ON THE CHROMATIC NUMBER OF GENERALIZED STABLE
KNESER GRAPHS

JAKOB JONSSON

ABSTRACT. For each integer triple (n, k, s) such that k > 2, s > 2, and n > ks,
define a graph in the following manner. The vertex set consists of all k-subsets
S of Zy such that any two elements in S are on circular distance at least s.
Two vertices form an edge if and only if they are disjoint. For the special case
s = 2, we get Schrijver’s stable Kneser graph. The general construction is
due to Meunier, who conjectured that the chromatic number of the graph is
n — s(k — 1). By a famous result due to Schrijver, the conjecture is known to
be true for s = 2. The main result of the present paper is that the conjecture
is true for s > 4, provided n is sufficiently large in terms of s and k. The proof
techniques do not apply to the case s = 3, which remains nearly completely
open.

1. INTRODUCTION AND SUMMARY

Let n be an integer, and let Z,, denote the set of congruence classes of integers
modulo n. For an integer x, we let T denote the corresponding congruence class
modulo n; the modulus n will always be clear from context. For a nonempty subset
S C Z, and an integer x such that T € S, define o(x;S) to be the smallest y > x
such that § € S.

Let s be a positive real number. A set A C S is s-sparse in S C Z, if, for each
a such that @ € A and each ¢ > 1, we have that

(1) o'(a; A) > ol (a; S).
If S = Z,, then (1) simplifies to
(2) o(a; A) —a > |si].

Assuming that s is an integer, and viewing the elements of S as arranged in
increasing order around a circle, the set A is s-sparse exactly when there are at
least s — 1 elements in S between any two elements in A.

For any S C Z, and any real number s > 1, let SG§ ;. be the graph in which the
vertices are all s-sparse k-subsets of S, and two vertices form an edge if and only if
they are disjoint. We write SG}, , = SG7, . Choosing s = 1, we obtain the Kneser
graph KG,, ; [3, 4], whereas s = 2 yields Schrijver’s stable Kneser graph [6].

For a loopless graph G and an integer r > 2, let G(") be the r-uniform hypergraph
on the same vertex set as G in which the edges are all cliques of size r in G. For
an integer ¢ > 1, a proper c-coloring of a hypergraph H is a function h: V(H) —
{1, ..., ¢} such that no edge is monochromatic; h(7) consists of at least two elements
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for each edge 7. Let x(H) be the smallest ¢ such that there exists a proper c-coloring
of H. For a graph G, we write

X(G) = x(G7).

Meunier suggested the following conjecture, which generalizes several well-known
theorems and conjectures.

Conjecture 1.1 (Meunier [5]). Let k,n,r, s be integers such that k > 2, s > r > 2,

and n > ks. Then
(r) s _ n — S(]f — ].)
KOsy, = [P

The conjecture extends a similar conjecture due to Alon, Drewnowski, and
Luczak [1] for the case r = s. One may extend the conjecture further by letting s
be any real number satisfying s > 2.

One direction of the conjecture is easy. Specifically, we have the following upper
bound.

Proposition 1.2. Let s be a real number, and let k,n,r be integers such that k > 2,
s>r>2,andn > ks. Then

X(SGS ) < [%w .

Proof. Throughout this proof, identify Z,, with the set {1,...,n}. To any vertex
S in SG;, 1, assign the color [(min S)/(r — 1)]. Note that any vertex with a given
color x must have a nonempty intersection with the set

{k:(z=1Dr-1)<k<z@r-1)}
Since this set has size r — 1, there is no monochromatic r-clique in SG;, ;. Choosing

i = k—1in (2), we get that no vertex in SG;, ; is contained in the set {7 :
n—s(k—1)+1<4i<n}. Asa consequence, we are done. O

Meunier stated and proved Proposition 1.2 in the case that s is an integer; the
proof is identical to the one above. Earlier, Alon, Drewnowski, and Luczak obtained
the same bound in the special case r = s.

By Proposition 1.2, to obtain Conjecture 1.1 for given values k,n,r, s, it suffices

to prove that
s n—sk—1
X" (SGs ) > {#-‘ ~

In the present paper, the focus is on ordinary graphs, and the main result reads as
follows.

Theorem 1.3. Let s be a real number, and let t be a positive integer such that
2 <t <s/2. Defined=|tn/s|. Whenever n > ks, we have that

X(Sva,,k) > X(SGfZ,k)
n - d
In particular, if X(SGZ,k) >d—t(k—1), then

X(SG3 ) > — sk —1) - %s(/ﬂ _1).
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See Section 2 for the proof of Theorem 1.3.

It remains an open problem whether it is possible to extend Theorem 1.3 to the
case /2 <t <s.

Theorem 1.3 does not remain true in general if t(k — 1) is a non-integer; see
Section 1.2. It is plausible that the theorem does remain true in the case that
t(k —1) is an integer, but our proof only works when ¢ itself is an integer. The idea
of the proof is to pick an (n/d)-sparse subset S C Z, of size d and then show that
t-sparse subsets of S are s-sparse in Z,,. This is typically false for non-integers ¢.

