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Joint Time-Frequency Scattering
Joakim Andén, Vincent Lostanlen, and Stéphane Mallat

Abstract—In time series classification and regression, signals
are typically mapped into some intermediate representation used
for constructing models. Since the underlying task is often
insensitive to time shifts, these representations are required to
be time-shift invariant. We introduce the joint time-frequency
scattering transform, a time-shift invariant representation which
characterizes the multiscale energy distribution of a signal in
time and frequency. It is computed through wavelet convolutions
and modulus non-linearities and may therefore be implemented
as a deep convolutional neural network whose filters are not
learned but calculated from wavelets. We consider the progres-
sion from mel-spectrograms to time scattering and joint time-
frequency scattering transforms, illustrating the relationship be-
tween increased discriminability and refinements of convolutional
network architectures. The suitability of the joint time-frequency
scattering transform for time-shift invariant characterization of
time series is demonstrated through applications to chirp signals
and audio synthesis experiments. The proposed transform also
obtains state-of-the-art results on several audio classification
tasks, outperforming time scattering transforms and achieving
accuracies comparable to those of fully learned networks.

Index Terms—Acoustic signal processing, continuous wavelet
transform, convolutional neural networks, supervised learning.

I. INTRODUCTION

To extract information from signals, we typically map
them into a lower-dimensional representation space where
we construct model. The suitability of these representations
depends on their ability to capture signal structure relevant
to the task in question, such as classification or regression.
For time series, this often includes the signal’s time-frequency
geometry. Figure 1 shows a time-frequency decomposition,
the wavelet transform, applied to two audio recordings. Both
are recordings of a person laughing, so their time-frequency
structure is similar, but they also exhibit significant variability.
We would like to construct representations invariant to this type
of variability but which adequately capture the time-frequency
structure of the signals.

An especially important form of variability is time-shifting
(and time-warping deformations). Indeed, many time series
classification and regression tasks are invariant to these trans-
formations. This work will therefore study representations that
are time-shift invariant.

Initial work on audio classification computed representations
from time-frequency decompositions, such windowed Fourier
transforms. These include mel-spectrograms, mel-frequency
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Fig. 1: The wavelet transform amplitudes, or scalograms, of
two recordings as a function of time t and log-frequency λ.
Both recordings are of one person laughing.

cepstral coefficients (MFCCs) [1], modulation spectrograms [2],
[3] and correlograms [4], [5]. More recent work employs deep
convolutional neural networks—cascades of filter banks alter-
nated with nonlinearities [6], [7], [8]. Filters are learned from
data, so each network is adapted to then task, often resulting in
excellent performance [9]. However, learning typically requires
large training sets and extensive computational resources.

This work provides a bridge between traditional time-
frequency representations and deep convolutional neural net-
works. In particular, we implement the mel-spectrogram as a
convolutional network and extend it by adding certain filters
to that network which increase its discriminative power while
maintaining the amount of time-shift invariance. These filters
are not learned but fixed according to the invariance and
discriminability needs of the task. This simplifies analysis
and interpretation of the network. Fixed filters also reduces the
associated computational burden since no training is necessary.

A convolutional network cascades convolutions, subsampling
operators, and pointwise nonlinearities (such as rectifiers) [10],
[11]. Its convolution kernels, or filters, are optimized over a
training set. Section II-A describes how the wavelet transform
is computed by a similar cascade of convolutions, but with fixed
filters. A wavelet transform is thus a convolutional network
with filters specified by certain time-frequency topology.

To impose time-shift invariance, we compute the modulus
of the wavelet transform, known as the scalogram, and average
in time. As shown in Section II-B, this yields a variant of the
popular mel-spectrogram.

Although powerful, mel-spectrograms do not capture large-
scale temporal structure, such as amplitude modulation. In
Section II-C, the time scattering transform extends the mel-
spectrogram through multiscale modulation coefficients [12],
[13]. Instead of averaging the scalogram, it applies a second
wavelet transform in time, takes the modulus, and averages.
This representation is more discriminative and performs well
for several classification tasks [13], [14], [15], [16]. Extending
the wavelet transform network now lets us implement both mel-
spectrograms and time scattering as convolutional networks.

A significant limitation of the time scattering transform is
its restriction to convolutions along the time axis. In other
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words, its convolutional network is actually a tree, with each
node having only a single parent. A consequence is that time
scattering cannot separate signals subjected to time shifts which
vary in frequency, which is shown in Section III-A. To remedy
this, we must capture time and frequency structure jointly.

With this goal in mind, we introduce the joint time-
frequency scattering transform. As described in Section III-B,
it replaces the one-dimensional, channel-by-channel wavelet
decomposition of the scalogram by a two-dimensional wavelet
transform. Its construction is inspired by the cortical transform
of Shamma et al. [17], [18], which provides neurophysiological
models of auditory processing in the mammalian brain. The
corresponding joint scattering network introduces additional
filters into the time scattering network, breaking its tree
structure and increasing its discriminative power. To illustrate
this, Section III-C shows how the joint scattering transform
captures the chirp rate of frequency-modulated excitations.

The representational power of the proposed transform is fur-
ther demonstrated in Section IV through synthesis experiments.
Here, a signal is synthesized from a target scattering transform
by minimizing the distance of its transform to that target. The
resulting synthesized signals show how certain structures which
are not captured by the mel-spectrogram and time scattering
are better characterized by the joint scattering transform.

Section V concludes by evaluating the joint time-frequency
scattering transform on several audio classification tasks. These
include classification of phone segments, musical instruments,
and acoustic scenes. The joint transform outperforms the
mel-spectrogram and time scattering while achieving results
comparable to, or better than, state-of-the-art convolutional
networks. All figures and tables may be reproduced using
software available at http://www.di.ens.fr/data/software/.

II. TIME-SHIFT INVARIANT REPRESENTATIONS

Section II-A defines the wavelet transform, a representation
well suited for time series with multiscale structure. The
modulus of the wavelet transform, known as the scalogram,
is averaged in time to yield the time-shift invariant mel-
spectrogram, as described in Section II-B. Section II-C reviews
the time scattering transform, introduced in Andén and Mallat
[13], which extends the invariant mel-spectrogram. Instead of
just averaging the scalogram, it also applies a second wavelet
transform, demodulates, and averages the result in time. These
representations are cascades of convolutions and non-linearities
and may thus be implemented as deep convolutional networks
with fixed filters.

A. Wavelet Transform Filter Bank

The wavelet transform of a signal is obtained by convolving
it with a set of dilated bandpass filters known as wavelets.
It captures both short, transient structures and long-range
oscillations in a localized manner. In the frequency domain, the
ratio between center frequency and bandwidth, the Q factor, is
the same for all filters. These transforms are therefore constant-
Q transforms [19]. Wavelet filter banks provide good models for
cochlear function in mammals [20], [17], [18], [21] and form
the basis for many audio representations [22]. The transform
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Fig. 2: (a) Real and imaginary parts of a Morlet mother wavelet
with Q = 4. (b) The wavelet filters in the frequency domain.

may be computed using a multirate filter bank, as has been
described in several works [22], [23].

Let x(t) be a continuous signal for t ∈ R. Its Fourier
transform is given by x̂(ω) =

∫
R x(t)e−2πiωt dt for ω ∈ R.

Following Andén and Mallat [13], we consider a complex
analytic wavelet ψ(t) whose Fourier transform ψ̂(ω) is
concentrated in the interval [2−1/Q, 1] for some Q ≥ 1. Dilating
ψ(t) by factors 2−λ now yields the wavelet filter bank

ψλ(t) = 2λψ(2λt) ⇐⇒ ψ̂λ(ω) = ψ̂(2−λω) , (1)

for λ ∈ R. Consequently, ψ̂λ(ω) is concentrated in
[2λ−1/Q, 2λ]. This interval has approximate center 2λ and
bandwidth 2λ/Q. We therefore need Q filters to cover an
octave, independent of frequency. Since ψ̂λ(ω) is concentrated
around 2λ, we refer to λ as the wavelet’s log-frequency index.

We are typically interested only in structures shorter than
some fixed time scale T . In time, ψλ(t) has approximate
duration 2−λQ. We therefore require λ to satisfy 2−λQ ≤ T .
Unfortunately, certain low frequencies are then not covered
by any wavelet. For audio signals, these frequencies typically
contain a small amount of energy and may be safely ignored.
In the following, we instead add a set of constant-bandwidth
filters covering these frequencies (see Andén and Mallat [13]).

