in an arbitrary feature transform of that image. Other distances are possible. For example, the

one-norm (or L1 distance) can be used, which increases robustness to outliers in the data. That

being said, as long as these distances preserve the low-dimensional manifold structure, they

will yield similar results as the number of points goes to infinity.

This quadratic optimization problem, known as harmonic extension, has a unique solution

that relates the unlabeled data points fl+1, . . ., fl+u to the labels y1, . . ., yl where Y ¼ R [17, 21].

The explicit solution reads:

~f u ¼ ðDu � WuuÞ
� 1WulY ð2Þ

where Y = (y1, . . ., yl) and~f u ¼ ðflþ1; :::; flþuÞ, and di ¼
Plþu

j¼1
wi;j, Du = diag(dl+1, . . ., dl+u),

Wuu = (wi,j)l+1�i,j�l+u, and Wul ¼ ðwi;jÞlþ1�i�lþu
1�j�l

(S1 Text).

Illustrative example

To illustrate our method, we considered a one-dimensional nonlinear trajectory in a three-

dimensional space. The trajectory is given by the set of equations

xð1ÞðtÞ ¼ at ðcosðbtÞ þ �ð1ÞÞ

xð2ÞðtÞ ¼ at ðsinðbtÞ þ �ð2ÞÞ

yðtÞ ¼ ct expð� dðt � eÞ2Þ

8
>>><

>>>:

ð3Þ

where a, b, c, d, e are constants, �(1) and �(2) are Gaussian noise sources and t is a real-valued

parameter. The set of points (x(1)(t), x(2)(t)) forms a one-dimensional non-linear manifold

embedded in the two dimensional plane and it is parameterized by t. These points are analogs
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of the embryo morphology. In the absence of noise, this mapping from t to the 2D plane can

be inverted as t ¼ 1

jaj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxð1ÞÞ2ðtÞ þ ðxð2ÞÞ2ðtÞ
q

. The signal y(t) is a smooth function of t and is

thus a smooth function of (x(1), x(2)) by composition. In this example, y corresponds to the tar-

get modality that we would like to estimate.

To mimic the setting of data fusion with three modalities, ((x(1), x(2)), t, y), we consider the

following situation: suppose that one acquires a set of labeled points, i.e. a set of l triplets,

(((x(1)(t1), x(2)(t1)), y(t1)), . . ., ((x(1)(tl), x(2)(tl)), y(tl))) and a set of u unlabeled, but time-

stamped, points, (((x(1)(tl+1), x(2)(tl+1)), tl+1), . . ., ((x(1)(tl+u), x(2)(tl+u)), tl+u)), as shown in

Fig 3A and 3B. The pairwise similarity measures wi,j are computed using Euclidean norm

between pairs of data points (x(1)(ti), x(2)(ti)) and (x(1)(tj), x(2)(tj)). In this case, there are no out-

liers, so the standard Euclidean distance is well suited and there is no need to consider other

distance measures.

Then, using Eq (2) it is possible to estimate y = f(x) on the set of unlabeled data points using

the harmonic extension algorithm. The results are shown in Fig 3C. We then directly obtain y
as a function of t by composition using the known time stamps (tl+1, . . ., tl+u).

The accuracy of the estimated multivariable dynamics can be assessed using a K-fold valida-

tion strategy on the labeled samples (S1 Fig and Materials and methods). For the chosen set of

parameters and the size of the dataset, the error is * 1%. As expected for the semi-supervised

learning framework, the error decreases with the addition of new unlabeled data points. This

example demonstrates how the proposed approach successfully recovers multivariable dynam-

ics from heterogeneous datasets that combine continuous views for part of the state variables

and snapshots that report several states without direct temporal information.

Fusion of imaging datasets

As a representative dataset from imaging studies of multivariable dynamics in living systems,

we use a collection of * 1000 images each of which reveals the spatial position of the nuclei

and either a timestamp or the distribution of one or several components of the DV patterning

network (Fig 1D). To apply the semi-supervised learning approach to data fusion to this data-

set we need to compute pairwise similarities between the images using the common channel.

