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Abstract. An important component of many image alignment methods is the

calculation of inner products (correlations) between an image of n×n pixels and another

image translated by some shift and rotated by some angle. For robust alignment of an

image pair, the number of considered shifts and angles is typically high, thus the inner

product calculation becomes a bottleneck. Existing methods, based on fast Fourier

transforms (FFTs), compute all such inner products with computational complexity

O(n3 log n) per image pair, which is reduced to O(Nn2) if only N distinct shifts

are needed. We propose to use a factorization of the translation kernel (FTK), an

optimal interpolation method which represents images in a Fourier–Bessel basis and

uses a rank-H approximation of the translation kernel via an operator singular value

decomposition (SVD). Its complexity is O(Hn(n+N)) per image pair. We prove that

H = O((W + log(1/ε))2), where 2W is the magnitude of the maximum desired shift in

pixels and ε is the desired accuracy. For fixed W this leads to an acceleration when N

is large, such as when sub-pixel shift grids are considered. Finally, we present numerical

results in an electron cryomicroscopy application showing speedup factors of 3–10 with

respect to the state of the art.

Keywords: single-particle electron cryomicroscopy, rigid image alignment, Fourier–Bessel

basis, interpolation, singular value decomposition
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1. Introduction

Rigid alignment of images is a ubiquitous task that arises in many computer vision

problems, such as motion tracking, video stabilization, summarization, image stitching

and the creation of mosaics [36]. It is also widely used in the analysis of biomedical

data. One such example, which serves as the motivation for this paper, is single particle

electron cryomicroscopy (cryo-EM). For an overview of cryo-EM, see [6, 23, 32, 24, 8].

Within this context, the basic task is to compare (i.e., correlate) pairs of 2D images:

each image is sampled on a uniform square pixel grid, and the goal is to find the rigid

transformation—a rotation followed by a translation—of one image which maximizes its

consistency with the other. This is necessary at several stages in the cryo-EM pipeline

[40, 33, 31, 11, 39, 16, 43, 45, 20], and plays a major role in many popular software

packages [28, 29, 14, 21, 13, 37]. Outside of cryo-EM, the rigid alignment problem also

occurs in certain extensions of non-local means denoising [5, 19] where patches are aligned

rotationally instead of just translationally [46, 34].

We consider the very common setting where the metric of comparison between images

is their inner product, equivalent (up to normalization) to their cross-correlation. The

challenge is then to solve the image-alignment problem to high (often sub-pixel) accuracy,

robustly and rapidly. As Figure 1 illustrates, the inner product, viewed as a function

of shift and angle, may have a complicated landscape with many local maxima. This

is particularly true in the high-noise setting relevant to cryo-EM. Accurate and robust

alignment thus requires computing inner products for a large set of transformations,

which is expensive. In the literature, there are two general approaches for tackling this

difficulty. Some methods conduct an exhaustive search over a grid of rotations and

translations, calculating inner products for every transformation on this grid. Others

take shortcuts by using various optimization methods to resolve only a portion of the

full grid, yielding a higher resolution than permitted by an exhaustive calculation.

In this paper, we present a new strategy for solving this problem, which combines

many of the advantages of the methods discussed above, and is an optimal interpolation

of the inner product as a function of translation. We first review some of the correlation-

based methods currently in use, and then describe our approach in greater detail.

Exhaustive methods. The simplest approach to the 2D image alignment problem is an

exhaustive calculation of inner products over a dense grid of shifts and angles. The high

grid density makes direct calculation computationally prohibitive (see Table 1), and

several accelerations have been proposed [17].

Two widely used accelerations are based on the convolution theorem, which states

that cross-correlation in real space is equivalent to multiplication in Fourier space. The

first, which we refer to as “brute-force rotations” (BFR), accelerates the correlation

across a full image-sized grid of translations through 2D FFT-accelerated convolutions,

then steps through all rotated versions of each image via brute force. The second method,

“brute-force translations” (BFT), uses the convolution theorem to treat rotations efficiently
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via 1D FFTs along rotation angles, while stepping through all required translations by

brute force [17, 1]. Their complexities are listed in the middle two rows of Table 1.

All such exhaustive methods have the advantage of resolving the full landscape of

inner products on a pre-defined roto-translation grid, ensuring robust maximization in

the case of multiple local maxima. Moreover, sampling this entire landscape is necessary

in a Bayesian framework, where an integral of a probability distribution over shifts and

angles is used to marginalize the likelihood [29, 28]. Unfortunately, these methods all

become very costly when sub-pixel accuracy is desired for shifts and angles.

Optimization-based methods. In contrast to the exhaustive methods above, other

methods try to find the best alignment quickly by iteratively maximizing the inner

product as a function of shift and angle. Since this does not explore the entire landscape

of inner products, it can be much faster.

One strategy alternates between maximization over rotation angles (fixing the shift)

and shifts (fixing the angle) [27, 15]. Another method conducts an exhaustive search

over a coarse grid to find an approximate maximum that is then refined [43].

In favorable situations (e.g., high signal-to-noise ratio images with dominant low-

frequency content), these optimization-based methods quickly converge to the best

alignment without being tethered to a pre-specified grid. Unfortunately, these methods

may converge to a locally optimal alignment far from the true global optimum. In

addition, because they only sample part of the inner product landscape, these methods

are not immediately useful in a Bayesian setting.

Our approach. In this paper, we present the “factorization of the translation kernel”

(FTK) method, a new algorithm which efficiently evaluates inner products over all

rotation angles and over all shifts lying in a predetermined domain. It also enables

exhaustive high density (sub-pixel) sampling at very little extra computational cost.

The essential ingredients in our approach are (i) the convolution theorem applied

to rotation angles (as leveraged in BFT) and (ii) a truncated functional SVD of the

translation kernel in the Fourier–Bessel basis compatible with this angular convolution.

This allows us to form, and then evaluate, an optimal low-rank interpolant for the inner

product landscape at all rotation angles and all shifts up to a certain magnitude.

The Fourier–Bessel basis we use to represent our images, along with many similar

analytical tools, have also been used by Park et al. [26] for deblurring the class averages

of previously aligned 2D images. This representation was also used by Barnett et al. [1]

to assign viewing angles to images within the cryo-EM reconstruction pipeline.

Unlike many other exhaustive algorithms, our algorithm does not demand a pre-

specified grid of translations. Instead, the speed of our algorithm depends on two

parameters: the desired accuracy of the calculation and the maximum magnitude of the

desired shifts. As the desired accuracy increases, the rank of the truncated SVD grows,

giving a mild increase in overall computational cost. As the maximum shift magnitude

increases, the structure of the corresponding set of translation operators becomes richer,
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Algorithm Effort per image–template pair

Direct method O(Nn3)

Brute force rotations (BFR) O(n3 log n)

Brute force translations (BFT) O(Nn2)

Proposed method (FTK) O(Hn(n+N))

Table 1. Complexity of some algorithms for rigid image alignment by computation

of sets of translated and rotated inner products. The setting is that all N2
I pair-

wise alignments must be found between NI images and NI templates. For NI � 1,

precomputations that scale as NI are negligible, so we give in the second column only

the leading term scaling with N2
I . Each image (and template) is n×n pixels. We assume

that the desired number of rotation angles is O(n), while the number of translations is

N . The parameter H is the total number of SVD terms for all the Bessel orders in the

expansion (see Section 4.5); by Theorem 1 we have H = O((W + log(1/ε))2), where

2W is the maximum translation magnitude in pixels, and ε is the desired accuracy.

and more terms in the SVD are required to achieve the same level of accuracy, also

increasing the computational cost.

Importantly, given a fixed level of accuracy and range of translations, the

computational cost of FTK scales with the number of non-negligible terms in the

SVD. Once these terms are calculated and integrated against the given images, they can

be used to recover the inner product values for a fine sub-pixel translation and rotation

grid cheaply. Table 1 compares the complexity of our proposal to the other exhaustive

direct, BFR, and BFT methods.

We demonstrate the utility of FTK by applying it to what is often the bottleneck

in cryo-EM reconstruction: the task known as “template matching.” This requires

the inner product evaluation between all pairs of single-particle cryo-EM images and

templates, over a range of sub-pixel translations and all in-plane rotations. We achieve

a substantial speedup of a factor 3–10 over BFT or BFR methods for a wide range of

translation grid sizes, while recovering at least two digits of accuracy (sufficient for most

cryo-EM applications). We also show that, for higher accuracies, FTK is several orders

of magnitude more efficient than the commonly-used method of linear interpolation from

a translation grid.

The rest of this paper is organized as follows. Section 2 describes basic aspects

of Fourier representation of images, and defines the inner product function. Section 3

reformulates this in the Fourier–Bessel basis and explains its numerical discretization.