In numerical experiments, we use the Morlet wavelet due to
its near-optimal time-frequency localization [22], [13]. Figure
2 shows a sample Morlet wavelet and its wavelet filter bank.

We now define the continuous wavelet transform of x(t) as

x ∗ψλ(t) (2)

for λ such that 2−λQ ≤ T . It captures the local oscillations
of x(t) at time t and frequency 2λ with resolution 2−λQ and
2λ/Q in time and frequency, respectively. In audio applications,
we typically set Q ≈ 8 to better resolve oscillatory components.

Now let x[n] be a discrete signal for n ∈ Z. Its discrete-
time Fourier transform is x̂(ω) =

∑
n∈Z x[n] e−2πitω for ω ∈

[−1/2, 1/2]. We now define a discrete analog of the continuous
wavelet transform (2), implemented as a multirate filter bank.

To achieve this, we consider the multiresolution pyramid
obtained by averaging x[n] at different scales 2j . We initialize
the finest scale to a0[n] = x[n]. For j > 0, aj [n] is obtained
from aj−1[n] through convolution by a lowpass filter h[n]
whose transfer function ĥ(ω) is concentrated in [−1/4, 1/4].
We then subsample by 2 to obtain

aj [n] = aj−1 ∗ h[2n] . (3)

Note that aj [n] = x ∗hj [2jn] for some filter hj [n] defined by

ĥj(ω) =

j−1∏
p=0

ĥ(2pω).



3

x g0

gQ−1

...

h

j = 1

g0

gQ−1

...

h

j = 2

g0

gQ−1

...

h

j = 3

g0

gQ−1

...

h

j = 4

Fig. 3: Multirate filter bank computing wavelet coefficients
for J = 4. Each block corresponds to a filter convolution
subsampled by 2 where a boxed h is a low-pass filter and a
boxed gk is a band-pass filter. The depth corresponds to the
octave index j while k = 0, . . . , Q− 1 is the suboctave index.

As a result, ĥj(ω) is concentrated in [−2−j−1, 2−j−1] and
hj [n] has approximate duration 2j+1.

The high frequencies of aj−1[n] lost when convolving with
h[n] are captured by Q bandpass filters g0[n], . . . , gQ−1[n].
Each has a transfer function ĝk(ω) concentrated in
[2−(k+1)/Q−1, 2−k/Q−1]. After convolving aj−1[n] with gk[n],
the result is subsampled by 2, yielding

dj,k[n] = aj−1 ∗ gk[2n], (4)

for j > 0 and 0 ≤ k < Q. One may verify that

dj,k[n] = x ∗ gj,k[2jn], (5)

where ĝj,k(ω) = ĥj−1(ω) ĝk(2j−1ω). These filters are concen-
trated in intervals [2−j−(k+1)/Q, 2−j−k/Q]. In time, they have
approximate duration 2jQ. Since we are only concerned with
local variability below time scale T , we require 2jQ ≤ T . This
specifies the maximum depth J = log2(T/Q) of the cascade.

Figure 3 illustrates this multirate filterbank cascade. Each box
corresponds to a convolution and subsampling by 2 according
to (3) or (4). First, x[n] is convolved with g0[n], . . . , gQ−1[n]
and subsampled to yield the highest octave of bandpass
coefficients d1,0[n], . . . ,d1,Q−1[n]. Convolving x[n] with h[n]
and subsampling provides the remaining low frequencies, and

the process is repeated. As we progress through this cascade,
the depth corresponds to the octave index j.

Combining the bandpass outputs yields the discrete wavelet
transform in (5) for 1 ≤ j ≤ J and 0 ≤ k < Q. This is similar
to the output of the continuous wavelet transform. Indeed,
if we sample a continuous band-limited signal x(t) at unit
intervals, its discrete wavelet transform (5) approximates the
continuous transform (2) for λ = −j − k/Q ≤ −1 provided
that ĝj,k(ω) ≈ ψλ(ω). Given the mother wavelet ψ(t), it is
possible to construct filters h[n] and g0[n], . . . , gQ−1[n] such
that this correspondence holds for large j [22]. The result is
an approximation of the continuous wavelet transform using
the convolutional network illustrated in Figure 3.

B. Mel-Spectrogram

The lack of time-shift invariance of the wavelet transform
hinders its generalization power for classification. For most
classification tasks, shifting a signal in time does not modify its
class. To reduce variability when constructing models, the signal
representation must therefore be made time-shift invariant. In
Andén and Mallat [13], this is achieved by computing the
modulus and applying a lowpass filter. Let us review this
construction and study how this may be implemented in a
multirate filterbank cascade.

The amplitude of the wavelet transform is the scalogram:

X(t, λ) = |x ∗ψλ(t)|. (6)

Figure 1 shows two sample scalograms. Since the wavelets
are analytic, applying the complex modulus performs a Hilbert
demodulation, capturing the temporal envelope of each subband.
The scalogram X(t, λ) therefore describes the time-frequency
intensity of x(t) at time t and log-frequency λ.

Unfortunately, the scalogram is not time-shift invariant.
Indeed, shifting a signal x(t) 7→ xc(t) = x(t− c) also shifts
its scalogram X(t, λ) 7→ Xc(t, λ) = X(t − c, λ). To ensure
invariance, we average in time to obtain

Mx(t, λ) = X(·, λ) ∗ φT (t) = |x ∗ψλ| ∗ φT (t), (7)

where φT (t) = T−1φ(T−1t) for some lowpass filter φ(t)
of duration 1, so φT (t) has duration T . This is the mel-
spectrogram Mx(t, λ) of x(t). For |c| � T , it satisfies
Mxc(t, λ) ≈Mx(t, λ), so it is locally invariant to time-shifts.
The underlying wavelet structure of the mel-spectrogram also
ensures stability to time-warping deformations [13].

The mel-spectrogram was originally introduced for speech
classification [1] and was motivated by psychoacoustic studies.
It has since found widespread use in various audio classification
tasks [24], [25], [26]. Traditionally, the mel-spectrogram is
computed through frequency averaging of the windowed Fourier
transform amplitude, also known as the spectrogram. However,
it has recently been shown that they may be approximated by
the time-averaged scalogram coefficients (7) [13], [27], [28].
Note that this formulation makes the time-shift invariance of
the mel-spectrogram explicit. Indeed, the amount of invariance
is directly controlled by the duration T of the lowpass filter
φT (t). We shall use this wavelet-based variant of the mel-
spectrogram in the following.
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Fig. 4: Mel-spectrogram implemented as a convolutional
network. Each |gk| block convolves by a band-pass filter gk[n],
computes the modulus, and subsamples by 2. Blocks containing
h or h(t) convolve by a low-pass filter and subsample by 2.

We now define the discrete mel-spectrogram using the
discrete wavelet transform. The resulting convolutional network
is shown in Figure 4. Instead of just convolving by gk[n],
this network also applies a modulus and subsamples by
2. The whole operation is denoted by a boxed |gk|. The
result is then passed through a sequence of lowpass filters
h(t)[n] alternated with subsampling operators, approximating
the convolution by φT (t). The output is JQ + 1 signals of
form |x ∗ gj,k| ∗h

(t)
J−j [2

Jn], where j is the depth at which the
modulus was applied. If the filters are chosen as in Section
II-A, this approximates Mx(t, λ) for a bandpass x(t).

For real gk[n], we may replace the modulus with a rectified
linear unit. Indeed, averaging a rectified bandpass signal
approximates its Hilbert envelope, so the result is similar [29].

C. Time Scattering

The mel-spectrogram discards a large amount of potentially
useful information when averaging X(t, λ) along t in (7),
removing any high-frequency structure. The time scattering
transform extends the mel-spectrogram and partially recovers
this lost structure while maintaining invariance and stability
[12], [13]. This is achieved in Andén and Mallat [13] by
convolving the scalogram with a second set of wavelets,
taking the modulus, and averaging to create second-order time
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Fig. 5: A time scattering network. Each block with |gk| or
|g(t)| outputs the modulus of the input convolved with a band-
pass filter, subsampled by 2. Blocks with h and h(t) convolves
the input with a low-pass filter and subsample by 2.

scattering coefficients. Let us rederive this representation and
implement it as a convolutional network extending that of the
mel-spectrogram (see Figure 4).