Explaining the idea of the proof a bit more, we will consider the n sets S, = S—g,
where g € Z,. Given an optimal proper coloring of SG, ;,, we will deduce that each
SGgmk is a subgraph of SG}, ; requiring at least X(SGka) colors. Examining how
the sets S, intersect, we will then observe that each color is used on at most d of
the subgraphs SG;, . The conclusion will be that nx(SGy ) < dx(SG;, 1)

1.1. Consequences of the main result. To describe some of the consequences of
Theorem 1.3, let us review what is known about Conjecture 1.1. Using topological
methods, Lovész [4] showed that x(KG,, x) = n — 2(k — 1) whenever k > 2 and
n > 2k. Shortly after, Schrijver [6] strengthened this result, showing that the
chromatic number remains the same for the subgraph SG,QL! i

Theorem 1.4 (Schrijver [6]). For k > 2 and n > 2k, we have that
X(SG2 ) =n — 20k — 1).
Thanks to Theorem 1.4, we may deduce the following from Theorem 1.3.

Corollary 1.5. Let ¢ > 1 and k > 2 be integers. Whenever n > 21k, we have that
N(SGZ) = n— 29(k - 1),

Proof. Let ¢ > 2, and assume by induction that X(SGZ:I) =d-27"1(k 1) for
d > 2971k, Choosing s = 29 and t = 297! in Theorem 1.3, we get that
a n/2—|n/2]
SGE ) >n—21(k—1) - L—=L=99(k — 1
for n > 29k. Now,
n/2—n/2|_, [0 if n is even,
[n/2] 2k -1) = 20D if s odd,
which is strictly less than 1 in both cases; n > 29k. By Proposition 1.2, we are
done. d
Corollary 1.6. Let s > 4 be a real number, and let ¢ = |logy(s/2)|. Whenever
n > ks and k > 2, we have that
~ 29n/s —[2%n/s]
[29n/s]

In particular, for each real number s > 4 and each integer k > 2, we have that
X(8Gy k) = [n—s(k —1)]

X(SGj ) =n—s(k—1) s(k —1).

whenever s
> - _
nfmax{2q€(s(k 1)+e),ks},

where e = |s(k— 1)+ 1] —s(k—1).
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Proof. We obtain the first statement of the corollary by choosing ¢ = 29 in Theo-
rem 1.3 and applying Corollary 1.5 with n’ = |29n/s] instead of n. Corollary 1.5
does apply, because

n' > 29(ks)/s| = |29k = 2%.

For the last statement, note that X(SG;,I@) = [n—s(k—1)] as soon as
2in/s — [29n/s]
[21n/s]
Since |29n/s| > 29n/s — 1, we obtain that (3) is true as soon as

1
2an/s — 18
This concludes the proof. O

(3) s(k—1) <e.

(k-1)<e < n>——(s(k—1)+e).

s
24¢

As a side remark, note that e = 1 whenever s(k — 1) is an integer.

The restriction s > 4 in Corollary 1.6 is because of the restriction ¢ < s/2 in
Theorem 1.3. For 2 < s < 4, very little seems to be known. Using computer,
Meunier [5] has established Conjecture 1.1 for (r,s) = (2,3) in the case that n <
2k + 5 and also in the case that (n, k) = (14,4).

1.2. Some remarks. Theorem 1.3 does not remain true in general if ¢ is a non-
integer. For example, assume that ¢ > 4 is a rational number such that ¢(k — 1)
is not an integer, and assume that s(k — 1) is an integer. Let n have the property
that d = tn/s is an integer. Choosing n, and hence d, large enough, Conjecture 1.1
is true for SGka; apply Corollary 1.6. We get that

X(8Ghk)  x(SGax) _n—stk—1) [d—t(k-1)]

n d - n d
n—sk—-1) d—tk-1)
< —
n d
(k—1)(nt — ds)
dn

the second inequality is strict, as we assumed that ¢(k — 1) is not an integer.
Conjecture 1.1 (extended to real s) implies Theorem 1.3 for any s > ¢ > 2 such
that ¢(k — 1) is an integer. Namely, assuming the conjecture is true for SG;, ;, we
get that
X(SG; ) x(SGh,) on=stk=1) d-tk=1)  (k=1)(nt—ds)

J— P— > .
n d - n d dn =0

1.3. Hypergraphs. Let us also review the situation for hypergraphs. Throughout
this section, all parameters are integers. Again using topological methods, Alon,
Frankl, and Lovész [2] extended the result of Lovdsz [4] to Kneser hypergraphs,

proving that
—r(k—1)
MKG, ) = |k =)
X ( nyk) ’V r— 1
whenever k£ > 2, r > 2, and n > kr. Regarding stable Kneser hypergraphs, Alon,
Drewnowski, and Luczak [1] managed to settle Conjecture 1.1 in the particular case
that r = s = 29 for some integer q.
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Theorem 1.7 (Alon, Drewnowski, and Luczak [1]). Let ¢ > 1 and k > 2. For
every n > 2%, we have that

X862, = [

n-roy]

Meunier [5] proved the following result, extending a similar result due to Alon,
Drewnowski, and Luczak [1].

