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Abstract. For each integer triple (n, k, s) such that k ≥ 2, s ≥ 2, and n ≥ ks,
define a graph in the following manner. The vertex set consists of all k-subsets

S of Zn such that any two elements in S are on circular distance at least s.
Two vertices form an edge if and only if they are disjoint. For the special case
s = 2, we get Schrijver’s stable Kneser graph. The general construction is
due to Meunier, who conjectured that the chromatic number of the graph is
n − s(k − 1). By a famous result due to Schrijver, the conjecture is known to
be true for s = 2. The main result of the present paper is that the conjecture
is true for s ≥ 4, provided n is sufficiently large in terms of s and k. The proof
techniques do not apply to the case s = 3, which remains nearly completely
open.

1. Introduction and summary

Let n be an integer, and let Zn denote the set of congruence classes of integers
modulo n. For an integer x, we let x denote the corresponding congruence class
modulo n; the modulus n will always be clear from context. For a nonempty subset
S ⊆ Zn and an integer x such that x ∈ S, define σ(x; S) to be the smallest y > x
such that y ∈ S.

Let s be a positive real number. A set A ⊆ S is s-sparse in S ⊆ Zn if, for each
a such that a ∈ A and each i ≥ 1, we have that

(1) σi(a; A) ≥ σ⌊si⌋(a; S).

If S = Zn, then (1) simplifies to

(2) σi(a; A) − a ≥ ⌊si⌋ .

Assuming that s is an integer, and viewing the elements of S as arranged in
increasing order around a circle, the set A is s-sparse exactly when there are at
least s − 1 elements in S between any two elements in A.

For any S ⊆ Zn and any real number s ≥ 1, let SGs
S,k be the graph in which the

vertices are all s-sparse k-subsets of S, and two vertices form an edge if and only if
they are disjoint. We write SGs

n,k = SGs
Zn,k. Choosing s = 1, we obtain the Kneser

graph KGn,k [3, 4], whereas s = 2 yields Schrijver’s stable Kneser graph [6].

For a loopless graph G and an integer r ≥ 2, let G(r) be the r-uniform hypergraph
on the same vertex set as G in which the edges are all cliques of size r in G. For
an integer c ≥ 1, a proper c-coloring of a hypergraph H is a function h : V (H) →
{1, . . . , c} such that no edge is monochromatic; h(τ) consists of at least two elements
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for each edge τ . Let χ(H) be the smallest c such that there exists a proper c-coloring
of H . For a graph G, we write

χ(r)(G) = χ(G(r)).

Meunier suggested the following conjecture, which generalizes several well-known
theorems and conjectures.

Conjecture 1.1 (Meunier [5]). Let k, n, r, s be integers such that k ≥ 2, s ≥ r ≥ 2,
and n ≥ ks. Then

χ(r)(SGs
n,k) =

⌈

n − s(k − 1)

r − 1

⌉

.

The conjecture extends a similar conjecture due to Alon, Drewnowski, and
 Luczak [1] for the case r = s. One may extend the conjecture further by letting s
be any real number satisfying s ≥ 2.

One direction of the conjecture is easy. Specifically, we have the following upper
bound.

Proposition 1.2. Let s be a real number, and let k, n, r be integers such that k ≥ 2,
s ≥ r ≥ 2, and n ≥ ks. Then

χ(r)(SGs
n,k) ≤

⌈

n − s(k − 1)

r − 1

⌉

.

Proof. Throughout this proof, identify Zn with the set {1, . . . , n}. To any vertex
S in SGs

n,k, assign the color ⌈(min S)/(r − 1)⌉. Note that any vertex with a given
color x must have a nonempty intersection with the set

{k : (x − 1)(r − 1) < k ≤ x(r − 1)}.

Since this set has size r−1, there is no monochromatic r-clique in SGs
n,k. Choosing

i = k − 1 in (2), we get that no vertex in SGs
n,k is contained in the set {i :

n − s(k − 1) + 1 ≤ i ≤ n}. As a consequence, we are done. �

Meunier stated and proved Proposition 1.2 in the case that s is an integer; the
proof is identical to the one above. Earlier, Alon, Drewnowski, and  Luczak obtained
the same bound in the special case r = s.

By Proposition 1.2, to obtain Conjecture 1.1 for given values k, n, r, s, it suffices
to prove that

χ(r)(SGs
n,k) ≥

⌈

n − s(k − 1)

r − 1

⌉

.