The first-order time scattering coefficients coincide with the
mel-spectrogram Mx(t, λ) and are given by

S1x(t, λ) = X(·, λ) ∗ φT (t) .

The lost high frequencies of X(t, λ) are recovered by con-
volving with a new set of wavelets, defined from a Morlet
mother wavelet ψ(t)(t) by ψ(t)

µ (t) = 2µψ(t)(2µt) for µ ∈ R.
Each ψ(t)

µ (t) has a center frequency of approximately 2µ, so
we refer to µ as their log-frequency. Unlike their first-order
counterparts ψλ(t), the second-order wavelets ψ(t)

µ (t) have
Q = 1. As a result, they are better adapted to structures in
X(t, λ), which are less oscillatory and more localized in time
compared to those in x(t).

Convolving X(t, λ) with these wavelets along t, we obtain
X(·, λ) ∗ψ(t)

µ (t). To ensure local invariance to translation, we
take another modulus and average using φT (t), which yields

S2x(t, λ, µ) = | |x ∗ψλ| ∗ψ
(t)
µ | ∗ φT (t) . (8)
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These are the second-order time scattering coefficients. They
describe the variability of X(t, λ) along t at frequency 2µ,
where λ is the first-order, or acoustic, log-frequency, while µ is
the second-order, or modulation, log-frequency. As before, we
limit ourselves to scales shorter than T by enforcing 2−µ ≤ T .

Concatenating all first- and second-order scattering coeffi-
cients S1x and S2x of x(t) yields the time scattering transform
Sx. Higher-order scattering coefficients may be defined [12],
but these are of negligible energy [30] and do not greatly affect
classification results [13]. The scattering transform exhibits the
same amount of time-shift invariance and time-warping stability
as the mel-spectrogram described previously [12], [13]. It is
more discriminative than the mel-spectrogram, however, since
it captures amplitude modulations in X(t, λ) along t. As a
result, the time scattering transform enjoys better performance
for classification of audio [13], biomedical [14], and other
types of time series [15], [16].

Other approaches capture temporal structure in the scalogram
using Fourier transforms [2], [3] or second-order moments [4],
[5], [31]. However, these lack the time-warping stability or
noise robustness of the scattering transform [13], [12].

Extending the mel-spectrogram convolutional network of
Figure 4, we define the network of a discrete time scattering
transform. The result is shown in Figure 5. To implement the
second-order wavelets ψ(t)

µ (t), we use the network of Figure
3, but with a single bandpass filter g(t)[n] and a lowpass filter
h(t)[n]. These are constructed to approximate convolutions
with ψ(t)

µ (t) for µ = −j ≤ −1 as described in Section II-A.
As before, x[n] is first decomposed in the |gk| boxes by

convolution with g0[n], . . . , gQ−1[n] followed by modulus
and subsampling by 2. However, instead of averaging their
outputs, they are further convolved with g(t)[n] followed by
modulus and subsampling, denoted by |g(t)| boxes. These
coefficients are then averaged using lowpass filters h(t)[n]
which alternate with subsampling operators. This yields the
second-order scattering coefficients of x[n] for the highest
octave in λ and the highest octave in µ. We obtain lower octaves
in µ by applying a sequence of convolutions with h(t)[n]
alternated with subsampling operators before convolving with
g(t)[n]. Similarly, lower octaves in λ are obtained by applying
a sequence of convolutions by h[n] and subsampling operators
before the decomposition by g0[n], . . . , gQ−1[n]. The outputs
of this convolutional network approximate the continuous time
scattering transform Sx of x(t).

III. JOINT REPRESENTATIONS IN TIME AND FREQUENCY

While successfully describing temporal modulation, the time
scattering transform fails to capture more sophisticated time-
frequency structure, as shown in Section III-A. It fails because
it decomposes the scalogram as a set of one-dimensional
time series. Section III-B introduces the joint time-frequency
scattering transform, which instead decomposes the scalogram
in both time and log-frequency. Its convolutional network
representation introduces connections between nodes in each
layer, maintaining the amount of time-shift invariance but
increasing its discriminability. This property is demonstrated
in Section III-C, where we show how the proposed transform
accurately captures frequency-modulated excitations.

λ
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X(t, λ)

λ

t

X̃(t, λ)

λ

t

λ

t

Fig. 6: Effect of frequency-dependent time-shifts τ (λ) on
scalograms of a speech recording (top) and a Dirac delta
function (bottom). The two columns correspond to the original
signal x(t) and the transformed signal x̃(t), respectively.

A. Loss of Time-Frequency Structure

The time scattering convolutional network in Figure 5 has
a tree structure; that is, each node only has one parent. In
contrast, a general convolutional network sums contributions
from multiple nodes in a layer to produce a node in the next
layer. Due to this tree structure, the time scattering transform
is not sensitive to certain time-frequency deformations.

To see this, we suppose that x(t) is transformed into x̃(t)
whose scalogram X̃(t, λ) is an approximate translation of
X(t, λ) by τ (λ) in each frequency band. In other words,
X̃(t, λ) ≈ X(t−τ (λ), λ). Such transformations are illustrated
in Figure 6 for a speech signal and a Dirac delta function. This
time-frequency warping misaligns the speech harmonics and
transforms the delta function into a chirp. Although x(t) differs
markedly from x̃(t), this is not detected by time scattering
if |τ (λ)| � T . Indeed, the effect of the frequency-varying
time shift disappears when averaging by φT (t). Computing
the scattering transforms Sx and Sx̃ for T equal to the signal
length yields relative differences ‖Sx̃−Sx‖/‖Sx‖ of 0.07 and
0.09 for the speech signal and the delta function, respectively.

Detection of time-frequency warping requires measurement
of scalogram variability across frequency. In particular, the
second-order wavelet convolution (8) in time must be replaced
by a convolution in time and log-frequency.

B. Joint Time-Frequency Scattering

Existing methods for capturing a signal’s time-frequency
geometry are not always suitable for classification. For example,
McDermott and Simoncelli [31] compute higher-order moments
of the scalogram across frequencies. Through synthesis experi-
ments, this representation is shown to provide a good model for
audio textures. However, higher-order moments are not robust
to noise, reducing the descriptor’s usefulness for classification.

An alternative approach, motivated by neurophysiological
studies in the audio cortex of ferrets, is the cortical transform
of Shamma et al. [17]. It decomposes the scalogram in both
time and log-frequency using two-dimensional Gabor wavelets.
The cortical transform and related representations have brought
significant improvements over mel-spectrograms in tasks from
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Fig. 7: Real parts of four time-frequency wavelets Ψµ,`,s(t, λ).
White-yellow is negative, orange is zero, and red-black is
positive.

speech classification [32], [33] to timbre analysis [18], [34],
[35]. Unfortunately, the lack of time-shift invariance and time-
warping stability limits the performance of this approach.

In the following, we adapt the cortical transform within the
scattering framework, allowing us to address its invariance and
stability. This also lets us analyze its discriminative power.

We first decompose the scalogram X(t, λ) using a two-
dimensional wavelet transform. As before, we use Morlet
wavelets. Two-dimensional Morlet wavelets are also used in the
two-dimensional scattering transform, which enjoys significant
success in natural image classification [36], [37]. In this case,
however, the wavelets are obtained by rotating and uniformly
scaling a mother wavelet, which is not appropriate for the
scalogram. Indeed, rotation does not preserve the relationship
between time and frequency–a rotated scalogram is generally
not the scalogram of some other signal.

We instead define our wavelets separably, with independent
scaling along time and log-frequency. The time-frequency
mother wavelet Ψ(t, λ) = ψ(t)(t)ψ(f)(λ) is the product of
two one-dimensional functions in time and log-frequency. Both
the time ψ(t)(t) and the frequency ψ(f)(λ) wavelets are Morlet
wavelets with Q = 1. Dilating by 2−µ along t, dilating by 2−`

along λ, and reflecting according to s yields the wavelet

Ψµ,`,s(t, λ) = 2µ+`ψ(t)(2µt)ψ(f)(s2`λ) , (9)

where the spin s = ±1 specifies the oscillation direction (up
or down). The frequency of the wavelet along t is 2µ, so µ
is the log-frequency of Ψµ,`,s(t, λ). Its frequency along λ is
2`, so we refer to it as a “quefrency.” Consequently, ` is the
“log-quefrency” of Ψµ,`,s(t, λ).

