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Abstract

The independence complex of a (finite) simple graph is the abstract
simplicial complex consisting of all independent vertex sets in the graph.
We show that the possible homotopy types of independence complexes of
bipartite graphs are exactly those of suspensions of simplicial complexes.
As a consequence, there exist bipartite graphs such that the integral ho-
mology of the associated independence complexes is not free. This answers
a question by Engström. The smallest such bipartite graph found so far
has 16 vertices and 30 edges.

Note. It has come to my attention that Uwe Nagel and Victor Reiner [8]
published a proof of the main result of the present manuscript before I even
started on the project. For this reason, I will not publish this manuscript.

1 Introduction

Throughout this note, we assume that all graphs and abstract simplicial com-
plexes are finite. Whenever we talk about the topology of an abstract simplicial
complex, we mean the topology of any geometric realization of the complex. By
convention, we include the empty set in any simplicial complex.

For a graph G with vertex set V (always assumed to be nonempty), let IG
denote the independence complex of G. More precisely, IG is the simplicial
complex on the vertex set V with the property that a set σ ⊆ V is a face of IG
if and only if there are no edges in G between the vertices in σ.

It is well-known that any simplicial complex is homotopy equivalent, even
homeomorphic, to IG for some graph G. Namely, any complex is homeomorphic
to its barycentric subdivision, and it is easy to see that any such subdivision is
the independence complex of a graph. In this note, we put restrictions on the
lengths of the cycles of G. The following theorem is the main result and deals
with the case that G is bipartite, which is equivalent to saying that G does not
contain any cycles of odd length.
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Theorem 1 A simplicial complex ∆ is homotopy equivalent to IG for some

bipartite graph G if and only if ∆ is homotopy equivalent to the suspension of

some simplicial complex.

Here, the suspension of a simplicial complex Γ is defined as

Susp(Γ) = {σ, σ ∪ {x}, σ ∪ {y} : σ ∈ Γ},

where x and y are two new vertices not appearing in Γ. Writing Susp(Γ) as
a union of two cones and applying the appropriate Mayer-Vietoris sequence [7,
§25], one readily verifies that

H̃i(Susp(Γ);Z) ∼= H̃i−1(Γ;Z)

for i ≥ 0, where H̃i(Γ;Z) is the reduced simplicial homology in degree i of Γ.
In particular, Theorem 1 implies the following fact: For every finite sequence
(A2, . . . , An) of finitely generated abelian groups, there is a bipartite graph G
such that H̃i(IG;Z) is isomorphic to Ai for 2 ≤ i ≤ n. This answers a question
by Engström [3, §1.4], who asked whether there exist triangle-free graphsG such
that the homology of IG contains torsion (nonzero elements of finite order). To
the author’s knowledge, there is no previously known method for constructing
triangle-free graphs equipped with such torsion.

Barmak [1] recently extended Theorem 1 to triangle-free graphs, showing
that the independence complex of a triangle-free graph is always homotopy
equivalent to a suspension.

We also consider restrictions on the girth of a graph, i.e., the shortest length
of a cycle in the graph. By convention, the girth of a forest is +∞.

Theorem 2 For every simplicial complex Γ and every g ≥ 3, there is an integer

k ≥ 0 and a graph G with girth at least g such that IG ≃ Suspk(Γ).

An interesting problem is to compute the minimum value of k in Theorem 2
for various Γ and g. For g = 3, we may always pick k = 0, because every
simplicial complex is homotopy equivalent to some independence complex. For
g = 4, Theorem 1 implies that we may pick k = 1; hence the minimum value
of k is 0 or 1. For g ≥ 5, the problem remains open. In fact, we do not even
know whether there exists an integer K(g) such that the minimum value of k
in Theorem 2 is at most K(g) for every simplicial complex Γ.

Another possibility is to restrict to planar graphs. By a recent result due
to Skwarski [9], for every simplicial complex Γ, there is an integer k ≥ 0 and a
planar graph G such that IG ≃ Suspk(Γ).

2 Some useful topological facts

We will need a few facts from simplicial topology.

Lemma 2.1 Let Γ be a contractible simplicial complex, and let ∆ be a subcom-

plex of Γ. Then Γ/∆ is homotopy equivalent to the suspension of ∆.
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For a proof, see Jonsson [6, Lemma 3.18].

Lemma 2.2 Let Γ be a simplicial complex, and let ∆ be a contractible subcom-

plex of Γ. Then Γ/∆ and Γ are homotopy equivalent.

For a proof, see Hatcher [4, Prop. 0.17].
An (order-preserving) poset map between two partially ordered sets P =

(X,≤P ) and Q = (Y,≤Q) is a function f : X → Y such that f(x) ≤Q f(y)
whenever x ≤P y. For simplicity, we will write f : P → Q. We identify a
simplicial complex ∆ with the partially ordered set (∆,⊆).

A simplicial complex ∆ is obtained from another simplicial complex ∆′ via
an elementary collapse if ∆′ \∆ = {σ, τ} and σ $ τ . This means that τ is the
only face in ∆′ properly containing σ. Elementary collapses are well-known to
preserve homotopy type. See Cohen [2] for more information about elementary
collapses. If we can obtain ∆ from ∆′ via a sequence of elementary collapses,
then we say that we may collapse ∆′ to ∆. If ∆′ can be collapsed to a 0-simplex
{∅, {v}}, then ∆′ is collapsible.