In the present paper, the focus is on ordinary graphs, and the main result reads as
follows.

Theorem 1.3. Let s be a real number, and let t be a positive integer such that

2 ≤ t ≤ s/2. Define d = ⌊tn/s⌋. Whenever n ≥ ks, we have that

χ(SGs
n,k)

n
≥

χ(SGt
d,k)

d
.

In particular, if χ(SGt
d,k) ≥ d − t(k − 1), then

χ(SGs
n,k) ≥ n − s(k − 1) −

tn/s − ⌊tn/s⌋

⌊tn/s⌋
s(k − 1).
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See Section 2 for the proof of Theorem 1.3.
It remains an open problem whether it is possible to extend Theorem 1.3 to the

case s/2 < t ≤ s.
Theorem 1.3 does not remain true in general if t(k − 1) is a non-integer; see

Section 1.2. It is plausible that the theorem does remain true in the case that
t(k− 1) is an integer, but our proof only works when t itself is an integer. The idea
of the proof is to pick an (n/d)-sparse subset S ⊂ Zn of size d and then show that
t-sparse subsets of S are s-sparse in Zn. This is typically false for non-integers t.

Explaining the idea of the proof a bit more, we will consider the n sets Sg = S−g,
where g ∈ Zn. Given an optimal proper coloring of SGs

n,k, we will deduce that each

SGt
Sg,k is a subgraph of SGs

n,k requiring at least χ(SGt
d,k) colors. Examining how

the sets Sg intersect, we will then observe that each color is used on at most d of

the subgraphs SGs
n,k. The conclusion will be that nχ(SGt

d,k) ≤ dχ(SGs
n,k).

1.1. Consequences of the main result. To describe some of the consequences of
Theorem 1.3, let us review what is known about Conjecture 1.1. Using topological
methods, Lovász [4] showed that χ(KGn,k) = n − 2(k − 1) whenever k ≥ 2 and
n ≥ 2k. Shortly after, Schrijver [6] strengthened this result, showing that the
chromatic number remains the same for the subgraph SG2

n,k.

Theorem 1.4 (Schrijver [6]). For k ≥ 2 and n ≥ 2k, we have that

χ(SG2
n,k) = n − 2(k − 1).

Thanks to Theorem 1.4, we may deduce the following from Theorem 1.3.

Corollary 1.5. Let q ≥ 1 and k ≥ 2 be integers. Whenever n ≥ 2qk, we have that

χ(SG2q

n,k) = n − 2q(k − 1).

Proof. Let q ≥ 2, and assume by induction that χ(SG2q−1

d,k ) = d − 2q−1(k − 1) for

d ≥ 2q−1k. Choosing s = 2q and t = 2q−1 in Theorem 1.3, we get that

χ(SG2q

n,k) ≥ n − 2q(k − 1) −
n/2 − ⌊n/2⌋

⌊n/2⌋
2q(k − 1)

for n ≥ 2qk. Now,

n/2 − ⌊n/2⌋

⌊n/2⌋
2q(k − 1) =

{

0 if n is even,
2q(k−1)

n−1 if n is odd,

which is strictly less than 1 in both cases; n ≥ 2qk. By Proposition 1.2, we are
done. �

Corollary 1.6. Let s ≥ 4 be a real number, and let q = ⌊log2(s/2)⌋. Whenever

n ≥ ks and k ≥ 2, we have that

χ(SGs
n,k) ≥ n − s(k − 1) −

2qn/s − ⌊2qn/s⌋

⌊2qn/s⌋
s(k − 1).

In particular, for each real number s ≥ 4 and each integer k ≥ 2, we have that

χ(SGs
n,k) = ⌈n − s(k − 1)⌉

whenever

n ≥ max
{ s

2qǫ
(s(k − 1) + ǫ), ks

}

,

where ǫ = ⌊s(k − 1) + 1⌋ − s(k − 1).
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Proof. We obtain the first statement of the corollary by choosing t = 2q in Theo-
rem 1.3 and applying Corollary 1.5 with n′ = ⌊2qn/s⌋ instead of n. Corollary 1.5
does apply, because

n′ ≥ ⌊2q(ks)/s⌋ = ⌊2qk⌋ = 2qk.

For the last statement, note that χ(SGs
n,k) = ⌈n − s(k − 1)⌉ as soon as

(3)
2qn/s − ⌊2qn/s⌋

⌊2qn/s⌋
s(k − 1) < ǫ.