As before, µ satisfies 2−µ ≤ T . Along λ, we fix some
maximum log-frequency scale F , measured in octaves, and let
2−` ≤ F . At this maximum scale, we include a lowpass filter
to capture average structure along λ. Specifically, we set

Ψµ,−∞,+1(t, λ) = 2µψ(t)(2µt)φF (λ) . (10)

Note that these are only defined for s = +1. Figure 7 shows
a few sample two-dimensional wavelets Ψµ,`,s(t, λ).

The two-dimensional wavelet transform of the scalogram
X(t, λ) computes convolutions X∗Ψµ,`,s(t, λ). It captures the
joint variability of X(t, λ) at log-frequency µ and log-quefrency
` with spin s. To ensure time-shift invariance and time-warping
stability, we take the complex modulus and average, obtaining
the second-order joint time-frequency scattering coefficients

S2x(t, λ, µ, `, s) = |X ∗Ψµ,`,s(·, λ)| ∗ φT (t). (11)

x |g0|

|g1|

|gQ−1|

...

h

j = 1

|G1|

|G2|

|GL|

...

h(t)

|g0|

|g1|

|gQ−1|

...

h

j = 2

h(t)

h(t)

h(t)

...

|G1|

|G2|

|GL|

...

h(t)

|g0|

|g1|

|gQ−1|

...

h

j = 3

h(t)

h(t)

h(t)

...

h(t)

h(t)

h(t)

...

|G1|

|G2|

|GL|

...

h(t)

|g0|

|g1|

|gQ−1|

...

h

j = 4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

2
nd

or
de

r
1

st
or

de
r

0
th

or
de

r

Fig. 8: A joint time-frequency scattering network. Each |gk|
block convolves a one-dimensional signal with the band-pass
filter gk and outputs its modulus. The outputs are aggregated
into two-dimensional arrays shown by thick lines. A |G`| block
convolves a two-dimensional array with the band-pass filter
G` and outputs its modulus. The h and h(t) blocks convolve
only in time. All blocks subsample their output in time by 2.

These coefficients describe the time-frequency geometry of
x(t) at time t and log-frequency λ. They retain the time-shift
invariance and time-warping stability of the second-order time
scattering coefficients, but with increased discriminative power.

Concatenating the first-order time scattering coefficients S1x
and the second-order time-frequency scattering coefficients S2x
yields the complete joint time-frequency scattering transform
Sx of x(t). As for time scattering, we may define higher-order
coefficients, but these are often of limited use for classification.
For each t, there are O(Q log2 T ) first-order coefficients and
O(Q(log2 T )2 log2 F ) second-order coefficients.
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We now define a convolutional network to provide a discrete
implementation of the joint scattering transform. In the time
scattering network (see Figure 5), we approximate the convolu-
tion of X(t, λ) with ψ(t)

µ (t) along t by cascading discrete filters
h(t)[n] and g(t)[n], alternated with subsampling operators. The
joint transform network incorporates additional filters along
the discrete log-frequency m = Qλ = −jQ− k ∈ Z, where,
as before, j and k are the octave and subband indices of λ.

In a given layer, the modulus bandpass outputs of the
previous layer are arranged along time n and log-frequency m
into a two-dimensional array. This array is then filtered along
m by different filters 2`ψ(f)(s2`m/Q). It is also filtered by
φF (m/Q) to account for ` = −∞. The sampling interval of
the filters is 1/Q, since this is the spacing of the discretized
log-frequencies λ = m/Q. Each frequency-filtered array is
then filtered by g(t)[n] along n.

Combining these into two-dimensional filters, we get

G`,s[n,m] = g(t)[n] 2`ψ(f)(s2`m/Q)

G−∞,+1[n,m] = g(t)[n]φF (m/Q) ,

where ` ∈ Z such that − log2 F ≤ ` ≤ log2Q (to ensure that
1/Q ≤ 2−` ≤ F ) and s = ±1. Abusing notation slightly, we
renumber this set of discrete filters as G1[n,m], . . . ,GL[n,m].
These filters capture all log-quefrencies along λ, but only high
frequencies along n. The missing low frequencies are absorbed
by h(t)[n], which averages along n, leaving m intact.

Using these filters, we construct the convolutional network
shown in Figure 8, extending the time scattering network of
Figure 5. Small circles denote aggregation of multiple time
series into a two-dimensional array, while the arrays themselves
are thick lines. We denote by a boxed |G`| convolution with
G`[n,m] for ` = 1, . . . , L, followed by a complex modulus
and subsampling by 2 along n. Similarly, a boxed h(t) denotes
lowpass filtering along n by h(t)[n] followed by subsampling.

Starting with a signal x[n], we first compute its decomposi-
tion using the first-order blocks |g0|, . . . , |gQ−1|, extracting the
highest octave of the signal. We then combine these into a two-
dimensional array which is decomposed by |G1|, . . . , |GL|.
The outputs of |G1|, . . . , |GL| are then forwarded to a succes-
sion of h(t) blocks which implement the averaging by φT [n].
The original array is also decomposed by h(t), and the result is
concatenated to the first-order outputs of the second layer (that
is, the second octave of the original signal). We then repeat the
process on this array. As before, an appropriate choice of g(t)[n]
and h(t)[n] ensures that the network accurately approximates
the continuous joint scattering transform.

The important difference between this network and the time
scattering network is the presence of within-layer connections.
These break the tree structure, increasing discriminative power
through better characterization of time-frequency geometry.
Returning to the frequency-warped signals of Figure 6, the joint
network separates the original and transformed signals, with
‖Sx̃−Sx‖/‖Sx‖ of 0.41 and 0.90, compared to 0.07 and 0.09
for time scattering. This network therefore has same time-shift
invariance as time scattering, but with better discriminability.

Note that this increased discriminative power may not always
be desirable. For example, frequency-dependent time-shifts (as

shown in Figure 6) or similar transformations may not be
relevant for the classification task. In this case, replacing the
time scattering transform with a joint time-frequency scattering
transform would needlessly increase the number of model
parameters, potentially requiring more training data to train
an accurate classifier. On the other hand, the high-quefrency
joint coefficients approximate the standard second-order time
scattering coefficients. As a result, the types of structures
captured by the time scattering transform are equally well
characterized by the joint transform, so little discriminative
power is lost by replacing the former by the latter.

The invariance and discriminability properties of the trans-
form are controlled by three parameters: Q, T , and F . The
number of wavelets per octave, Q, depends on the time-
frequency localization of the input signal. For example, if the
signal is highly oscillatory (that is, well-localized in frequency,
but not necessarily in time), a higher value for Q is appropriate.
This is the case in audio, but not necessarily for biomedical or
geophysical time series, which are more localized in time.

The averaging scale T controls the maximum length of the
signal structure captured by the transform. In other words, if
the relevant structure in a classification problem occurs at very
small scales, T should be kept small. This is the case in phone
segment classification (see Section V-B), where the object of
interest, the phone, is of short duration. For other signals,
such as musical instrument recordings (see Section V-C), there
are relevant structures at larger scales. The T parameter also
controls the length of the lowpass filter φT (t) and therefore
determines the amount of desired time-shift invariance.

The frequency scale F has a similar role, controlling the
maximum frequency extent of the signal structure captured by
the transform. If we expect relevant structures to spread out
over several octaves, a large value for F is needed. This is
the case for speech signals, where plosive phones occupy a
large part of the frequency domain. For other signals, such
environmental sounds, relevant structures may be confined
within an octave, so a small F is more appropriate.

The output of a scattering network may be used as input to
another convolutional network whose filters are subsequently
optimized for some classification task. This yields a large
convolutional network taking raw waveforms as input and
whose first few layers are fixed. By fixing certain layers, the
network has fewer parameters to optimize and could then be
trained using less data. Previous work training convolutional
networks on raw waveforms have yielded mel-like filters in
the first few layers [38], [39], providing some support for this
idea. Other attempts at explicitly incorporating wavelets into
convolutional network architectures have also demonstrated
the viability of the approach [40], [41], [42], [43]. In addition,
the success of transfer learning [44], [45], [46], [47] suggests
that there exist certain universal representations which perform
well for a wide range of tasks. The joint scattering network
provides a way to construct such a representation while
enforcing certain time-shift invariance and time-frequency
discriminability conditions.
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C. Frequency Modulation
The above construction is similar to that of traditional

convolutional networks except that filters are not learned from
data. These filters provide the time-shift invariance and time-
warping stability of the time scattering transform, but the joint
transform is also more discriminative. To illustrate this, we
show how the joint time-frequency scattering transform captures
frequency modulation structure ignored by time scattering.