The main SVD algorithm is explained in the context of optimal interpolation schemes

in Section 4. In Section 5 we prove a theorem bounding the rank growth in terms of

the maximum translation in pixels and the desired relative mean squared error in the

inner product calculation. Section 6 presents numerical results and a comparison with

the BFR and BFT methods in the cryo-EM setting. In Section 7 we describe how FTK

extends to other 2D kernels and to 3D volume alignment. We conclude in Section 8. A

Python implementation is available at https://github.com/flatironinstitute/ftk.

https://github.com/flatironinstitute/ftk
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Figure 1. In panel A we show two images, A(x) and B(x), for x ∈ [−1, 1]2. Each of

these images is generated by summing several anisotropic Gaussian functions, and then

normalizing so that the resulting image has L2-norm 1. In panel B we show the inner

product function X (δ, 0) (see (17)) obtained by translating the images with respect to

one another. Note that the landscape is quite complicated, with multiple local maxima

(see colorbar to the right). The 3D landscape obtained by including rotations is even

more complex: one level set of X (δ, γ) is shown in panel C.

2. Problem setup and Fourier representation

We use the vectors x, δ ∈ R2 to represent positions and displacements in the spatial

domain, while k ∈ R2 represents spatial frequencies. We define the polar coordinates of

these vectors as follows:

x = (x cos θ, x sin θ) (1)

δ = (d cosω, d sinω) (2)

k = (k cosψ, k sinψ). (3)

The Fourier transform of a two-dimensional function A ∈ L2(R2) is defined as

Â(k) :=

∫∫
R2

A(x)e−ik·x dx . (4)

The inner product between two functions A,B ∈ L2(R2) is written

〈A,B〉 =

∫∫
R2

A(x)B(x)∗ dx , (5)

where z∗ is the complex conjugate of z ∈ C. We will also need Plancherel’s theorem [4],

〈A,B〉 =
1

(2π)2
〈Â, B̂〉 , ∀A,B ∈ L2(R2) . (6)

We represent any image as a function A ∈ L2(R2), with values corresponding to

the image intensity at each location. We recover A from Â using the inverse Fourier

transform [4]:

A(x) =
1

(2π)2

∫∫
R2

Â(k)eik·x dk . (7)
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Let us denote the disk of radius R > 0 by

ΩR := {x ∈ R2 such that ‖x‖ ≤ R} . (8)

We shall assume that all images are supported in Ω1. This ensures that Â is smooth

on the O(1) frequency scale, enabling its approximate reconstruction from its values on

grids with spacing O(1). We furthermore assume that Â is concentrated in a disk of

radius K, so that the inversion

A(x) ≈ 1

(2π)2

∫∫
ΩK

Â(k)eik·x dk (9)

holds to desired working accuracy. These assumptions will ensure that we do not lose

too much accuracy transitioning to a discrete setting.

Remark 1 The maximum frequency, K, is related to the number of pixels across the

image, n, as follows. The effective image support Ω1 lives in [−1, 1], so that the pixel

spacing is ∆x = 2/n, giving the Nyquist spatial frequency K = π/∆x = (π/2)n. For

cryo-EM applications, n is typically 100 to 400.

Remark 2 In this paper, for simplicity, will assume that K is always the Nyquist

frequency, so that scalings in K and n are equivalent. There do exist applications where

K may be much lower than (π/2)n, such as frequency marching [1].

We shall abuse notation slightly and write A and Â in polar coordinates as

A(x, θ) := A(x) = A(x cos θ, x sin θ) (10)

Â(k, ψ) := Â(k) = Â(k cosψ, k sinψ). (11)

With these reparametrizations, we may now define the rotation of A by γ ∈ [0, 2π) as

RγA(x, θ) := A(x, θ − γ). (12)

Since rotations commute with the Fourier transform, we have the same relationship in

the frequency domain:

R̂γA(k, ψ) = RγÂ(k, ψ) = Â(k, ψ − γ). (13)

Let us similarly define translation of an image A by the shift vector δ ∈ R2 as

TδA(x) := A(x− δ). (14)

In the Fourier domain, abusing notation slightly, we define the action of Tδ on the Fourier

transform Â as giving the Fourier transform of TδA:

TδÂ(k) := T̂δA(k) = F (δ,k)Â(k), (15)

where the translation kernel F (δ,k) is defined as

F (δ,k) := e−iδ·k = e−iδk cos(ψ−ω), (16)

which is a plane wave in Fourier space. We introduce W as a dimensionless user-

defined parameter that specifies the maximum translation magnitude considered, in

wavelength units at the largest frequency K. When K is the Nyquist frequency, this
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wavelength is 2∆x. We thus have translations δ of magnitude δ ≤ D (i.e., δ ∈ ΩD),

where D = 2πW/K = 2∆xW .

Let B ∈ L2(R2) be the image against which A is to be aligned with respect to

rotations and translations. The desired inner product
∫∫
R2 RγTδA(x)B(x)∗ dx is, up to

a prefactor (which we drop), well approximated by

X (δ, γ) :=

∫∫
ΩK

RγTδÂ(k) B̂(k)∗ dk =

∫∫
ΩK

F (δ,k) Â(k)R−γB̂(k) dk , (17)

which follows from (6) and our assumption that Â and B̂ are concentrated in ΩK . We

call (17) the bandlimited inner product.

2.1. Conversion of discrete input images to the Fourier domain

The above formulation is described in terms of continuous images A and B. However,

we are typically provided images sampled on a discrete grid of size n× n within [−1, 1]2.

Let us consider the pixel grid as representing the set of point samples

Aij = A(xij) , xij := (i∆x− 1, j∆x− 1) , i, j ∈ {0, . . . , n− 1} (18)

where ∆x = 2/n is the pixel spacing. We approximate its Fourier transform Â at any

k ∈ R2 by the trapezoid quadrature rule

Â(k) = (∆x)2

n∑
i,j=1

Aije
−ik·xij . (19)

This quadrature is expected to be accurate if the image is sufficiently well sampled

at the resolution ∆x (i.e., before sampling, its frequency content above the Nyquist

frequency was negligible), and ‖k‖ ≤ K. We similarly define B̂(k) given samples Bij for

i, j ∈ {0, . . . , n− 1}. We will need to evaluate Â(k) for k on various grids, which will be

discussed later.

Plugging in these Fourier transforms Â and B̂ into (17), we obtain a set of inner

products X (δ, γ) describing the alignment of the discrete images. The goal of this work

is to provide an efficient and accurate method of calculating X (δ, γ) from given pixel

values Aij, Bij, for a large number of user-specified values of δ ∈ ΩD and γ ∈ [0, 2π).

3. Fourier–Bessel decomposition

In this section we derive a formula for the inner product X (δ, γ) defined in (17) that

separates the dependence on δ from the dependence on k. For this we first need to

introduce the Fourier–Bessel basis representation of each image. At the end of the section

we describe how these formulae are evaluated in practice given n× n pixel images.

For fixed k, Â(k, ψ) is a 2π-periodic function of ψ. We may therefore decompose

the function ψ 7→ Â(k, ψ) as a Fourier series, obtaining

Â(k, ψ) =
∞∑

q=−∞

a(k; q)eiqψ, (20)
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Its coefficients a(k; q) are given by

a(k; q) =
1

2π

∫ 2π

0

Â(k, ψ)e−iqψ dψ . (21)

By substituting (4), changing variable to α = θ + π/2− ψ, and using the integral form

of the Bessel function [25, Eq. (10.9.1)],

Jn(z) =
1

2π

∫ 2π

0

ei(z sinα−nα)dα , (22)

it is easily verified that the coefficients are, in terms of the original spatial image,

a(k; q) =

∫ 2π

0

∫ 1

0

A(x, θ)
(
eiq(θ+π/2)Jq(kx)

)∗
xdxdθ . (23)

This takes the form of an inner product of the image A with the 2D “Fourier–Bessel”

function u(x, θ) = eiq(θ+π/2)Jq(kx), being a polar separation of variables solution to the

Helmholtz equation (∆ + k2)u = 0 at frequency k, where ∆ is the 2D Laplace operator.

This justifies our naming (21) the Fourier–Bessel coefficients of the image. A similar

basis is used by Zhao et al. [45, 44], who make different assumptions regarding the

support of the images.

Remark 3 (Decay of Bessel functions) The large-order asymptotics of Jq(z) may

be summarized as follows. For any fixed z, the formula Jq(z) ∼ (2πq)−1/2(ez/2q)q

shows super-exponential decay in q [25, Eq. (10.19.1)]. More precisely, for fixed real z,

Jq(z) is oscillatory and significant in the order range q ≤ z, and exponentially small

for q ≥ z + O(z1/3), the latter statement following from the Debye asymptotics [25,

Eq. (10.19.8)]. Loosely speaking, this is associated with the “bump” of the Bessel function

(as a function of z) centered at z ≈ q having width roughly z1/3 ≈ q1/3.

The above remark, (23), and x ≤ 1 show that the coefficients a(k; q) are exponentially

small, and thus numerically negligible, for |q| > K +O(K1/3).