Theorem 1.8 (Meunier [5]). Suppose that the following hold for given parameters
r1 > 2 and So > 1o > 2.

o Conjecture 1.1 is true for (r,s) = (r1,r1) and alln and k such that n > krq
and k > 2.

o Conjecture 1.1 is true for (r,s) = (e, $2) and all n and k such that n > ks
and k > 2.

Then Conjecture 1.1 is true for (r,s) = (r172,7182) and all n and k such that n > ks
and k > 2.

The following result is a consequence of Corollary 1.5, Theorem 1.7, and Theo-
rem 1.8.

Corollary 1.9. Let p and q be any positive integers such that p < q, and let k > 2.
Then

isey) = |t

20 — 1
forn > 21k.

Proof. The case p = 1 is Corollary 1.5. For p > 2, use Theorem 1.8 with r; = 2P~!
and (rg, s2) = (2,297P+1): apply Theorem 1.7 and Corollary 1.5. O
2. PROOF OF THEOREM 1.3

Let s > 4 be a real number, and let ¢ be an integer such that 2 <t < s/2. For a
given integer n, write d = [tn/s|. Let
Sz{[z‘n/dj ;ogigd—l}gzn.
Lemma 2.1. Ifa set A C S ist-sparsein S, then A is s-sparse in Zy,. In particular,
SG, ). contains SGg,k as a subgraph.

Proof. Assume that A is t-sparse in S. Consider an element ag € Z such that
ap € A. For m > 1, write a,, = 0™ (ap; A). We want to prove that

am — ag > |ms].
We have that a,, = ¢‘(ag;S) for some £ > 0. By assumption,
{ > mit.

Now, ag = |in/d] for some i, and a, = |jn/d] for some j, which means that
{=j—1i. We get that

e ][] 2 5] -

which concludes the proof. O
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Let Sy = S — g for g € Z,,. Define a graph G(n, S) with vertex set Z,, and with
an edge between g and h whenever S; N S), = (0. While not useful in what follows,
one may observe that G(n, S) = SGZ{;; this is because S and its translates are the
only (n/d)-sparse d-subsets of Z,.

A vertex set I in a graph G is independent if no two vertices in I are adjacent
in G. The independence number of G is the greatest value a such that there is an
independent set in G of size a.

Lemma 2.2. The independence number of G(n,S) is d.

Proof. Let I be an independent set in G(n, S). By cyclic symmetry, we may assume
that 0 € I. Suppose that p € I. Then S;N Sy # 0, which is true if and only if there
are ¢ and j such that

lin/d| = |jn/d] —p <= p=ljn/d] - |in/d].
This implies that

p=LG—dn/d] or p=|(j—in/d]+1.
We conclude that
Irg {gag'+'T: g S S}.
Now, n/d > s/t > 2, which implies that S, NS 7= (). In particular, at most one
of g and g + 1 belongs to I for each g € S; hence |I| < |S| =d.
To see that the independence number is d, note that the set S forms an inde-
pendent set in G(n,.S); S, contains the element 0 for each g € S. (]

Proof of Theorem 1.3. Consider a proper coloring of SG;, ; with x(SGj, ;) colors.
For each color i, let C; denote the set of elements g € Z,, such that some vertex
of SGgwk is given the color 4. By Lemma 2.1, SGgmk is contained in SG, ;,, which
implies that .
(4) Y1 = Y x(SGE, k) =1 x(SGE)-

i 9E€Ln

Now, each C; is an independent set in the graph G(n,S), because the coloring is
proper. By Lemma 2.2, we get that |C;| < d, which yields that

(5) Z |Cs| < d - x(SGS, 1)-

Combining (4) and (5), we obtain the theorem. O

2.1. Remark. In the proof of Theorem 1.3, we considered the n subgraphs SGgg’ &
of the graph SG;, ;. We defined a graph G(n, S) and observed that

7 (G, 1) < alGln, S) - X(SGS L),
9€Ln
where a(G(n,S)) denotes the independence number of G(n,S). This is a special
case of a more general fact, which we state for completeness.
Let H = (V, E) be a graph, and let V1, ..., V,, be subsets of V. Define a graph G
with vertex set {1,...,n} and with an edge between i and j whenever the complete
bipartite graph with blocks V; and Vj is a subgraph of H. Then

S X(HIVi]) < a(G) - x(H),
=1
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where H[V;] is the induced subgraph of H on the vertex set V;.

To see this, consider an optimal coloring of H. For each color i, let C; be the
set of indices j such that some vertex in Vj is given the color ¢. As in the proof of
Theorem 1.3, we deduce that

> 1Cil = n- x(H[Vi).

K3
Moreover, each C; is an independent set in G. Namely, if a and b are adjacent in
G, then all z € V,, are adjacent to all y € V},. We conclude that

> 1Cl < a(G) - (1)
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