Let x(t) = exp(2πi ξ(t)) be a frequency-modulated excita-
tion with instantaneous phase ξ(t). At time t, its instantaneous
frequency is given by ξ′(t), while the relative change in this
frequency, the (relative) chirp rate, is ξ′′(t)/ξ′(t). Frequency
modulation occurs in a variety of signals, such as speech,
animal calls, music and radar signals [48].

We now consider a particular case of frequency modulation:
the exponential chirp. Here ξ(t) = 2αt, so it has instanta-
neous frequency ξ′(t) = α log(2)2αt and constant chirp rate
ξ′′(t)/ξ′(t) = α log(2). We note that an arbitrary frequency-
modulated excitation may be locally approximated by an
exponential chirp by setting α = (log 2)−1 ξ′′(t)/ξ′(t).

For exponential chirps, we have the following result.

Theorem 1. Let ψλ(t) and Ψµ,`,s(t, λ) be defined as in (1)
and (9). We require that ψ(t) have compact support, that
‖ψ‖∞, ‖ψ′‖1,

∫
R |u||ψ̂(2u)|du, and ‖ψ(t)′‖∞ are bounded,

and that supp ψ(f)(λ) ⊂ [−A,A] for some A > 0. Further,
we assume that ψ(t)(t) is the product of a positive envelope
|ψ(t)|(t) and exp(2πi t). Let x(t) = exp(2πi 2αt) for some
α ∈ R. The joint scattering transform (11) then satisfies

S2x(t, λ, µ, `, s)

=
c0E(t, λ)

α

∣∣∣∣ψ̂(f)
(
−s2

µ−`

α

)∣∣∣∣+ ε(t, λ, µ, `, s) ,

where

E(t, λ) = |ψ(t)
µ | ∗ φT

(
t− λ

α
+

log log 2α

log 2α

)
,

‖ε‖∞ < C
(
|α|2−λ+2−`A + 22µ|α|−2 + 22µ−`|α|−2

)
,

for C > 0 depending only on ψ(t), ψ(t)(t), and ψ(f)(λ), and
c0 =

∫
R |ψ̂(2u)|du,

The proof is given in Appendix A. The result relies on
approximating X(t, λ) by |ψ̂(log(2α)2−λ+αt)|. Since |ψ̂(ω)|
is maximized at ω = 1, this forms a ridge λ = αt with slope
α, as illustrated in Figure 9(a,b). In the joint transform, this
ridge only activates certain second-order wavelets Ψµ,`,s(t, λ).
Indeed, only wavelets whose slope −s2µ−` aligns with λ =
αt yield large coefficients. Taking the complex modulus and
averaging in time preserves this slope information.

Let us consider another chirp x̃(t) = exp(2πi 2α̃t). We may
obtain x̃(t) from x(t) using a frequency-dependent time-shift
of its scalogram X(t, λ) as in Section III-A. Here, we take

τ (λ) = λ

(
1

α
− 1

α̃

)
− log log 2α

log 2α
+

log log 2α̃

log 2α̃
.

As we saw in Section III-A, the time scattering transform is not
sensitive to such changes. In other words, the scattering trans-
form discards information on slope, rendering it unsuitable for

λ

t
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Fig. 9: Scalograms of two exponential chirps with chirp rates
(a) α = 4 and (b) α = −2. (c, d) Corresponding second-order
joint time-frequency scattering coefficients S2x(t, λ, µ, `, s)
for fixed t and λ. The dotted lines satisfy s2µ−` = −α.

describing frequency modulation. The same applies to related
representations which also decompose each subband of X(t, λ)
separately, such as mel-spectrograms, MFCCs, and modulation
spectrograms. This information loss is fundamentally due to
the tree structure of their convolutional networks.

Theorem 1 states that, for fixed t and λ, S2x(t, λ, µ, `, s)

is approximately proportional to |ψ̂
(f)

(−s2µ−`α−1)|. Since

ψ̂
(f)

is concentrated around frequency 1, this is maximized
for −s2µ−`α−1 = 1. In other words, a ridge is present along
s2µ−` = −α. Frequency modulation structure in the form of
the chirp rate α, is thus encoded in the second-order joint
time-frequency scattering coefficients. Consequently, they are
sensitive to frequency-dependent time-shifts X(t, λ) 7→ X(t−
τ (λ), λ) even when |τ (λ)| � T , since these change α.

Figure 9(c,d) displays a subset of the second-order joint
scattering coefficients for the chirps whose scalograms are
shown in Figure 9(a,b). These coefficients do indeed show a
maximum along the predicted ridge. At low ` and high µ, the
approximation does not hold, but for most of the frequency
range, it is accurate. We thus see how the chirp rate α is
captured by the joint scattering coefficients in a natural way.

IV. AUDIO TEXTURE SYNTHESIS

Section III-A showed how mel-spectrograms and time
scattering transforms do not adequately capture time-frequency
structure. As T increases, this problem becomes more serious,
necessitating the introduction of the joint time-frequency scatter-
ing transform. In this section, we illustrate the representational
power of this transform using texture synthesis experiments.

With the aim of generating realistic soundtracks of arbitrary
duration, audio texture synthesis has many applications in
virtual reality and multimedia design [49]. In computational
neuroscience, it also offers a testbed for the comparative eval-
uation of biologically plausible models for auditory perception
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[31]. Given a signal x(t) and a time-shift invariant representa-
tion Φx of x, the texture synthesis problem may be formulated
as the minimization of the error E(y) = ‖Φy − Φx‖2 between
Φx and the representation Φy of the synthesized signal y(t).
Here, Φ can be a scattering transform S, a mel-spectrogram M,
or some other representation. Note that minimizing E(y) does
not imply that y(t) approximates x(t) in any way; since Φ is a
time-shift invariant representation, this is not possible. Instead,
we expect y(t) to contain examples of the time-frequency
structures captured in Φ(x).

The state of the art in the domain is held by McDermott and
Simoncelli [31], who define Φ using a set of summary statistics.
These statistics are similar to the time scattering transform as
they are calculated using cascades of constant-Q filterbanks
and pointwise nonlinearities. However, unlike the scattering
transform, which simply averages in time, McDermott and
Simoncelli also compute higher-order statistical moments:
variance, skewness, kurtosis, and correlation coefficients across
frequency bands. These coefficients are very sensitive to outliers
in the data, which reduces their applicability to classification.

To synthesize y(t), we first initialize using random Gaussian
noise with power spectral density matching the first-order
scattering coefficients S1x(t, λ) of the target waveform x(t),
since these coefficients are present in all the considered
representations. We then iteratively refine the signal by gradient
descent [50]. Because the modulus nonlinearity is not convex,
the error E(y) is not convex; consequently, gradient descent
only converges to a local minimum of E(y). However, this
local minimum is typically of low error, with E(y) equal to
around 0.02× ‖Φx‖2 for typical audio recordings. We found
empirically that the convergence rate is increased using a fixed
momentum term and a “bold driver” learning rate policy [51].

Gradient descent in a scattering network can be implemented
by backpropagation from deeper to shallower layers. Like in
a deep convolutional network, the gradient backpropagation
of the convolution with each wavelet gk(t) corresponds to a
convolution with the adjoint filter g†k(t) = ḡk(−t), obtained
by time reversal and complex conjugation of gk(t).

Figure 10 shows the synthesized scalograms of three sounds
for various values of T . Here, time-frequency scattering outper-
forms time scattering for T greater than 1 s. Again, we do not
expect these synthesized signals to reproduce the originals in the
top row due to the imposed time-shift invariance In particular,
speech is more intelligible due to better reconstruction of
articulations, individual notes in a musical scale are more
salient, and broadband impulses such as dog barks keep their
typical amplitude envelopes and inter-onset intervals. Compared
to the representation of McDermott and Simoncelli [31], time-
frequency scattering achieves similar quality, but does not have
the same sensitivity to outliers. Indeed, the contractivity of
the wavelet transform and the modulus ensures the scattering
transform’s robustness to additive noise [12], [13].