Prior to this, we took several preprocessing steps that aim to minimize image variability associ-

ated to sample handling, microscope calibration and imaging. First, the images were registered

to align their ventral-most points. The images were then resized and cropped such that the

embryos occupy 80% of the image. All images were resized to 100 by 100 pixels. To overcome

local variations of image intensity, we computed a local average using a Gaussian kernel, and

then renormalized the image by that value. We also applied a logistic function to the images to

handle contrast variability, S2 Fig.

Most importantly, to ensure that pairwise differences between images are insensitive to

small translations or deformations, we applied the scattering transform [22] and compared the

resulting transform vectors. The scattering transform of an image is a signal representation

obtained by alternating wavelet decompositions and pointwise modulus operators. We found

that second-order scattering coefficients with an averaging scale of 64 pixels provided suffi-

cient invariance. These are computed using the ScatNet toolbox [23, 24]. The result is a vector

of dimension 784 for each image. The point clouds corresponding to each of the 11 datasets

were centered separately. It has been shown that the Euclidean distance on the scattering trans-

form is locally invariant to translation and stable to deformation of the original image [22].

For this reason, we compare these 784-dimensional vectors using the Euclidean norm. The

corresponding low-dimensional manifold on which the data points lie is shown on S4 Fig.

Synthesizing developmental trajectories
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For each of the 512x512 pixels of each live movie frames, there is a common channel report-

ing the nuclei spatial position and there are 5 channels that we would like to complete. These

channels contain the information about the spatial distributions of one enzyme (dpERK), two

transcription factors (Twist and Dorsal), and transcripts of two genes (ind and rho). We thus

Fig 3. Illustrative example. (A) Matrix formulation of the problem with 120 labeled samples, (((x(1)(t1), x(2)(t1),

y(t1)), . . ., ((x(1)(tl), x(2)(tl), y(tl))), and 300 unlabeled samples (((x(1)(tl+1), x(2)(tl+1)), tl+1), . . ., ((x(1)(tl+u), x(2)(tl+u)),

tl+u)). (B) The points are distributed on a non-linear 1-dimensional manifold in the (x(1), x(2)) - plane. Some

points, the snapshots, contain a value for the signal. (C) Result of the interpolation on the nonlinear manifold

using the harmonic extension algorithm.

https://doi.org/10.1371/journal.pcbi.1005742.g003
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solved the data fusion problem for each pixel and each channel, leading to 5x512x512 semi-

supervised learning solutions. The combination of labeled and unlabeled datasets is described

on S2 Table. The result is a multivariable trajectory for the joint dynamics of tissue shape and

five molecular components within the regulatory network that patterns the DV axis of the

embryo (Fig 4). To evaluate the accuracy of the method, we computed the cross-validation

error for each pixel and averaged over the entire images. We found that the normalized abso-

lute error is of 0.9–2.5% of the signal range when considering the various modalities of the

entire experimental datasets (S3 Table). We show how the algorithm performs on several

examples in Fig 5.

Discussion

We presented a formal approach to synthesizing developmental trajectories. By posing the task

of data fusion as a semi-supervised learning problem, we obtained a closed-form expression

for the estimated values of all variables using harmonic extension. The reconstructed trajecto-

ries provide the basis for the more advanced mechanistic studies of multivariable processes

Fig 4. Colored movie frames obtained with our data fusion algorithm. The temporal resolution is 2 min, extracted from a 30 s

resolution movie. The time stamps on the images are in min and indicate elapsed time from the start of the live movie. The colors

correspond to dpERK (red), Dl (pink), rho (yellow), ind (blue), Twi (green).

https://doi.org/10.1371/journal.pcbi.1005742.g004
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responsible for the highly reproducible dynamics of developmental pattern formation. Our

approach can also be extended using other semi-supervised learning methods [25], if the

dimensionality of the intrinsic geometry is greater than one or if there is no unique common

channel among all experiments.