We now derive the actions of rotation and translation on these Fourier–Bessel

coefficients. Applying (21) to the rotated Fourier transform RγÂ, we obtain

1

2π

∫ 2π

0

RγÂ(k, ψ)e−iqψ dψ =
1

2π

∫ 2π

0

Â(k, ψ − γ)e−iqψ dψ

=
1

2π

∫ 2π

0

Â(k, ψ)e−iq(ψ+γ) dψ = e−iqγa(k; q). (24)

This shows that a rotation acts on the Fourier–Bessel coefficients a as a diagonal

multiplication operator,

Rγa(k, q) := e−iqγ a(k; q) . (25)

Here we abuse notation slightly by using the same symbol Rγ that we used for rotations

in an angular variable. This diagonal action will allow us to simultaneously compute

X (δ, γ) for multiple values of γ in an efficient manner.
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Let us similarly denote by Tδa(k; q) the action of translation by the vector δ on the

Fourier–Bessel coefficients a. Using (15), (16) and (21) we compute

Tδa(k; q) =
1

2π

∫ 2π

0

TδÂ(k, ψ)e−iqψ dψ =
1

2π

∫ 2π

0

Â(k, ψ)e−ikδ cos(ψ−ω)e−iqψ dψ

=
1

2π

∫ 2π

0

Â(k, ψ)

(
∞∑

`=−∞

J`(δk)ei`(ψ−ω−π/2)

)
e−iqψ dψ

=
∞∑

`=−∞

J`(δk)e−i`(ω+π/2) a(k; q − `), (26)

where on the third line we used the Jacobi–Anger expansion [25, 10.12.3],

e−iz cosφ =
∞∑

`=−∞

J`(z)ei`(φ−π/2) . (27)

In summary, translation acts as a 1D discrete convolution on the coefficients,

Tδa(k, q) :=
∞∑

`=−∞

f(δ, k; `)a(k; q − `), (28)

where f(δ, k; `) denotes the Fourier–Bessel translation kernel

f(δ, k; `) := J`(δk)e−i`(ω+π/2) , (29)

being the `th 1D Fourier series coefficient of F (δ,k) on the ring ‖k‖ = k (see (16)).

Note that the number of significant terms in the convolution is not large, and scales

only like W , the size of the maximum translation in wavelengths. This follows from

Remark 3, and (29), where the maximum Bessel argument of DK = 2πW shows that

f`(δ, k) is exponentially small for |`| > 2πW +O((2πW )1/3).

It will turn out that each of the terms in the above convolution is amenable to

factorization, which will help us consider multiple translations δ. Indeed the factors

dependent on δ (δ and ω) and those dependent on k (k and ψ) are almost separable from

one another. The exception is the Bessel term J`(kδ), which we return to in Section 4.5.

Now we turn to the desired inner product. From (21), on each fixed k ring we have

the 1D Plancherel formula∫ 2π

0

Â(k, ψ)B̂(k, ψ)∗dψ = 2π
∞∑

q=−∞

a(k; q)b(k; q)∗ . (30)

Using this we rewrite the inner product (17) as

X (δ, γ) =

∫∫
ΩK

RγTδÂ(k) B̂(k)∗ dk = 2π
∞∑

q=−∞

∫ K

0

RγTδa(k; q) b(k; q)∗ kdk

= 2π
∞∑

q=−∞

∫ K

0

e−iqγ

(
∞∑

`=−∞

f(δ, k; `)a(k; q − `)

)
b(k; q)∗ kdk

= 2π
∞∑

q=−∞

∞∑
`=−∞

e−iqγ

∫ K

0

f(δ, k; `)a(k; q − `)b(k; q)∗ kdk (31)
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While this expression appears more complicated than our original formula (17), we shall

see that it lends itself more naturally to a fast numerical algorithm. For now we will

simply remark that this expression displays the trilinearity of the inner product: X (δ, γ)

is linear in Â(k), B̂(k) and f(δ, k; `). Our method will exploit this by reducing the

approximation of X (δ, γ) to an approximation of the translation kernel F (δ, k; `).

3.1. Discretization and truncation

To numerically approximate X (δ, γ) evaluated via (31), we make the following

approximations. First, we truncate the infinite sums over q and ` to finite sums over

|q| ≤ Q and |`| ≤ L. Second, we replace the integral over k with a quadrature scheme

designed on [0, K]. We prefer Gauss–Jacobi quadrature built with a weight function

corresponding to the area-element kdk. This quadrature scheme uses Jacobi polynomials

of type α = 0, β = 1 (i.e. corresponding to weight k after a change of variable), and

produces a set of nodes km ∈ [0, K] and weights wm for m ∈ {1, . . . ,M} such that∫ K

0

g(k) kdk ≈
M∑
m=1

g(km)wm (32)

holds to high accuracy for any radial function g that is smooth on the scale of O(1). In

summary, we approximate X (δ, γ) by

X(δ, γ) = 2π

Q∑
q=−Q

L∑
`=−L

M∑
m=1

e−iqγa(km; q − `)f(δ, km; `)b(km; q)∗wm. (33)

We will not attempt a rigorous convergence analysis here, but rather justify the empirical

sizes of the convergence parameters Q, L, and M needed. As discussed in the previous

section, following Remark 3, Q need only slightly exceed K = (π/2)n. Similarly, L need

only slightly exceed 2πW . For quadrature, in order to capture the O(K) oscillations in

the integrand, we need M = O(K) = O(n). Once M is large enough to resolve these

oscillations, the convergence becomes super-algebraic; this follows because the integrands

(deriving from Fourier transforms of images with compact support) are analytic. It is

thus easy to choose the parameters to achieve a desired accuracy (see Section 6).

Remark 4 We could reduce the number of operations in the above calculation by making

Q depend on k. In particular, we expect Q to vary proportionally to k, as it represents

the number of angular modes a ring of circumference 2πk. This would reduce the total

number of Fourier–Bessel coefficients by a factor of two. However, this reduction does

not necessarily translate to shorter running times, as the resulting triangular sum cannot

easily take advantage of vectorized libraries for FFTs and matrix multiplication.

3.2. Decomposition of discrete images

The approximate inner product (33) is defined using the Fourier–Bessel coefficients

a(km, q) and b(km, q) on all radial quadrature nodes {km}Mm=1, for all indices |q| ≤ Q.

This is O(n2) coefficients. Given n× n pixel images {Aij} and {Bij} as in Section 2.1,
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we compute these coefficients in optimal complexity as follows. For each image we

apply the 2D type 2 non-uniform FFT (NUFFT) [7, 12, 18] (we use the FINUFFT

implementation [2]) to evaluate the Fourier transform (19) on a tensor-product polar k

grid {(km, ψp)}m=1,...,M, p=1,...,2Q where the uniform angular grid has ψp := π(p − 1)/Q.

The NUFFT cost depends weakly on a tolerance parameter ε, which we ensure is smaller

than the desired overall accuracy. The complexity of this step is O(n2 log n+n2 log(1/ε)).

Finally, on each quadrature ring m = 1, . . . ,M , we approximate (21) using the Â

values on that ring with the periodic trapezoid rule,

a(k; q) =
1

2π

∫ 2π

0

Â(k, ψ)e−iqψ dψ ≈ 1

2Q

2Q∑
p=1

Â(k, ψp)e
−iqψp . (34)

Since ψp = π(p−1)/Q, this takes the form of a 1D discrete Fourier transform of length 2Q,

which we evaluate using the FFT. The total cost of these O(n) 1D FFTs is O(n2 log n).

In summary, fixing ε, the entire precomputation then scales as O(n2 log n) per image.

4. Fast computation of multiple inner products

In this section, we present an SVD interpolation method for computing many translated

and rotated inner products (33). For simplicity we consider one image A and one

template B. To provide intuition, we start with an algorithm in which translations are

treated independently, explain interpolation with respect to translations, then explain

our method as an optimal version of such an interpolation.

4.1. Multiple rotation angles

We first present a variant of the BFT algorithm. If we only have a single shift vector δ,

we can calculate X(δ, γ) efficiently for a large number of γ values by taking advantage

of the diagonal action of Rγ in the Fourier–Bessel coefficients. Indeed, we have

X(δ, γ) = 2π

Q∑
q=−Q

e−iqγ

M∑
m=1

wmb(km; q)∗
L∑

`=−L

a(km; q − `)f(δ, km; `). (35)

This calculation can be achieved in two steps:

[Step 1] X̂(δ, q) = 2π
M∑
m=1

wmb(km; q)∗
L∑

`=−L

a(km; q − `)f(δ, km; `) (36)

[Step 2] X(δ, γ) =

Q∑
q=−Q

e−iqγX̂(δ, q). (37)

The first step computes the Fourier coefficients X̂(δ, q), requiring O(MQL) operations.