V. SUPERVISED CLASSIFICATION

We evaluate the performance of the joint time-frequency
scattering transform on various classification tasks. It is shown
to enjoy significantly greater accuracy compared to baseline
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Fig. 10: Scalograms of audio re-synthesis using time scattering,
time-frequency scattering, and McDermott and Simoncelli [31].
Synthesis is performed at various time scales T and inputs:
spoken English (left), solo flute (middle), and dog barks (right).
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MFCC and time scattering approaches. In fact, the proposed
transform performs comparably to state-of-the-art learned
convolutional networks whose training requires significant
computational resources and large training sets. As a result,
the joint scattering transform provides a good alternative when
such an expensive training step is infeasible or undesirable.

A. Frequency Transposition Invariance

In addition to time-shifting and time-warping, signals are
also transformed by frequency-shifting and frequency-warping.
Frequency-shifting, also known as frequency transposition,
changes the pitch but leaves subband envelopes intact. This
shifts the scalogram X(t, λ) by a fixed amount η in log-
frequency, giving X(t, λ−η). While certain tasks are sensitive
to pitch, like speaker identification, others, like speech recogni-
tion in non-tonal languages, require invariance to transposition.

The time scattering transform is rendered transposition
invariant and stable to frequency-warping by applying a second
scattering transform along log-frequency λ. The result is the
separable time and frequency scattering transform, introduced
in Andén and Mallat [13]. Note that we may skip the averaging
step of this second scattering transform. Indeed, the averaging
step is a linear map that can be learned by the classifier given
enough training data [13].

To render the joint time-frequency scattering transform
transposition invariant, we similarly apply a second scattering
transform along λ for the first-order coefficients S1x. For the
second order S2x, however, we simply average along λ, since
the two-dimensional wavelet decomposition already captures
the relevant frequency structure. The resulting representation
then has the necessary transposition invariance and frequency-
warping stability properties. Again, if the training set is large
enough, the final averaging steps can be learned by the classifier.

B. Phone Segment Classification

An individual phone in speech is short, on average 40 ms
in duration. For phone identification, we therefore require the
invariance scale T to be of this order. Since T is small, there
is less room for the type of misalignment seen in Section
III-A. We therefore expect the joint time-frequency scattering
to provide only limited improvement over time scattering.

To evaluate, we use the TIMIT dataset, which contains
recordings of spoken phrases, each labeled with its constituent
phones and their locations [52]. Given a phone segment,
we wish to classify the phone according to the standard
protocol [53], [54]. This task is simpler than continuous speech
recognition, but provides a good framework for evaluating
representations. The training and evaluation sets consist of 3696
and 192 phrases, respectively. We use a 400–phrase validation
set to optimize hyperparameters (see Andén and Mallat [13]).

Instead of the raw scattering transform, we use their
logarithm, known as the log-scattering transform, as input to
the classifier [13]. We compute these coefficients over 192 ms
intervals centered on each segment with T = 32 ms. All
coefficients are concatenated into a single vector together with
the logarithm of the segment duration. This vector is then used
for classification. The same processing is also performed for

Representation Error (%)
Delta-MFCCs 18.3
State of the art [58] 11.9
Time scattering 17.3
Separable time and freq. scattering 16.1
Joint time-freq. scattering 15.7

TABLE I: Error rates for phone segment classification. All
representations are computed with T = 32 ms and Q = 8.

separable time and frequency scattering as well as joint time-
frequency scattering. We set the maximum frequency scale
F to 4 octaves. As a baseline, we compute Delta-MFCCs,
which supplement standard MFCCs with first and second time
derivatives [55]. These are computed with the same windows
and concatenation as the log-scattering coefficients.

For each representation, we train a support vector machine
(SVM) [56] with a Gaussian kernel. Here and in the following,
we use a modified implementation of the LIBSVM library [57].

Results are shown in Table I. Delta-MFCCs have an error
rate of 18.3%, while the state-of-the-art representation, a
convolutional neural network, achieves 11.9% [58]. The time
scattering transform obtains an error rate of 17.3%, which
is improved by scattering along log-frequency to give 16.1%.
Finally, we obtain an error of 15.7% for the joint time-frequency
scattering transform. As mentioned earlier, the amount of time-
frequency structure present in an individual phone is small,
but there is enough to give a small improvement to the joint
transform. This is partly due to the fact that certain phones (such
as plosives) are characterized by their onset, which exhibits
sophisticated time-frequency structure.

For this task, the joint time-frequency scattering transform
does not outperform the state-of-the-art learned convolutional
network. Note, however, that the only learning involved for
the scattering transform is training the SVM. The scattering
network weights are fixed, providing a simpler representation
with acceptable performance. Another important difference is
that the state-of-the-art result was obtained by simultaneously
estimating the labels for all phone segments in an utterance.
As a result, this network has access to more context about each
segment that it can use to improve classification performance.
Combining these two approaches–a scattering transform as
input to a more adaptive deep neural network–could yield even
better performance as fewer parameters need to be estimated.
Indeed, replacing mel-spectrograms by scattering transforms in
deep neural networks have improved performance for several
tasks [59], [60], [61].

C. Musical instrument classification

The timbre of a musical instrument is essentially determined
by its shape and materials. Both remain constant during a
musical performance. Therefore, musical instruments may be
modeled as dynamical systems with constant parameters. The
task of musical instrument classification is to retrieve these
parameters while remaining invariant to changes in pitch,
intensity, and expressive technique induced by the performer.

In a musical instrument, the response of the vibrating body
to an excitation is typically nonlinear. As a result, sharp onsets
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Representation Error (%)
Delta-MFCCs 39.3
Time convolutional networks 38.2
Time-frequency convolutional networks 28.3
Spiral convolutional networks [65] 26.0
Time scattering 38.0
Time-frequency scattering 22.0

TABLE II: Error rates for musical instrument classification.
All representations are computed with T = 3 s, Q = 12, and
F = 4 octaves.

produce distinctive time-frequency patterns which are not
adequately captured by short-term audio descriptors operating
on scales T ≈ 20 ms, a typical window size for MFCCs. Joint
time-frequency scattering, on the other hand, captures such
patterns up to the scale T ≈ 3 s of a short musical phrase.

To illustrate this, we apply it to automatic instrument classi-
fication in solo phrases with a taxonomy of eight instruments.
In line with the cross-collection methodology of Bogdanov et
al. [62], we train and validate all models on the MedleyDB
v1.1 dataset [63] and test them on the solosDb dataset [64].
This is the evaluation setting of Lostanlen and Cella [65].

Results are shown in Table II. It appears that all models
which do not explicitly decompose in both time and log-
frequency (Delta-MFCCs, time scattering, and a convolutional
network of temporal convolutions on the scalogram) perform
comparably, with errors around 38%. Introducing decompo-
sitions along the log-frequency axis through time-frequency
convolutional networks and spiral convolutional networks, we
obtain error rates of 28.3% and 26.0, respectively [65]. The
improvement likely stems from the fact that musical instruments
carry important discriminative information in the temporal
evolution of their spectral envelopes as well as frequency
modulation structures, both of which are captured by joint
decompositions in time and log-frequency. The joint time-
frequency scattering transform further reduces the error to
22.0%. The small size of the training set makes optimizing a
convolutional network difficult, which may partially explain the
improved accuracy of the joint scattering transform compared
to the fully learned convolutional networks.

D. Acoustic Scene Classification

Environmental sounds and acoustic scenes are characterized
by larger-scale time-frequency structures. These recordings
typically stretch over several seconds, each composed of shorter
sound events which characterize the scene. This could be
birdsong in a park, car horns in a street, or the scraping of
chairs in a café. To differentiate between different sequences
of such events, we must characterize longer-range structures.
As discussed above, this is not possible using standard
representations, such as MFCCs or time scattering, which
do not adequately capture time-frequency structure.

We evaluate the joint scattering transform on three acoustic
scene datasets: UrbanSound8K (US8K) [66], ESC-50 [26], and
DCASE2013 [67]. US8K and DCASE2013 have 10 classes
each, while ESC-50 contains 50 classes, ranging from gun
shots and subway stations to crying babies and supermarkets.

Representation US8K ESC-50 DCASE2013
Delta-MFCCs [66], [26] 46.0 56.0 42
Salamon and Bello [68] 21.0 – –
SoundNet [46] – 25.8 12
L3 network [47] – 20.7 7
Time scatt. 26.9± 4.1 39.3± 2.2 12
Separable time and freq. scatt. 22.8± 3.0 26.0± 2.7 6
Joint time-freq. scatt. 19.6± 2.9 21.8± 2.0 5

TABLE III: Average and standard deviation of error rates for
scene classification on US8K, ESC-50, and DCASE2013.