Since ⌊2qn/s⌋ > 2qn/s − 1, we obtain that (3) is true as soon as

1

2qn/s − 1
s(k − 1) ≤ ǫ ⇐⇒ n ≥

s

2qǫ
(s(k − 1) + ǫ).

This concludes the proof. �

As a side remark, note that ǫ = 1 whenever s(k − 1) is an integer.
The restriction s ≥ 4 in Corollary 1.6 is because of the restriction t ≤ s/2 in

Theorem 1.3. For 2 < s < 4, very little seems to be known. Using computer,
Meunier [5] has established Conjecture 1.1 for (r, s) = (2, 3) in the case that n ≤
2k + 5 and also in the case that (n, k) = (14, 4).

1.2. Some remarks. Theorem 1.3 does not remain true in general if t is a non-
integer. For example, assume that t > 4 is a rational number such that t(k − 1)
is not an integer, and assume that s(k − 1) is an integer. Let n have the property
that d = tn/s is an integer. Choosing n, and hence d, large enough, Conjecture 1.1
is true for SGt

d,k; apply Corollary 1.6. We get that

χ(SGs
n,k)

n
−

χ(SGt
d,k)

d
≤

n − s(k − 1)

n
−

⌈d − t(k − 1)⌉

d

<
n − s(k − 1)

n
−

d − t(k − 1)

d

=
(k − 1)(nt − ds)

dn
= 0;

the second inequality is strict, as we assumed that t(k − 1) is not an integer.
Conjecture 1.1 (extended to real s) implies Theorem 1.3 for any s ≥ t ≥ 2 such

that t(k − 1) is an integer. Namely, assuming the conjecture is true for SGs
n,k, we

get that

χ(SGs
n,k)

n
−

χ(SGt
d,k)

d
≥

n − s(k − 1)

n
−

d − t(k − 1)

d
=

(k − 1)(nt − ds)

dn
≥ 0.

1.3. Hypergraphs. Let us also review the situation for hypergraphs. Throughout
this section, all parameters are integers. Again using topological methods, Alon,
Frankl, and Lovász [2] extended the result of Lovász [4] to Kneser hypergraphs,
proving that

χ(r)(KGn,k) =

⌈

n − r(k − 1)

r − 1

⌉

whenever k ≥ 2, r ≥ 2, and n ≥ kr. Regarding stable Kneser hypergraphs, Alon,
Drewnowski, and  Luczak [1] managed to settle Conjecture 1.1 in the particular case
that r = s = 2q for some integer q.
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Theorem 1.7 (Alon, Drewnowski, and  Luczak [1]). Let q ≥ 1 and k ≥ 2. For

every n ≥ 2qk, we have that

χ(2q)(SG2q

n,k) =

⌈

n − 2q(k − 1)

2q − 1

⌉

.

Meunier [5] proved the following result, extending a similar result due to Alon,
Drewnowski, and  Luczak [1].

Theorem 1.8 (Meunier [5]). Suppose that the following hold for given parameters

r1 ≥ 2 and s2 ≥ r2 ≥ 2.

• Conjecture 1.1 is true for (r, s) = (r1, r1) and all n and k such that n ≥ kr1

and k ≥ 2.
• Conjecture 1.1 is true for (r, s) = (r2, s2) and all n and k such that n ≥ ks2

and k ≥ 2.

Then Conjecture 1.1 is true for (r, s) = (r1r2, r1s2) and all n and k such that n ≥ ks
and k ≥ 2.

The following result is a consequence of Corollary 1.5, Theorem 1.7, and Theo-
rem 1.8.

Corollary 1.9. Let p and q be any positive integers such that p ≤ q, and let k ≥ 2.
Then

χ(2p)(SG2q

n,k) =

⌈

n − 2q(k − 1)

2p − 1

⌉

.

for n ≥ 2qk.

Proof. The case p = 1 is Corollary 1.5. For p ≥ 2, use Theorem 1.8 with r1 = 2p−1

and (r2, s2) = (2, 2q−p+1); apply Theorem 1.7 and Corollary 1.5. �

2. Proof of Theorem 1.3

Let s ≥ 4 be a real number, and let t be an integer such that 2 ≤ t ≤ s/2. For a
given integer n, write d = ⌊tn/s⌋. Let

S =
{

⌊in/d⌋ : 0 ≤ i ≤ d − 1
}

⊆ Zn.