If we restrict γ to the set {0, π/Q, . . . , 2π(2Q− 1)/Q}, we may evaluate the second step

using a 1D FFT of size 2Q. The first step dominates, so the total complexity is O(n2W ),

where we have used Q = O(n), M = O(n) and L = O(W ) (see previous section). By

zero-padding and using a larger FFT (or NUFFT) in the second step, a large number of
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γ values may be sampled essentially for free. A naive method to now handle N different

translations δ ∈ ΩD is to repeat the above two steps, separately for each translation,

giving a cost O(Nn2W ). For each image-template pair, this is W times slower than

BFT; see Table 1. However, the above steps, with f(δ, km; `) replaced by other functions,

will serve as a building block for the much faster algorithm described in the following

subsections.

4.2. Linear interpolation over translations

We now present a simple way to accelerate the brute force inner product calculation

over multiple translations. Instead of evaluating X(δ, γ) at all values of δ which are

of interest to us, one can use the fact that, for fixed γ, the mapping δ 7→ X(δ, γ) is

smooth. Indeed, it is the smoothness of the underlying image functions A and B induces

smoothness in X. A common approach is to calculate X(δ, γ) at some subset of shifts

and use local (low-order) interpolation to obtain its value at other locations.

Let us denote such a set of H interpolation nodes by {δ1, . . . , δH} ⊂ ΩD. This

could be a grid (e.g., Cartesian or polar) covering ΩD; we assume it is independent of γ.

Fixing γ for now, we first compute X(δζ , γ) for ζ ∈ {1, . . . , H}, using, for instance the

method outlined in the previous section. For other values of δ at this γ, we interpolate

X lin(δ, γ) =
H∑
ζ=1

Y lin
ζ (δ)X(δζ , γ), (38)

where Y lin
ζ (δ) is the interpolation weight (basis function) associated with δ and δζ . In

the bilinear case, it is nonzero only for the four nodes δζ that are nearest to δ. The

above is repeated for the O(K) desired γ values. Since the complexity for computing

X(δζ , γ) is O(n2W ) (see Section 4.1), the overall complexity is O(Hn2W ) for all ζ (this

drops to O(Hn2) if we instead use the BFT, see Table 1 and Section 6.2). The cost

of local interpolation is O(1) per lookup, or O(Nn) per image-template pair. This is

advantageous since the original Nn2 factor is gone. However, to achieve high interpolation

accuracy in a low-order scheme, a fine grid of nodes would be needed, hence a large H.

4.3. Least-squares interpolation

We may now ask: can we increase the accuracy without significantly increasing the

computational cost? First note that the interpolated result can be rewritten by moving

the sum over ζ inside the other sums:

X lin(δ, γ) = 2π

Q∑
q=−Q

e−iqγ

M∑
m=1

wmb(km; q)∗
L∑

`=−L

a(km; q − `)
H∑
ζ=1

Yζ(δ)f(δζ , km; `). (39)

Comparing this to the formula for X(δ, γ) in (35), we see that linear interpolation is

equivalent to the approximation
H∑
ζ=1

Y lin
ζ (δ)f(δζ , k; `) ≈ f(δ, k; `), ∀k ∈ [0, K], ` ∈ Z. (40)
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In other words, due to the linearity of the bandlimited inner product X(δ, γ), an

interpolation scheme over X(δ, γ) corresponds to an interpolation scheme over f(δ, k; `).

Fixing δ, we now present a scheme to find the vector of interpolation weights

Y LS(δ) := (Y LS
1 (δ), . . . , Y LS

H (δ)) that best approximates f(δ, k; `) in a least-squares

sense. Equation (39) suggests that one should minimize the sum-of-squares error over

the quadrature nodes k1, . . . , kM and angular modes −L ≤ ` ≤ L; however, treating k as

a continuous variable is cleaner, gives essentially the same answer (since the quadrature

scheme is accurate), and will allow analysis relevant for the SVD method.

The weights vector is the least-squares solution

Y LS(δ) = arg min
Y=(Y1,...,YH)

∞∑
`=−∞

∫ K

0

∣∣∣∣∣
H∑
ζ=1

Yζf(δζ , k; `)− f(δ, k; `)

∣∣∣∣∣
2

kdk . (41)

The corresponding normal equations for Y LS form the H ×H linear system

H∑
ζ=1

MLS(δζ′ , δζ)Y
LS
ζ (δ) =MLS(δζ′ , δ) , ∀ζ ′ ∈ {1, . . . , H}, (42)

where

MLS(δ′, δ) :=
∞∑

`=−∞

ei`(ω′−ω)

∫ K

0

J`(δ
′k)J`(δk) kdk . (43)

These integrals may be calculated analytically:

MLS(δ′, δ) = J0(δ̃K) + J1(δ̃K) , (44)

where δ̃ = |δ′− δ|. The resulting linear system is well-conditioned for moderate values of

D and K (and hence W ), so Y LS
ζ (δ) may be calculated to high precision using standard

numerical linear algebra techniques. This is an image-independent precomputation

required for each δ. Given the same set of X(δζ , γ) samples (38), the interpolator is now

XLS(δ, γ) =
H∑
ζ=1

Y LS
ζ (δ)X(δζ , γ) . (45)

This increases the lookup cost from O(1) per shift to O(H), but achieves higher accuracy.

We can improve the accuracy by optimizing the node locations {δ1, . . . , δH} using,

for example, gradient descent. The gradient is readily calculated by noting that

∂δ̃KM
LS(δ′, δ) =

1

2
J−1(δ̃K)− 1

2
J3(δ̃K) . (46)

While this works well for a small number of nodes, this nonconvex optimization problem

becomes intractable for larger H, limiting applicability to lower accuracies (ε ≥ 10−2).

4.4. Generalized least-squares interpolation

One could potentially increase the accuracy of the above method by allowing a

different vector of interpolation weights Y GLS
ζ (δ; `) := (Y GLS

ζ (δ; `))Hζ=1 for each mode
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` ∈ {−L, . . . , L}. We refer to this as the generalized least-squares interpolation (GLS)

method. We now solve

Y GLS(δ; `) = arg min
Y=(Y1,...,YH)

∫ K

0

∣∣∣∣∣
H∑
ζ=1

Yζf(δζ , k; `)− f(δ, k; `)

∣∣∣∣∣
2

kdk , (47)

Using (29) we see that Y GLS
ζ (δ; `) = e−i`(ω−ωζ)UGLS

ζ (δ; `), where

UGLS
ζ (δ; `) = arg min

U=(U1,...,UH)

∫ K

0

∣∣∣∣∣
H∑
ζ=1

UζJ`(δζk)− J`(δk)

∣∣∣∣∣
2

kdk . (48)

As before, UGLS
ζ (δ; `) satisfies the normal equations

H∑
ζ=1

MGLS(δζ′ , δζ ; `)U
GLS
ζ (δ; `) =MGLS(δζ′ , δ; `) ∀ζ ′ ∈ {1, . . . , H}, (49)

where

MGLS(δ′, δ; `) =

∫ K

0

J`(δ
′k)J`(δk) kdk . (50)

As before, (49) can be readily solved by analytically evaluating (50) and applying

standard numerical techniques.

Given a set of weights Y GLS
ζ (δ; `), we thus have the steps:

[Step 1] ẐGLS
ζ (q, `) = 2π

M∑
m=1

wmb(km; q)∗a(km; q − `)f(δζ , km; `) (51)

[Step 2] ZGLS
ζ (γ; `) =

Q∑
q=−Q

e−iqγẐGLS
ζ (q, `) (52)

[Step 3] XGLS(δ, γ) =
L∑

`=−L

H∑
ζ=1

Y GLS
ζ (δ; `)Zζ(γ; `). (53)

Another advantage over the plain least-squares interpolation method of Section 4.3 is

that a different H could be used for each `; for instance, from (29) and Remark 3 one

could use fewer nodes for large |`| where J`(kδ) is small. In the next subsection, rather

than pursue least-squares methods, we use this intuition to understand an improved

SVD-based method.

4.5. Proposed SVD interpolation method: FTK

In the previous section, we optimized weights Yζ(δ; `) to minimize the mean squared

error between f(δ, k; `) and
∑H

ζ=1 Yζ(δ; `)f(δζ , k; `). To further reduce the error, we

need to optimize the second factor, f(δζ , k; `). As discussed in Section 4.5, we could

optimize the interpolation nodes, but this is only tractable for low accuracies.