Both US8K and ESC-50 contain several thousand recordings
of approximate duration 4 s. DCASE2013, on the other
hand, contains 100 (public) training samples and 100 (private)
evaluation samples, each of duration 30 s. All recordings being
relatively long, they may exhibit sophisticated time-frequency
structures that are discriminative for classification.

For US8K and ESC-50, we compute scattering transforms
with Q = 8 and T = 4 s. We choose a large value for T
because there are long, texture-like structures in this dataset
that we would like to characterize. To ensure some transposition
invariance, we explicitly average the separable and joint
transforms over F = 1 octave (US8K) or F = 2 octaves (ESC-
50). Here, we do not want to choose a large frequency scale F
since some pitch information is necessary to distinguish certain
sounds. Since T equals the clip duration, each clip yields a
single scattering vector, which is fed into the classifier.

For DCASE2013, we compute scattering transforms with
Q = 4, T = 1.5 s, and frequency averaging over F = 8
octaves where applicable. We must select parameters different
from those of US8K and ESC-50 due to the much smaller size
of DCASE2013. Choosing smaller values for Q and T limits
the complexity of the time-frequency structure captured by
the transform, while choosing a large F and averaging along
frequency creates additional invariance to transposition. Since
T is much smaller than the recording duration (30 s), this yields
multiple scattering vectors which are classified separately. The
overall class is then obtained by majority voting.

Delta-MFCCs are computed for all datasets as a baseline.
For each representation, we train a linear SVM with hyperpa-
rameters optimized by cross-validation on the training set.

The error for US8K and ESC-50 is calculated through cross-
validation on pre-specified folds. For these datasets, we use
the data augmentation scheme of Salamon and Bello [68], but
without pitch-shifting, since transposition invariance is already
enforced. We calculate the DCASE2013 error on the evaluation
subset in accordance with previous work [46], [47].

Results are shown in Table III. The Delta-MFCCs have
error rates of 46.0%, 56.0%, and 42% for US8K, ESC-50,
and DCASE2013, respectively. State-of-the-art convolutional
networks, on the other hand, obtain 21.0%, 20.7% and 7%.

The standard time scattering transform yields accuracies
of 26.8% (US8K), 39.3% (ESC-50), and 12% (DCASE2013),
improving on Delta-MFCCs by better capturing the temporal
structure of each subband. Adding a scattering transform along
the log-frequency axis improves results to 22.8% (US8K),
26.0% (ESC-50), and 6% (DCASE2013). This improvement is
expected since these sounds exhibit significant pitch variability
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which is not discriminative to each class.
The joint time-frequency scattering transform performs even

better, giving errors of 19.6% (US8K), 21.8% (ESC-50), and
5% (DCASE2013). This is partly because environmental sounds
are often characterized by dynamic filters which evolve in time,
creating a spectrotemporal filter. The mechanical and biological
nature of these sounds also results in frequency modulation.
Both phenomena are examples of time-frequency geometry
which are well-characterized by the joint scattering transform.
From a different perspective, the recordings in these datasets
are sensitive to frequency-dependent time-shifts (see Section
III-A). Indeed, taking a signal with many transients, such as
a jackhammer in a street scene, and misaligning its subbands
yields a completely different sound. A representation sensitive
to such transformations is therefore expected to perform better.

Again, the joint scattering transform performs comparably
to learned convolutional neural networks. However, learned
networks require significant computational resources to train
and certain expertise in designing the network. Both SoundNet
and the L3 network are pretrained on large external datasets,
requiring several days of computation on graphics processing
units. In contrast, the joint scattering transform has a fixed
network structure, so the only training needed is for the SVM,
requiring at most a few hours. By considering the invariances
of the problem (time-shifting, frequency transposition) and the
structures we would like to capture (joint time-frequency geom-
etry), we obtain good performance without costly pretraining.

VI. CONCLUSION

We introduced a joint time-frequency scattering transform, a
time-shift invariant descriptor with state-of-the-art classification
performance for a wide range of audio datasets. Important im-
provements are obtained for classification tasks involving large-
scale signal structures. Time-frequency scattering descriptors
also recover complex signals including audio textures.

A joint time-frequency scattering has a computational
structure similar to deep convolutional networks [69], but is
calculated with fixed wavelet filters. It thus requires less training
data to obtain accurate classification results. However, when
more training examples are available, learned convolutional
networks provide state-of-the-art results. Indeed, these networks
adapt the representation to each classification problem. Taking
into account prior information on time-frequency geometry
could help improve their performance.

APPENDIX A
Lemma 1. Let ψλ(t) be as defined in Theorem 1. For x(t) =
exp(2πi 2αt), we then have

|x ∗ψλ|(t) = |ψ̂
(
log(2α) 2αt−λ

)
|+ ε(t, λ) , (12)

where
|ε(t, λ)| ≤ C|α|2−λ (13)

for some constant C > 0 which only depends on ψ(t).

Proof. If α = 0, x ∗ ψλ(t) = ψ̂(0) exp(2πi). We therefore
assume that α 6= 0. If supp ψ ⊂ [−∆,∆], we have

x ∗ψλ(t) =

∫
|u|≤2−λ∆

exp(2πi 2α(t−u))ψλ(u) du . (14)

For u close to zero, the derivative of 2α(t−u) is approximately
− log(2α)2αt. We exploit this to integrate (14) by parts. Let
g(u) = exp(2πi 2αt(2−αu + u log(2α))). We then have

x ∗ψλ(t) =

∫
|u|≤2−λ∆

g(u) exp(−2πiu log(2α)2αt)ψλ(u) du

= g(2−λ∆)ψ̂λ(log(2α)2αt)−
∫

|u|≤2−λ∆

g′(u)I(u) du , (15)

where I(u) =
∫ u
−2−λ∆

exp(−2πi v log(2α)2αt)ψλ(v) dv.
The magnitude of the second term in (15) is bounded by

2π 2αt| log(2α)|(1−2−|α|2
−λ∆)21−λ∆ max

|u|≤2−λ∆
|I(u)| . (16)

Integrating I(u) by parts and taking the modulus gives

|I(u)| ≤ ‖ψλ‖∞ + ‖ψ′λ‖1
2π| log(2α)| 2αt

= 2λ
‖ψ‖∞ + ‖ψ′‖1
2π| log(2α)| 2αt

,

since α 6= 0, ‖ψλ‖∞ = 2λ‖ψ‖∞ and ‖ψ′λ‖1 = 2λ‖ψ′‖1.
Plugging this into (16), we obtain

2∆(1− 2−|α|2
−λ∆)(‖ψ‖∞ + ‖ψ′‖1) . (17)

Given that 1− 2−u < log(2)u for all u > 0, this simplifies to

2 log(2)∆2(‖ψ‖∞ + ‖ψ′‖1) |α|2−λ . (18)

Since |g(u)| = 1, the modulus of the first term in (15) is
|ψ̂λ(log(2α)2αt)| = |ψ̂(log(2α)2αt−λ)|. The triangle inequal-
ity then establishes (12) with |ε(t, λ)| bounded by (18).

Lemma 2. Define ψλ(t), Ψµ,`,s(t, λ), and c0 as in Theorem
1 and let

t0(λ) =
λ

α
− log log 2α

log 2α
.

Given
Y(t, λ) = |ψ̂

(
log(2α) 2αt−λ

)
| ,

its two-dimensional wavelet modulus decomposition satisfies

|Y ∗Ψµ,`,s|(t, λ) (19)

=
c0|ψ(t)

µ |(t− t0(λ))

α

∣∣∣∣ψ̂(f)
(
−s2

µ−`

α

)∣∣∣∣+ ε(t, λ, µ, `, s) ,

where |ψ(t)
µ |(t) = 2µ|ψ(t)|(2µt), and

|ε(t, λ, µ, `, s)| ≤ C(22µ|α|−2 + 22µ−`|α|−2) ,

for some C > 0 depending only on ψ(t), ψ(t)(t), ψ(f)(λ).