Fig 5. Examples showing how the algorithm performs on four fixed samples. The first column shows the

original measurement, the second column shows the result of recoloring the snapshot through K-fold cross

validation, and the third column shows the absolute difference between the original and recolored images,

normalized by the signal range.

https://doi.org/10.1371/journal.pcbi.1005742.g005
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Most of the previous attempts to accomplishing this task explored specific features of devel-

opmental systems, such as the expression level of a particular gene, and used a discrete number

of temporal classes, usually defined in ad hoc way [16, 26]. Our approach reconstructs continu-

ous time dynamics and relies on the intrinsic geometry of multidimensional datasets. Some

limitations might appear when considering fluorescent reporters for intrinsically variable pro-

cesses, and thus not smooth, such as MS2 reporters for nascent transcripts [27]. However, our

method is readily applicable to datasets stored in established public databases of gene expres-

sion patterns such as the BDGP Resources [28] or the FlyEx database [29] and could serve to

animate other pathways such as the segmentation cascade in the early fly development.

We conclude by pointing out two directions for the future extensions and applications of

the presented approach. First, while there are no conceptual limitations in using the presented

matrix completion framework to studies of pattern formation and morphogenesis problems in

three dimensions [30], it is important to increase the computational efficiency of our

approach, which can be done at multiple levels, starting with dimensionality reduction at the

preprocessing step. At the same time, for a large class of patterning processes that happen on

the surfaces of epithelial sheets, one can use the recently developed “tissue cartography”

approach to first flatten the three-dimensional images [5], which should make our approach

directly applicable. Second, following the step of data fusion, one can attempt to model the

observed multivariable dynamics. Here one can employ several modeling methodologies, from

mechanistic modeling of specific molecular and tissue-level processes [31–35], to equation-

free approaches, which aim to deduce the underlying mechanisms directly from data [36, 37].

Materials and methods

Extended Materials and Methods are presented in S1 Text.

Image datasets

All images are cross-sections of Drosophila embryos taken at * 90μm from the posterior pole.

Time-lapse movies were obtained using a Nikon A1-RS confocal microscope with a 60x Plan-

Apo oil objective. The nuclei were stained with Histone-RFP. A total of 7 movies was acquired

with a time resolution of 30 seconds per frame. All movies start about 2.5 hr after fertilization

and end after about 20 min after gastrulation starts (about 3.3 hr after fertilization). Four data-

sets of fixed images were acquired to visualize nuclei, protein expression of dpERK, Twist, and

Dorsal, and mRNA expression of ind and rho. Immunostaining and fluorescent in situ hybrid-

ization protocols were used as described before [16]. DAPI (1:10,000; Vector laboratories) was

used to visualize nuclei. Rabbit anti-dpERK (1:100; Cell Signaling), mouse anti-Dorsal (1:100;

DSHB), rat anti-Twist (1:1000; gift from Eric Wieschaus, Princeton University), sheep anti-

digoxigenin (1:125; Roche), and mouse anti-biotin (1:125; Jackson Immunoresearch) were

used as primary antibodies. Alexa Fluor conjugates (1:500; Invitrogen) were used as secondary

antibodies. Stained embryos were imaged using Nikon A1-RS confocal microscope with a 60x

Plan-Apo oil objective. Embryos were mounted in a microfluidic device for end-on imaging,

as described previously [16, 38]. The first dataset contains 108 images stained with rabbit anti-

dpERK and rat anti-Twist antibodies. The second dataset contains 59 images stained with

mouse anti-Dorsal antibody, rabbit anti-dpERK antibody, and ind-DIG probe. The third data-

set contains 58 images stained with ind-biotin probe, rho-DIG probe, and rabbit-dpERK anti-

body. The fourth dataset contains 30 images stained with rat anti-Twist antibody, ind-biotin

probe, and rho-DIG probe. The distribution of the datasets as labeled and unlabeled data

depending on the considered variable is summarized on S2 Table. Raw images can be found in
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Supplementary Files on the public github repository https://github.com/paulvill/data-fusion-

images, see S2 Text.