Treating the interpolant samples f(δζ , k; `) as functions of k, we now replace them by

a general set of functions Gη(k; `), where η = 1, . . . , H` indexes the `th set. Independently

for each mode `, we choose the set {Gη(k; `)}H`η=1 that optimally interpolates f(·, k; `)
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over the disk ΩD in the mean-square sense. Not only is this optimization problem more

general than the least-squares problems above, but, as it turns out, it is also easier

to solve. Thus, for each `, we minimize the mean squared error, which is the squared

Hilbert–Schmidt (HS) norm of the residual,

EHS(`)2 :=

∫
ΩD

∫ K

0

∣∣∣∣∣
H∑̀
η=1

Yη(δ; `)Gη(k; `)− f(δ, k; `)

∣∣∣∣∣
2

kdk dδ

=

∫
ΩD

∫ K

0

∣∣∣∣∣
H∑̀
η=1

Yη(δ; `)Gη(k; `)− J`(δk)e−i`(ω+π/2)

∣∣∣∣∣
2

kdk dδ

=

∫
ΩD

∫ K

0

∣∣∣∣∣
H∑̀
η=1

Yη(δ; `)ei`(ω+π/2)Gη(k; `)− J`(δk)

∣∣∣∣∣
2

kdk dδ

= 2π

∫ D

0

∫ K

0

∣∣∣∣∣
H∑̀
η=1

Uη(δ; `)Gη(k; `)− J`(δk)

∣∣∣∣∣
2

kdk δdδ . (54)

Here we substituted (29), then noted that since J`(δk) does not depend on the angle

ω, the Yη(δ; `) that minimizes the error must be such that the product Yη(δ; `)ei`(ω+π/2)

also does not depend on ω. We therefore replace this product by Uη(δ; `) (which only

depends on the magnitude δ) and set Yη(δ; `) = Uη(δ; `)e
−i`(ω+π/2). As a result, we seek

a rank-H` separable approximation of the bivariate function J`(δk) : [0, D]× [0, K]→ R
which is mean-square optimal under the linear weight function. Treating this bivariate

function as the kernel of a (compact) integral operator, the solution is to truncate to the

first H` terms in the operator SVD [9, Chap. II]. As proven by Schmidt in 1907 [30, §18]

(see [35]), the truncated SVD is the optimal fixed-rank approximation to an operator in

the Hilbert–Schmidt norm. With our weight function, for each `, the operator SVD is

J`(δk) =
∞∑
η=1

Uη(δ; `)Ση(`)Vη(k; `) , δ ∈ [0, D], k ∈ [0, K] , (55)

where Σ1(`) ≥ Σ2(`) ≥ . . . → 0 are the singular values, the left singular functions

{Uη(δ; `)}∞η=1 are orthonormal on [0, D] with respect to δdδ, and the right singular

functions {Vη(k; `)}∞η=1 are orthonormal on [0, K] with respect to kdk. Although the

singular values appear to depend on both K and D, one may check by changing variables

that in fact they depend solely on their product KD = 2πW . Figure 2 shows the rapid

decay of these singular values, and Figure 3 the first few singular functions.

Remark 5 (Approximating the operator SVD) In practice, to compute the SVD,

we use a tensor-product quadrature scheme to project J`(δk) onto a product basis of

orthogonal Jacobi polynomials with α = 0 and β = 1, rescaled onto the intervals

δ ∈ [0, D] and k ∈ [0, K]. These Jacobi bases are orthonormal with respect to δdδ

and kdk, respectively. Given the matrix of coefficients representing J` in this basis, we

compute its SVD using standard dense numerical linear algebra [10, 38]. The left and

right singular functions Uη(δ; `) and Vη(δ; `) are then given by summing the Jacobi bases

with the corresponding singular vector entries as coefficients.
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Remark 6 (Alternative weight functions) In this paper we calculate the SVD of

each J` with the radial weights δdδ and kdk, corresponding to L2 approximation over

the disks ΩD and ΩK. One can easily generalize this to accommodate alternative weight

functions. For example, when processing images of known power-spectral decay, one

should tailor the k-weight to emphasize the lower frequencies. This would allow a smaller

number of terms H` to reach a given accuracy for inner products.

Truncating (55) to H` terms, we get,

J`(δk) ≈
H∑̀
η=1

Uη(δ; `)Ση(`)Vη(k; `) , δ ∈ [0, D], k ∈ [0, K] , (56)

from which we construct, for each `,

Y SVD
η (δ; `) = Uη(δ; `)e

−i`(ω+π/2) , Gη(k; `) = Ση(`)Vη(k; `) . (57)

Note that these functions only depend on W . Given these, the proposed algorithm is

the following:

[Step 1] ẐSVD
η (q, `) = 2π

M∑
m=1

wmb(km; q)∗a(km; q − `)Gη(km; `) (58)

[Step 2] ZSVD
η (γ; `) =

Q∑
q=−Q

e−iqγẐSVD
η (q, `) (59)

[Step 3] XSVD(δ, γ) =
L∑

`=−L

H∑̀
η=1

Y SVD
η (δ; `)ZSVD

η (γ; `). (60)

The first step is computed directly, requiring O(HQM) operations, where H :=
∑

`H`

is the total number of terms. The second step is computed with FFTs, yielding a

complexity of O(HQ logQ). The third step is also computed directly with O(NHQ)

operations. Using Q = O(n) and M = O(n), the overall computational complexity of

this scheme is therefore O(Hn2 +NHn).

One key point here is the separation of J`(δk) into factors depending either on δ or

on k. This separation of variables allows us to efficiently calculate the sums, and the

SVD accomplishes this separation with minimal error.

Another key point is that the procedure above—namely calculating a separate SVD

for each J`(δk)—is actually equivalent to a single SVD of the original translation kernel

F (δ,k), as we now show. Recalling the Jacobi–Anger expansion (27), and (55),

F (δ,k) = e−iδ·k = e−iδk cos(ψ−ω) =
∑
`∈Z

J`(δk)ei`(ψ−ω−π/2)

=
∑
`∈Z

ei`(ψ−ω−π/2)

∞∑
η=1

Uη(δ; `)Ση(`)Vη(k; `). (61)

We now relabel the singular values Ση(`) from different modes ` with a single new index

ζ = 1, 2, . . ., and refer to the ` and η corresponding to each index ζ as `(ζ) and η(ζ).

Specifically, we define

Uζ(δ) = Uη(ζ)(δ, `(ζ)), Σζ = Ση(ζ)(`(ζ)), Vζ(k) = Vη(ζ)(k, `(ζ)). (62)
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This relabeling is chosen to have non-increasing ordering of singular values, i.e. Σζ ≥ Σζ+1

for all ζ = 1, 2, . . .. If H` is chosen such that ΣH`+1(`) ≤ ε for each `, then by construction

ΣH+1 ≤ ε. Truncation at a total number of terms H then involves all singular values

larger than ε, and gives

F (δ,k) ≈ F SVD(δ,k) =
H∑
ζ=1

ei`(ζ)ψ e−i`(ζ)(ω+π/2) Uζ(δ)ΣζVζ(k)

=
H∑
ζ=1

e−i`(ζ)(ω+π/2)Uζ(δ) · Σζ · ei`(ζ)ψVζ(k). (63)

The factors in the last equation correspond respectively to the left singular functions,

singular values, and right singular functions of F (δ,k) that one would obtain by

minimizing the rank-H approximation

E2
HS :=

∫∫
ΩD

∫∫
ΩK

∣∣∣F (δ,k)−
H∑
ζ=1

Uζ(δ)ΣζVζ(k)
∣∣∣2dkdδ . (64)

The relationship of these vectors to those from the separate SVDs is

Uζ(δ) = Uζ(δ, ω) := e−i`(ζ)(ω+π/2)Uζ(δ), Vζ(k) = Vζ(k, ψ) := ei`(ζ)ψVζ(k). (65)

So the SVD approximation described in this section is nothing more than an

approximation of F (δ,k) built from these Uζ , Σζ , and Vζ . As expected from the

structure of the SVD, if ζ 6= ζ ′, then Uζ(δ) and Uζ′(δ) are orthogonal over ΩD, as are

Vζ(k) and Vζ′(k) over ΩK . Furthermore, by this orthogonality,

E2
HS =

∑
`∈Z

EHS(`)2 =
∞∑

ζ=H+1

Σ2
ζ . (66)

An illustration of this structure is shown in Figure 2, where the array of values Ση(`)

is displayed for three choices of W . Using the W = 1 case as an example, consider what

happens if we set our spectral-norm tolerance to ε = 10−2 (we will make this notion more

precise in the next section). When ` = 0, Ση(0) ≥ ε only when η ≤ 4; i.e., H0 = 4 terms

are required to achieve an ε-accurate approximation to J0(δk). On the other hand, when

` = 3, Ση(3) ≤ ε only when η ≤ 2; i.e., only H3 = 2 terms are required for an ε-accurate

approximation to J3(δk). In order to combine the SVD expansions of the various J`(δk)

into an ε-accurate expansion of F (δ,k), we need to retain all the terms Ση(`) ≥ ε. With

this choice of ε, we retain the H = 34 largest values of Σζ , which correspond to the

H =
∑

`H` = 34 largest values of Ση(`). In the next section will use this structure to

discuss the approximation error of this expansion.