Proof. Since |ψ̂(ω)| is maximized at ω = 1, fixing λ, the
maximum of Y(t, λ) is at t0(λ). For small enough µ, Y(t, λ)
approximates a Dirac delta function centered at t0(λ). We
exploit this when convolving Y(t, λ) by ψ(t)

µ (t).
Approximating ψ(t)(u) with its value at u = t− t0(λ) gives

Y(·, λ) ∗ψ(t)
µ (t) =

∫
R

Y(t− u, λ)ψ(t)
µ (u) du

=

∫
R
|ψ̂(log(2α)2α(t−u)−λ)| ×

(ψ(t)
µ (t− t0(λ)) + ε1(t, λ, µ, u)) du ,
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where |ε1(t, λ, µ, u)| ≤ |t − t0(λ) − u| ‖ψ(t)
µ

′
‖∞. Setting

ε2(t, λ, µ) =
∫
R |ψ̂(log(2α)2α(t−u)−λ)|ε1(t, λ, µ, u) du gives

Y(·, λ)∗ψ(t)
µ (t) = c0α

−1ψ(t)
µ (t− t0(λ))+ε2(t, λ, µ) , (20)

using a change of variables, where c0 =
∫
R |ψ̂(2u)|du <∞.

We bound ε2(t, λ, µ) through

|ε2(t, λ, µ)| ≤
∫
R
|ψ̂(log(2α)2α(t−u)−λ)| |ε1(t, λ, µ, u)|du

≤ ‖ψ(t)
µ

′
‖∞
∫
R
|ψ̂(log(2α)2α(t−u)−λ)| |t− t0(λ)− u|du .

The change of variables t− t0(λ)− u 7→ α−1u now gives

|ε2(t, λ, µ)| ≤ |α|−222µ‖ψ(t)′‖∞
∫
R
|ψ̂(2u)| |u|du, (21)

where we have used ‖ψ(t)
µ

′
‖∞ = 22µ‖ψ(t)′‖∞.

We now convolve (20) by ψ(f)
`,s(λ) = 2`ψ(f)(s2`λ). At high

`, this wavelet will mostly capture phase variation. To see this,
we factorize ψ(t)

µ (t) into an envelope and a phase, yielding
|ψ(t)

µ |(t) exp(2πi 2µt)). The convolution then becomes

c0α
−1ψ(t)

µ (t− t0(·)) ∗ψ(f)
`,s(λ)

= c0α
−1

∫
R
|ψ(t)

µ |(t− t0(λ− γ))×

exp(2πi 2µ(t− t0(λ− γ)))ψ
(f)
`,s(γ) dγ . (22)

We now make the approximation

|ψ(t)
µ |(t− t0(λ− γ)) = |ψ(t)

µ |(t− t0(λ)) + ε3(t, λ, µ, γ) ,

where |ε3(t, λ, µ, γ)| ≤ ‖|ψ(t)
µ |′‖∞|t0(λ−γ)−t0(λ)|. Plugging

this into (22), we obtain

c0α
−1|ψ(t)

µ |(t− t0(λ))× (23)∫
R

exp(2πi 2µ(t− t0(λ− γ)))ψ
(f)
`,s(γ) dγ + ε4(t, λ, µ, `, s) ,

where ε4(t, λ, µ, `, s) equals

c0α
−1

∫
R
ε3(t, λ, µ, γ) exp(2πi 2µ(t− t0(λ−γ)))ψ

(f)
`,s(γ) dγ .

Since t0(λ− γ) = t0(λ)− α−1γ, the first term in (23) is

c0α
−1|ψ(t)

µ |(t− t0(λ))ei2µ(t−t0(λ))ψ̂
(f)

`,s(−2µα−1) . (24)

The same property of t0(λ) lets us bound ε4(t, λ, µ, `, s) by

|ε4(t, λ, µ, `, s)| ≤ c0|α|−2‖|ψ(t)
µ |′‖∞

∫
R
|γ||ψ(f)

`,s(γ)|dγ

= c0|α|−222µ−`‖|ψ(t)|′‖∞
∫
R
|γ||ψ(f)(γ)|dγ , (25)

which follows from change of variables and from ‖|ψ(t)
µ |′‖∞ =

22µ‖|ψ(t)|′‖∞. We must also convolve ε2(t, λ, µ) with ψ(f)
`,s(λ).

Since ‖ψ(f)
`,s‖1 = ‖ψ(f)‖1 for all `, s, we have

|ε2(t, ·, µ) ∗ψ(f)
`,s(λ)| ≤ ‖ε2(t, ·, µ)‖∞ ‖ψ(f)‖1 . (26)

Combining (20) with (24) and taking the modulus yields
(19) since ψ̂

(f)

`,s(ω) = ψ̂
(f)

(s2−`ω), where the bound on

ε(t, λ, µ, `, s) follows from (21), (25), (26), and the triangle
inequality.

Proof of Theorem 1. Lemma 1 gives

X(t, λ) = |x ∗ψλ|(t) = |ψ̂(log(2α)2αt−λ)|+ ε1(t, λ) ,

where |ε1(t, λ)| ≤ C1|α|2−λ for some C1 > 0. We now
convolve X(t, λ) with ψ(t)

µ (t) in time ψ(f)
`,s(λ) in log-frequency

and take the modulus. Lemma 2 approximates the convolution
of the first term. For the second term, we observe that

‖ε1(·, λ) ∗ψ(t)
µ ‖∞ ≤ ‖ε1(·, λ)‖∞‖ψ(t)‖1 ≤ C2|α|2−λ ,

for some C2 > 0, since ‖ψ(t)
µ ‖1 = ‖ψ(t)‖1 for all µ. Now,

|ε1 ∗Ψµ,`,s(t, λ)| ≤ C2|α|
∫
R

2−(λ−µ)|ψ(f)
`,s(µ)|dµ

= C2|α|2−λ
∫
|µ|≤2−`A

2µ|ψ(f)
`,s(µ)|dµ

≤ C2|α|2−λ22−`A‖ψ(f)
`,s‖1 = C3|α|2−λ+2−`A ,

for some C3 > 0, since ψ(f) is supported on [−A,A].
As a result,

|X ∗Ψµ,`,s(t, λ)| (27)

=
c0
α
|ψ(t)

µ |(t− t0(λ))

∣∣∣∣ψ̂(f)
(
−s2

µ−`

α

)∣∣∣∣+ ε2(t, λ, µ, `, s) ,

where

|ε2(t, λ, µ, `, s)| ≤ C(|α|2−λ+2−`A+|α|−222µ+|α|−222µ−`) .

Since this bound is constant in t and ‖φT ‖1 = ‖φ‖1 for all
T , it still holds after convolving (27) with φT (t) .
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[14] V. Chudáček, J. Andén, S. Mallat, P. Abry, and M. Doret, “Scattering
transform for intrapartum fetal heart rate variability fractal analysis:
A case-control study,” IEEE Trans. Biomed. Eng., vol. 61, no. 4, pp.
1100–1108, 2014.

[15] R. Talmon, S. Mallat, H. Zaveri, and R. R. Coifman, “Manifold learning
for latent variable inference in dynamical systems,” IEEE Trans. Signal
Process., vol. 63, no. 15, pp. 3843–3856, 2015.

[16] J. Sulam, Y. Romano, and R. Talmon, “Dynamical system classification
with diffusion embedding for ECG-based person identification,” Signal
Processing, vol. 130, pp. 403–411, 2017.

[17] T. Chi, P. Ru, and S. Shamma, “Multiresolution spectrotemporal analysis
of complex sounds,” J. Acoust. Soc. Am., vol. 118, no. 2, pp. 887–906,
2005.

[18] N. Mesgarani, M. Slaney, and S. Shamma, “Discrimination of speech
from nonspeech based on multiscale spectro-temporal modulations,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 14, no. 3, pp. 920–930, 2006.

[19] J. C. Brown, “An efficient algorithm for the calculation of a constant Q
transform,” J. Acoust. Soc. Am., vol. 92, no. 5, p. 2698, 1992.

[20] T. Dau, B. Kollmeier, and A. Kohlrausch, “Modeling auditory processing
of amplitude modulation. I. Detection and masking with narrow-band
carriers,” J. Acoust. Soc. Am., vol. 102, no. 5, pp. 2892–2905, 1997.

[21] E. C. Smith and M. S. Lewicki, “Efficient auditory coding,” Nature, vol.
439, no. 7079, p. 978, 2006.

[22] S. Mallat, A wavelet tour of signal processing. Academic Press, 1999.
[23] I. Daubechies, Ten Lectures on Wavelets. SIAM, 1992.
[24] B. Logan, “Mel frequency ceptral coefficients for music modeling,” in

Proc. ISMIR, 2000.
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