The affinity matrix

The affinity matrix W = (wi,j) is computed using a Gaussian kernel wi;j ¼ exp � kxi � xjk
2

sisj

� �
with

scaling parameters σi and σj computed locally as the average of the distance with respect to the

10 closest neighbors as described in S1 Text. We used the Euclidean norm in the space of scat-

tering transformed data. The resulting affinity matrix is shown on S3 Fig. The corresponding

underlying one-dimensional manifold is shown on S4 Fig.

Computing the cross validation error

The K-fold cross validation error was computed by extracting subsamples of the labeled data

points and the semi-supervised learning framework was used to predict the value of the labels

on them. For the image datasets, we computed the absolute error between the actual value of

pixel intensity to the predicted one. The absolute error was then normalized by the range of

the signal computed from the entire set of images for a given channel. The number of bins K

was chosen so that the number artificially unlabeled data points was about 20. The results for

each dataset are shown in S3 Table and described in S1 Text.

Movie coloring

The result of data fusion led to multimodal time lapses of developing embryo showing nuclei

and the spatio-temporal dynamics of dpERK, Dl, rho, ind, and Twi. The images were colored

using the color code shown in S4 Table, i.e. dpERK (red), Dl (pink), rho (yellow), ind (blue),

Twi (green). A resulting colored movie is provided in Supplementary Files 2.

Code implementation

The semi-supervised framework used to accomplish the task of data fusion is completely

implemented in the open-source MATLAB library and fully runs in GNU Octave. It is avail-

able as Supplementary Software on the public github repository https://github.com/paulvill/

data-fusion. See S2 Text for a description of the main components of the library.

Supporting information

S1 Fig. K-fold cross validation on the illustrative example. A) Setting with K = 5, there are

120 labeled points and the number of unlabeled points varies from 0 to 300. B) The normalized

absolute error as a function of the number of unlabeled points. There are 100 repetitions for

each number of unlabeled data points.

(TIF)

S2 Fig. Illustration of the image preprocessing steps applied on the nuclei channel. The

first line shows images resulting from rotation and centering steps. The second line shows

images resulting from intensity renormalization. The third line shows images resulting from

contrast increase. The first two columns show early and later stages from movie frames stained

with Histone-RFP. The last two columns represent early and later stages from fixed samples

stained with DAPI.

(TIF)
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S3 Fig. Affinity matrix W = (wi,j) obtained by comparing images as described by equation

(6) in S1 Text is shown as a heatmap. The white squares identify each of the 11 datasets. The

first 7 correspond to live movies, the last 4 correspond to the datasets of fixed images.

(TIF)

S4 Fig. Low-dimensional embedding of the 11 datasets obtained by diffusion maps. Each

dot is a point and each color is a different dataset. The top left panel shows the points obtained

by embedding the points in the first three diffusion map coordinates. The top right panel

shows the data points in the plane formed by the first two diffusion map coordinates, while the

two bottom panels show the embedding in the planes obtained with the first and third (left) or

second and third (right) diffusion map coordinates. Some outliers were filtered out for visuali-

zation purposes if their closest neighbor distance was at least twice the median closest neighbor

distance, leading to a very well-defined 1-dimensional manifold.

(TIF)

S1 Table. Values of the parameters for intensity renormalization and contrast increase for

each of the experimental datasets (S1 Text).

(PDF)

S2 Table. Distribution of the datasets into labeled and unlabeled sets depending on the

modality. We refer to O(m) as the set of labeled datapoints, while OðmÞ is the set of unlabeled

data points for the mth modality.

(PDF)

S3 Table. Normalized Absolute Error obtained by K-fold cross-validation for each modal-

ity of each dataset. In each case, we performed 10 repetitions, where the labeled samples are

distributed randomly among the K bins, and the 309 unlabeled data points are chosen ran-

domly. The error is then averaged over 10 repetitions. More details about the Normalized

Absolute Error can be found in S1 Text.

(PDF)

S4 Table. Color scheme used to color the final movie.

(PDF)

S1 Text. Detailed description of the semi-supervised learning framework and its applica-

tions to the illustrative example and the experimental datasets.

(PDF)

S2 Text. Detailed description of the supplementary software and the supplementary files.

(PDF)
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