We illustrate this SVD approximation in Figure 3 which shows the structure of

Uη(δ; 0) and Vη(k; 0) for the lowest-order Bessel function J0(δk). Figure 4 illustrates the

errors incurred by the SVD expansion when approximating the translation kernel F (δ,k).

Note that the SVD approximation provides a successively more accurate approximation

of F as the number of terms H increases. In addition, as W increases, a larger H is

required to achieve the same level of accuracy (compare Figure 4A with Figure 4C). The

next section places rigorous bounds on this growth.
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Figure 2. Operator singular values Ση(`) of the Bessel kernel J`(kδ) over δ ∈ [0, D]

and k ∈ [0,K], as a function of ` and singular value index (see Section 4.5). The cases

W = 1, 2 and 3 are shown; W is the maximum translation magnitude in wavelengths

(2∆x). In each case the values of log10(Ση(`)) are displayed using the colorbar to the

far right. The number of SVD terms H equals the number of index pairs (η, `) with

Ση(`) ≥ ε; these pairs form an approximately triangular region.

Figure 3. The image in the top left corner shows the Bessel function J0 as a

function of δ (vertical axis) and k (horizontal axis), i.e. the case ` = 0. The domains

D and K correspond to W = 1. On the left-hand side we show the first three terms

in the corresponding SVD. Each image shows the product Uη(δ; 0)Ση(0)Vη(k; 0) for

η = 1, 2, 3. To the left of each image is shown Uη(δ; 0)
√

Ση(0), while on top we show√
Ση(0)Vη(δ; 0). Below each SVD outer product term, we plot their cumulative sum.

Here H0 = 3 terms is sufficient to capture the coarse features of J0(δk).

5. Error analysis

In this section we prove a rigorous upper bound on the number of singular values needed

in FTK to achieve a relative error ε in inner product computations, given a maximum

dimensionless translation W . We first prove the bound on the ε-rank of the translation

kernel, then show how this controls the relative error over the set of inner products.
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Figure 4. Here we illustrate the SVD approximation to the translation kernel

F (δ,k) = e−iδ·k, with δ chosen so that ω = π/4 and δ = D = 2πW/K. In panel

A we show a pair of columns associated with W = 1. Each row in this panel shows

the real component of the SVD approximation on the left and the real component of

the associated error on the right. The number of terms H increases with each row.

Both the left and right columns use the same color scale (far right), but with different

limits: the SVD approximation to F has limits of [−1, 1], whereas the error has limits of

[−10−µ, 10−µ], with the value of µ listed below each row. The value of µ is the number

of digits of (pointwise) accuracy achieved by the corresponding SVD approximation.

Panel B and panel C display similar results for W = 2 and 3.

5.1. A bound on the ε-rank of F (δ,k)

Here we prove that the number of retained SVD terms need grow at worst quadratically

in W and linearly in the desired number of digits of accuracy log(1/ε).

Theorem 1 Let W = DK/2π be the maximum translation in wavelengths defined in

Section 2, and let ε > 0 be the desired precision. Let H be the number of singular values

Σζ of the translation kernel F (δ,k) larger than ε, i.e. H is the ε-rank of F . Then

H = O((W + log(1/ε))2) . (67)

Proof. As discussed in the previous section, if H` is the number of singular values

Ση(`) greater than ε, for the translation kernel with kernel J`(δk), then H in the

theorem statement equals
∑

`H`. The lemma below implies that this is achieved with

0 ≤ H` ≤ max(0,Hε,W−|`|/2), with Hε,W := max(πe2W, log(2πW/ε))+3/2. This means

that H` = 0 for |`| > 2Hε,W . Then H =
∑

`∈ZH` ≤
∑
|`|≤2Hε,W (Hε,W − |`|/2) = 2H2

ε,W .

Asymptotically, we may summarize Hε,W = O(W + log(1/ε)), completing the proof. �
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The key lemma below shows that the number of terms H` grows linearly with W

and log(1/ε), but shrinks linearly with |`|. This behavior is clear in Figure 2 as the

roughly triangular shape of the set of indices with significant singular values.

Lemma 1 Let ` ∈ Z, and let H` ≥ 0 be the ε-rank of the modal translation kernel J`(δk)

acting from L2([0, K]) to L2([0, D]) with linear weight functions as defined in the previous

section. Then H` ≤ H`, where

H` := max(0, πe2W − |`|/2, log(2πW/ε) + 3/2− |`|/2) . (68)

Proof. Defining rescaled variables x := Kδ and y := k/K, the kernel becomes

J`(δk) = J`(xy) from functions over y ∈ [0, 1] to those over x ∈ [0, 2πW ]; one may

check that rescaling does not change the singular values Ση(`). Consider the case ` even.

We exploit an identity given by Wimp [41, Eq. (2.22)],

J`(xy) =
∞∑
ν=0

C2ν(x)T2ν(y), |y| ≤ 1, C2ν(x) = ενJ`/2+ν(x/2)J`/2−ν(x/2), (69)

where T2ν is the 2νth Chebyshev polynomial, and εν = 1 for ν = 0 and 2 otherwise.

Applying |J|`|/2−ν(x/2)| ≤ 1 [25, Eq. (10.14.1)] to the smaller magnitude of the two

Bessel orders, we get a bound in terms of the Bessel with larger magnitude order

|C2ν(x)| ≤ 2|J|`|/2+ν(x/2)| . (70)

Recalling the definition in (68), we now claim that∑
ν≥H`

|C2ν(x)| ≤ ε

2πW
, for all x ∈ [0, 2πW ] . (71)

To prove this, for each ν we rescale the Bessel argument in (70) by writing p := x/(|`|+2ν)

as the ratio of argument x/2 to order |`|/2 + ν, or fraction of the distance from the

origin to the Bessel turning point. We then apply Siegel’s bound [25, Eq. (10.14.5)] in

the evanescent region 0 ≤ p ≤ 1,

|J|`|/2+ν((|`|/2 + ν)p)| ≤ e
(|`|/2+ν)

(
log p+
√

1−p2−log
(

1+
√

1−p2
))
, (72)

From (68), we obtain that ν ≥ H` implies 2πW ≤ e−2(|`| + 2ν). Since x ≤ 2πW , we

then have p ≤ e−2 and 0.99 <
√

1− p2 < 1. The second factor in the exponent of (72)

is therefore less than −2 + 1− log(1.99) < −1. Consequently, (72) is bounded by simple

exponential decay:

|J|`|/2+ν(x/2)| ≤ e−(|`|/2+ν) , for all x ∈ [0, 2πW ], ν ≥ H`. (73)

This bounds the left side of (71) by the geometric series,∑
ν≥H`

|C2ν(x)| ≤ 2
∑
ν≥H`

e−(|`|/2+ν) ≤ 2

1− e−1
e−(|`|/2+H`) .

Substituting the bound H` ≥ log(2πW/ε) + 3/2 − |`|/2 from (68), and using e3/2 >

2/(1− e−1), now establishes the claim (71).
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We work in weighted L2-norms, ‖f‖2 :=
∫ a

0
|f(x)|2 xdx, where a = 1 for the domain

or a = 2πW for the range. By Allahverdiev’s theorem [9, p. 28], the error in the induced

operator norm ‖ · ‖ of any rank-r approximation is at least the (r+ 1)th operator singular

value. Choosing r = H` and recognizing the ν < r truncation of (69) as a particular

rank-r approximation to J`, we insert the definition of the operator norm and get

ΣH`+1(`)2 ≤
∥∥∥J`(·, ·)− H`−1∑

ν=0

C2ν(·)T2ν(·)
∥∥∥2

=
∥∥∥∑
ν≥H`

C2ν(·)T2ν(·)
∥∥∥2

= sup
‖f‖=1

∫ 2πW

0

∣∣∣∫ 1

0

∑
ν≥H`

C2ν(x)T2ν(y)f(y) ydy
∣∣∣2 xdx

≤ sup
‖f‖=1

∫ 2πW

0

(∫ 1

0

∣∣∣∑
ν≥H`

C2ν(x)T2ν(y)
∣∣∣2 ydy) · (∫ 1

0

f(y)2ydy
)
xdx

≤
∫ 2πW

0

(∑
ν≥H`

|C2ν(x)|
)2

· 1 xdx ≤ (2πW )2
( ε

2πW

)2

≤ ε2 , (74)

where to reach the third line we used the y-weighted Cauchy–Schwarz inequality, to

reach the fourth line we used the fact that the magnitude of the Chebyshev polynomials

are bounded by one, and finally the claim (71). Note that, in second expression above,

when H` = 0 there are no terms in the sum. The bound just shown, ΣH`+1(`) ≤ ε, is

equivalent to the statement that the ε-rank is no more than H`, completing the proof.

The proof for ` odd is similar, exploiting the identity [41, Eq. (2.23)]. �

Remark 7 The above proof gives explicit constants in the upper bound on H`, but since

a small argument-to-order ratio p < e−2 was chosen, these constants are far from being

tight and could be improved. The empirical behavior of H` has the same linear form as

(68) but with different constants: a numerical fit gives H` ≈ 2.0(W−|`|/2π)+0.5 log(1/ε).