Lemma 2.1. If a set A ⊆ S is t-sparse in S, then A is s-sparse in Zn. In particular,

SGs
n,k contains SGt

S,k as a subgraph.

Proof. Assume that A is t-sparse in S. Consider an element a0 ∈ Z such that
a0 ∈ A. For m ≥ 1, write am = σm(a0; A). We want to prove that

am − a0 ≥ ⌊ms⌋.

We have that am = σℓ(a0; S) for some ℓ > 0. By assumption,

ℓ ≥ mt.

Now, a0 = ⌊in/d⌋ for some i, and am = ⌊jn/d⌋ for some j, which means that
ℓ = j − i. We get that

am − a0 =

⌊

jn

d

⌋

−

⌊

in

d

⌋

≥

⌊

jn

d
−

in

d

⌋

=

⌊

ℓn

d

⌋

≥

⌊

mtn

tn/s

⌋

= ⌊ms⌋ ,

which concludes the proof. �
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Let Sg = S − g for g ∈ Zn. Define a graph G(n, S) with vertex set Zn and with
an edge between g and h whenever Sg ∩ Sh = ∅. While not useful in what follows,

one may observe that G(n, S) ∼= SG
n/d
n,d ; this is because S and its translates are the

only (n/d)-sparse d-subsets of Zn.
A vertex set I in a graph G is independent if no two vertices in I are adjacent

in G. The independence number of G is the greatest value a such that there is an
independent set in G of size a.

Lemma 2.2. The independence number of G(n, S) is d.

Proof. Let I be an independent set in G(n, S). By cyclic symmetry, we may assume
that 0 ∈ I. Suppose that p ∈ I. Then S0 ∩Sp 6= ∅, which is true if and only if there
are i and j such that

⌊in/d⌋ = ⌊jn/d⌋ − p ⇐⇒ p = ⌊jn/d⌋ − ⌊in/d⌋.

This implies that

p = ⌊(j − i)n/d⌋ or p = ⌊(j − i)n/d⌋ + 1.

We conclude that
I ⊆ {g, g + 1 : g ∈ S}.

Now, n/d ≥ s/t ≥ 2, which implies that Sg ∩ Sg+1 = ∅. In particular, at most one

of g and g + 1 belongs to I for each g ∈ S; hence |I| ≤ |S| = d.
To see that the independence number is d, note that the set S forms an inde-

pendent set in G(n, S); Sg contains the element 0 for each g ∈ S. �

Proof of Theorem 1.3. Consider a proper coloring of SGs
n,k with χ(SGs

n,k) colors.
For each color i, let Ci denote the set of elements g ∈ Zn such that some vertex
of SGt

Sg,k is given the color i. By Lemma 2.1, SGt
Sg,k is contained in SGs

n,k, which
implies that

(4)
∑

i

|Ci| ≥
∑

g∈Zn

χ(SGt
Sg,k) = n · χ(SGt

S,k).

Now, each Ci is an independent set in the graph G(n, S), because the coloring is
proper. By Lemma 2.2, we get that |Ci| ≤ d, which yields that

(5)
∑

i

|Ci| ≤ d · χ(SGs
n,k).

Combining (4) and (5), we obtain the theorem. �

2.1. Remark. In the proof of Theorem 1.3, we considered the n subgraphs SGt
Sg,k

of the graph SGs
n,k. We defined a graph G(n, S) and observed that

∑

g∈Zn

χ(SGt
Sg,k) ≤ α(G(n, S)) · χ(SGs

n,k),

where α(G(n, S)) denotes the independence number of G(n, S). This is a special
case of a more general fact, which we state for completeness.

Let H = (V, E) be a graph, and let V1, . . . , Vn be subsets of V . Define a graph G
with vertex set {1, . . . , n} and with an edge between i and j whenever the complete
bipartite graph with blocks Vi and Vj is a subgraph of H . Then

n
∑

i=1

χ(H [Vi]) ≤ α(G) · χ(H),
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where H [Vi] is the induced subgraph of H on the vertex set Vi.
To see this, consider an optimal coloring of H . For each color i, let Ci be the

set of indices j such that some vertex in Vj is given the color i. As in the proof of
Theorem 1.3, we deduce that

∑

i

|Ci| ≥ n · χ(H [Vi]).

Moreover, each Ci is an independent set in G. Namely, if a and b are adjacent in
G, then all x ∈ Va are adjacent to all y ∈ Vb. We conclude that

∑

i

|Ci| ≤ α(G) · χ(H).
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