This is strong evidence that the quadratic power in Theorem 1 is tight.

5.2. Induced error on inner product X(δ, γ)

Consider the induced, or spectral, norm E2 of the difference between the translation

kernel and its rank-H expansion, defined by

E2
2 := sup

‖Â‖2=1

∫∫
ΩD

∣∣∣∣∫∫
ΩK

(
F (δ,k)− F SVD(δ,k)

)
Â(k) dk

∣∣∣∣2 dδ , (75)

where Â ∈ L2(ΩK), and ‖Â‖2 is the 2-norm on L2(ΩK). By Allahverdiev’s theorem [9,

p. 28] (see the proof of Lemma 1),

E2 = ΣH+1 . (76)

We now show that FTK induces a small error on the inner product X(δ, γ). To simplify

the analysis, we consider the FTK approximation of its continuous analog X (δ, γ),

X SVD(δ, γ) =

∫∫
ΩK

F SVD(δ,k)Â(k)∗R−γB̂(k) dk . (77)
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Figure 5. Four projection templates of the 3D electron density shown on the far left,

taken at random Euler angles, and sampled on a 128× 128 pixel grid. The images are

then obtained by randomly rotating and translating these 2D templates with sub-pixel

resolution. The task is to recover the true translations and rotations as well as the

templates that match each of the images.

The squared L2-norm of the residual X (δ, γ)−X SVD(δ, γ) as a function over ΩD× [0, 2π)

is now bounded as follows:∥∥X − X SVD
∥∥2

2
=

∫ 2π

0

∫∫
ΩD

∣∣X (δ, γ)−X SVD(δ, γ)
∣∣2 dδ dγ

=

∫ 2π

0

∫∫
ΩD

∣∣∣∣∫∫
ΩK

(
F (δ,k)− F SVD(δ,k)

)
Â(k)∗R−γB̂(k) dk

∣∣∣∣2 dδ dγ
≤ E2

2

∫ 2π

0

∫∫
ΩK

∣∣∣Â(k)∗R−γB̂(k)
∣∣∣2 dk dγ

= Σ2
H+1

∫ 2π

0

‖Â(·)∗R−γB̂(·)‖2
2 dγ . (78)

Thus, the relative root mean square error in the inner product function is controlled

by ΣH+1, which, if H is chosen as in Theorem 1, cannot exceed the desired ε. The last

factor in (78) depends only on the overlap of the radial power spectra of A and B and

may be rewritten as 2π
∫ K

0
|a(k, 0)b(k, 0)|2 dk. Note that the bound (78) is tight, and is

achieved if Â(k)∗R−γB̂(k) equals the first omitted right singular function VH+1(k).

The above argument provides a bound on the error induced by using the truncated

translation kernel F SVD(δ,k) in X (δ, γ). The discretized inner products X(δ, γ) and

XSVD(δ, γ) differ from X (δ, γ) and X SVD(δ, γ) only by quadrature and Fourier truncation

errors, which can be made arbitrarily small (see Section 3.1). Consequently, the error

‖X(δ, γ)−XSVD(δ, γ)‖2 is dominated by ΣH+1, and hence ε.

6. Numerical results

In this section we compare the proposed FTK method of Section 4.5 with two existing

fast methods for evaluating the inner product function X(δ, γ): the BFR and BFT

methods (see Section 1). The methods are compared for the task of rigidly aligning

NI � 1 images to another set of NI images, referred to as “templates” for clarity. We

first define the BFR and BFT methods and describe their implementations.
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6.1. Brute force rotations (BFR)

In short, for each of the N2
I image–template pairs, and each of the O(n) rotations of one

of the images, we perform a standard fast 2D convolution of A with R−γB using 2D

FFTs. This relies on writing (17) as follows, using the 2D convolution theorem [4]:

X (δ, γ) =

∫∫
R2

A(x− δ)R−γB(x)∗dx =
1

(2π)2

∫∫
ΩK

Â(k)R−γB̂(k)∗ e−ik·δdk . (79)

Discretizing the right-hand side on a Cartesian grid, we may now recover X (δ, γ) on an

entire n× n Cartesian δ grid with a single 2D FFT. Since a 2D FFT is needed for each

of O(n) rotations and N2
I image–template pairs, the cost per pair is O(n3 log n), which is

one power of n slower than the proposed SVD method; see Table 1. A finer sampling in

δ is achieved by zero-padding each FFT. Note that the cost is independent of W or N .

For each of the NI images A and for each of the O(NIn) rotated templates R−γB,

a precomputation is needed to evaluate Â(k) and R−γB̂(k) for each γ on an n × n

Cartesian grid in k. A common approach for computing R−γB̂(k) on such a grid is

to resample by interpolation in real or Fourier space. We instead use the 2D type 2

NUFFT [2] as in Section 3.2 to get Fourier transform samples on polar grids with spectral

accuracy; this preparation step is not included in our timings. Then for each γ we rotate

on the polar grid and use a 2D type 1 NUFFT to resample to a Cartesian Fourier grid.

We do include the latter in timings, but since this precomputation scales only as NI , it

is practically negligible compared to the main computation.

6.2. Brute force translations (BFT)

For each of the NI templates B we precompute their Fourier–Bessel coefficients b(k; q) on

the rings {km}Mm=1, |q| ≤ Q (see Section 3.2). For each of the NI images A and for each

of their N desired translations, we use the same method for the translated Fourier–Bessel

coefficients Tδa(k; q), except we multiply Â by the translation phase (16) before the 1D

FFTs in (34). This precomputation requires O(NINn
2 log n) operations.

For each of the N2
IN pairs of templates and δ-translated images, we then apply (36)

with L = 0 to calculate X̂(δ, q) and use (37) as in Section 4.1. This returns all inner

products associated with δ for the grid of γ ∈ [0, 2π). The total cost of precomputation

is O(N2
IN(n2 + n log n)) effort, i.e. O(Nn2) per image–template pair. We remark that

a similar method was used for efficiently computing inner products across multiple

rotations in [1]. Note that Joyeux et al. [17] instead use angular convolutions in real

space, but that the expected cost is similar.

6.3. Performance comparison for cryo-EM template matching

To conduct our numerical experiments, we start with the GroEL–GroES 3D structure

[42]. We compute NI = 10 random tomographic projections (see Figure 5) to use as

templates. The size of each template is 128×128 pixels (i.e., n = 128), and the templates

have unit L2-norm in [−1, 1]2. The maximum frequency K is chosen as the Nyquist
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frequency (see Remark 1). To generate images, we rotate the templates by random real

angles in [0, 2π) and translate them by random shifts within ΩD, where D is varied in a

manner described below. All such projections and transformations are computed using

Fourier methods which perform spectrally accurate off-grid translations; see [1].

The timing results below are carried out with an efficient vectorized MATLAB

implementation. Specifically, for BFT and FTK, computations are dominated by inner

products, which are blocked together as matrix-matrix multiplications. Since these

exploit level 3 BLAS, they are essentially as efficient as possible on the architecture. For

BFR, the cost is dominated by FFT calls, which use MATLAB’s version of the FFTW

library, and are thus also very efficient. We run MATLAB 2016b on a Linux workstation

with two six-core Intel Xeon E5-2643 CPUs at 3.4 GHz and 128 GB of memory.

We perform experiments over a wide range of D. For a given D, which in turn fixes

W = nD/4, we cover ΩD with an approximately uniform grid of translations δ of two

different realistic mean densities:

(a) a coarse grid of 4 translations per square pixel, i.e. mean spacing ∆x/2 ≈ 0.0078,

yielding N ≈ πn2D2 translations, and

(b) a finer grid of 16 translations per square pixel, i.e. mean spacing ∆x/4 ≈ 0.0039,

yielding N ≈ 4πn2D2 translations.

The former is commonly used in applications, while in our setting the latter is sufficient

for robust alignment to the desired accuracy. We also search over a rotation grid of

2πK = nπ2 ≈ 1300 equispaced γ values; this grid does not depend on D. We now

loop through image–template pairs, computing the array of inner products X(δ, γ)

on the translation and rotation grids using the three methods described above: BFR,

BFT, and the proposed FTK method. For each experiment, we record the full time

taken to compute these inner product arrays. The full computation time includes the

precomputation scaling as NI , which involves preparing the images and templates for

inner product calculations, plus the actual computation of the inner products scaling

as N2
I . The latter dominates the cost as NI grows. We exclude from our timing results

the one-time FTK planning stage that is independent of the images, such as filling the

translation kernel matrices and computing their SVD; this is negligible in any realistic

application. In FTK, we set the (relative) accuracy to ε = 10−2, which, together with

W , determines the number of SVD terms H.

As a measure of consistency, we ensure that—after the calculation—the maximal

inner product for each image corresponds to that of the true template and the nearest

possible on-grid shift and angle used to generate that image.

Figure 6 compares the running time of the BFR and BFT methods with our proposed

FTK method across a range of N corresponding to D between 0.04 and 0.4. The largest

D is equivalent to a 25-pixel shift. The comparison shows that, for a wide range of N ,

FTK outperforms BFT by a factor of 3 for the ∆x/2 spacing. For the ∆x/4 spacing

grid, we observe a speedup factor of 8–10. At large N , the precomputation stage of BFT

takes about one third of the overall running time, while for FTK, roughly one tenth of
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Figure 6. Timing results for the calculation of all inner products between rigid

transformations of NI = 10 images and NI templates, of size n × n pixels for

n = 128. Three methods are compared: BFR (brute force rotations, as implemented in

Section 6.1), BFT (brute force translations, as in Section 6.2), and our proposed FTK

method (Section 4.5). The horizontal axis shows N ; this scales as O(D2) because we

choose a constant density of translations of in a disk of radius D. The mean translation

spacings are (a) half-pixel ∆x/2 and (b) quarter-pixel ∆x/4. In both plots, the range

of D is [0.04, 0.4], i.e., between 1/50 and 1/5 of the image size.

the time is spent in precomputation. The figure also shows that BFR takes about 30 s

for ∆x/2 and 100 s for ∆x/4, independent of N . In both cases, for all D ≤ 0.4 (shifts

up to 25 pixels), FTK is faster than BFR.

Note that, in order to maintain the same user-defined error ε = 10−2, the number

of terms H increases with W . This relationship is exhibited more clearly in Figure 7,

which shows the dependence between ε and H for various W . This figure also shows the

corresponding relationship for linear interpolation (Section 4.2). For ε = 10−2, linear

interpolation requires ~10 times as many nodes as FTK; this ratio is quite similar to the

speedup shown in Figure 6. Furthermore, we note that H for the FTK method roughly

follows the O((W + log(1/ε))2) scaling given in Theorem 1.

Finally, we emphasize that, as Table 1 makes clear, in order for FTK to be more

efficient than BFT, the number of required terms H must be smaller than the requested

number of translations N , which requires a sufficient density of translations. What is

not explicitly stated in the table is that a coarsely sampled grid of translations may not

be sufficient to reconstruct the landscape of inner products. Indeed, while BFT produces

accurate inner products for the translations on the grid, we must interpolate for off-grid

translations. As shown in Figure 8, a popular scheme such as linear interpolation does

not accurately reproduce these intermediate inner products. By contrast, FTK maintains

nearly uniform error across the space of translations δ ≤ D for the accuracy determined

by H, as explained in Section 5.
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Figure 7. The accuracy of our SVD expansion (solid dots) as a function of the

number of SVD terms H, on logarithmic scales. We measure accuracy in terms of

ε = EHS of (64). By (66) and Section 5.2, this provides a bound on ε. The value

log10(1/ε) can be interpreted as the number of digits of accuracy of our expansion.

Results for different values of W are shown in different colors (see legend at the left).

Results for linear interpolation are also shown (solid squares).

7. Extensions

7.1. Other 2D kernels

Taking a step back, we can describe our approach in broad terms. Our original goal was

to calculate inner products across a variety of translations. The first step was to notice

that the translation operator Tδ corresponds to pointwise multiplication by F (δ,k) over

the Fourier domain k. Our method boils down to approximating F (δ,k) with a sum of

separable terms, each of the form Yζ(δ) ·Gζ(k).

The same approach can also be applied to other convolutional operators. For

example, we might consider the inner product between one image and another that has

been translated by some δ, rotated by some γ, and convolved with a filter which depends

on some parameter vector τ . This is the case in cryo-EM, where images are filtered

by some contrast transfer function (CTF), which is parametrized by a set of defocus

parameters [22]. In addition to aligning the image with a CTF-filtered template, we may

want to find the defocus parameters that give the highest correlation, which can yield

improved reconstruction accuracy [3].

In the Fourier domain, translating by δ and filtering by a CTF with defocus

parameters τ corresponds to pointwise multiplication by a function dependent on δ and

τ . We can extend our approach to tackle this scenario by factorizing this function into

terms of the form Yζ(δ, τ ) ·Gζ(k). Plugging this factorization into FTK then yields a

fast algorithm for computing inner products as a function of δ, γ, and τ .
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Figure 8. The accuracy of our SVD expansion (solid green lines) as a function of

the shift in wavelengths 2πδK for W = 2 using a semi-logarithmic scale. We measure

accuracy in terms of ε(δ) = ‖F (δ, ·)−F SVD(δ, ·)‖2 (i.e., the 2-norm on ΩK), where the

displacement direction ω is fixed at zero. The value log10(1/ε) can be interpreted as

the number of digits of accuracy of our expansion. Each solid green line corresponds to

one particular choice of H for our SVD expansion (values listed to the left). Results

for linear interpolation are also shown (red lines, number of nodes listed to the right).

7.2. 3D volume-to-volume registration

We have so far discussed the calculation of inner products between 2D images. A closely

related problem is the calculation of inner products between 3D volumes for the purposes

of volume-to-volume alignment. In this context, rotations can be described by their

Euler angles α, β, and γ, and the translations δ are in R3. At first glance, it appears

as though our methodology should generalize naturally from 2D to 3D. Unfortunately,

there are several important differences which make such a generalization difficult.

To understand this impasse, first recall that our overall strategy was to (a) choose a

basis in which rotations can be applied cheaply, (b) factorize the action of the translation

operator in that basis using the SVD, and finally (c) use this factorization to calculate

the inner products X (δ, γ) over a set of translations δ and rotations γ.

The first problem arises in step (a). In 2D, rotations commute, and as a result,

there exists a basis in which rotations act diagonally: the Fourier–Bessel basis. However,

rotations do not commute in 3D, so there is no such basis for volumes. A compromise is

the spherical Fourier–Bessel basis, where the angular component is given by spherical

harmonic functions. In this basis, rotations are block diagonal, allowing us to compute

multiple rotations quickly using 2D FFTs.

Step (b) proceeds in the same way for 3D, but step (c) incurs an additional cost.

Indeed, once we have factorized the translation operator in the spherical Fourier–Bessel

basis, we multiply each right singular function Vζ(k) by the coefficients of the volumes

in the basis. The resulting expression corresponds to one inner product in 2D, but not
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in 3D. Thus, if we use the spherical Fourier–Bessel basis, applying each term in the SVD

expansion requires significantly more work to calculate than a single inner product.

Another option is the 3D generalization of the least-squares interpolant described

in Section 4.3. The normal equations are similar to (42), with the associated matrix

MLS(δ′, δ) =
sin(δ̃K)− δ̃K cos(δ̃K)

(δ̃K)3
, (80)

which has a derivative

∂δ̃KM
LS(δ′, δ) =

((δ̃K)2 − 3) sin(δ̃K) + 3(δ̃K) cos(δ̃K)

(δ̃K)4
. (81)

As before, we may optimize the node locations using gradient descent, but we encounter

the same instability issues at high accuracies.

Alternatively, if one of the volumes is known beforehand (e.g., when aligning a given

volume against a fixed set of volumes), then we can use a functional SVD to precompute

a factorized representation of

X(δ, α, β, γ) =

∫∫∫
R3

(TδRαβγÂ(k))∗B̂(k) dk (82)

such that:

X(δ, α, β, γ) ≈
H∑
ζ=1

Yζ(δ)

∫∫∫
R3

Gζ(k;α, β, γ)B̂(k) dk (83)

where Rαβγ represents 3D rotation by the Euler angles α, β, γ. Here, Y1, . . . , YH and

G1, . . . , GH depend on the specifics of volume A, but not on B.

8. Conclusion

We introduced a new efficient method—named FTK—for calculating multiple inner

products between two images of n × n pixels, one fixed and another rotated and

translated with respect to the first. The method is based on decomposing the images in

a Fourier–Bessel basis, allowing us to compute the inner products quickly for multiple

rotation angles via 1D FFTs. Furthermore, the truncated SVD of the translation

operator enables us to compute approximate inner products efficiently for a large number

N of arbitrary translations lying in a disk of radius 2W pixels. The method has

computational complexity O(Hn(n+N)), where we prove (Theorem 1) that the rank

H = O((W + log(1/ε))2), where ε is the relative root mean square error. The method

is evaluated on a set of synthetic cryo-EM projections with sub-pixel translation grid

spacings, where it is shown to significantly outperform the competing BFR and BFT

methods. At mean spacing ∆x/4 we show an acceleration over other known inner-

product-forming methods of around 10× over a wide range of W . The method is

O(n log n) times faster than the popular FFT-based cross-correlation alignment method

(BFR), making it favorable for large images. Finally we present possible extensions of

the method to other 2D kernels and 3D volume alignment, noting that the latter case

poses additional difficulties due to the non-commutativity of rotations in 3D.
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