The following result is a special case of a technical lemma in discrete Morse
theory [5, Lemma 4.1] [6, Lemma 4.2].

Lemma 2.3 Let ∆ be a simplicial complex, and let f : ∆ → Q be a poset map,

where Q is an arbitrary finite poset. For each q in Q, suppose that there is a

vertex x = x(q) in ∆ such that σ \ {x} ∈ f−1(q) if and only if σ∪{x} ∈ f−1(q).
Then ∆ is collapsible and hence contractible.

Proof. We give a self-contained proof, using double induction on the sizes of
∆ and Q. Pick a maximal element q in Q. If f−1(q) is empty, then we may
redefine f as a map from ∆ to Q \ {q}. By induction on the size of Q, we have
that ∆ is collapsible.

Assume that f−1(q) is nonempty. By assumption, there is an element x such
that σ \ {x} ∈ f−1(q) if and only if σ ∪ {x} ∈ f−1(q). Pick a maximal set τ in
f−1(q). Since f is a poset map, τ is a maximal face of ∆. Moreover, x belongs
to τ , and τ \ {x} belongs to f−1(q). In addition, τ is the only maximal face of
∆ that contains τ \ {x}. Namely, by maximality of q, any face of ∆ containing
τ \ {x} is contained in f−1(q). If y /∈ τ is such that (τ \ {x}) ∪ {y} belongs to
f−1(q), then ((τ \ {x}) ∪ {y}) ∪ {x} = τ ∪ {y} also belongs to f−1(q), which
contradicts the maximality of τ .

To conclude, either τ = {x} and hence ∆ = {∅, {x}}, in which case ∆ is
collapsible by definition, or we may collapse ∆ to ∆0 = ∆ \ {τ \ {x}, τ}. In the
latter case, the restriction of f to ∆0 is a poset map with properties as in the
lemma; hence induction yields that ∆0 is collapsible. As a consequence, ∆ is
collapsible as well. �

3 Bipartite graphs

Let G be a bipartite graph with nonempty parts V and W . Let ΓG,V ⊆ 2V be
the simplicial complex defined in the following manner:
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• A set σ ⊆ V belongs to ΓG,V if and only if there is a vertex w ∈ W such
that σ ∪ {w} is an independent set in G.

Equivalently, σ ⊆ V is not a face of ΓG,V if and only if σ covers W , meaning
that each w ∈ W is adjacent to some v ∈ V . Since W 6= ∅, we have that ΓG,V

contains the empty set.

Theorem 3.1 Let G be a bipartite graph with nonempty parts V and W . Then

IG ≃ Susp(ΓG,V ).

Proof. For each subset σ of V , let ∆σ be the subfamily of IG consisting of all
faces τ such that τ ∩ V = σ. Write Γ = ΓG,V . Define Σ to be the union of all
∆σ such that σ ∈ Γ; note that Σ is a subcomplex of IG. By definition of Γ,
σ /∈ Γ if and only if ∆σ = {σ}. In particular,

IG/Σ = 2V /Γ ≃ Susp(Γ);

for the homotopy equivalence, use Lemma 2.1. It remains to prove that Σ is
contractible. This will imply the desired result, because then IG/Σ ≃ IG by
Lemma 2.2.

Now, note that we obtain a poset map f : Σ → Γ by defining f−1(σ) = ∆σ.
Look at an individual subfamily ∆σ such that σ ∈ Γ. Let w = w(σ) ∈ W be
such that σ ∪ {w} is independent. We have that τ \ {w} belongs to ∆σ if and
only if τ ∪ {w} belongs to ∆σ. In particular, the conditions of Lemma 2.3 are
satisfied, which implies that Σ is collapsible and hence contractible. �

Theorem 3.2 Let Γ be a simplicial complex. Then there is a bipartite graph G
such that IG ≃ Susp(Γ).

Proof. Let V be the vertex set of Γ; add a vertex if Γ is the empty complex.
We define the graph G in the following manner. Let the vertex set of G be the
disjoint union of V and M(Γ), where M(Γ) is the set of maximal faces of Γ.
Hence, starting with the vertex set V of Γ, we add a new vertex for each maximal
face of Γ. The edges of G are all pairs {v, µ} such that v ∈ V , µ ∈ M(Γ) and
v /∈ µ. For subsets σ ⊆ V and A ⊆ M(Γ), note that σ ∪A is a face of IG if and
only if σ ⊆ µ for every µ ∈ A.

By Theorem 3.1, it suffices to prove that Γ = ΓG,V . To obtain this, consider
a set σ ⊆ V . The set σ being a face of Γ is equivalent to saying that there is a
maximal face µ ∈ M(Γ) such that σ ⊆ µ. This in turn is equivalent to saying
that there is a µ ∈ M(Γ) such that σ ∪ {µ} is an independent set in G, which
is equivalent to σ being a face of ΓG,V . �

Combining Theorems 3.1 and 3.2, we obtain Theorem 1.

Corollary 3.3 Let (A0, A1, A2, . . .) be a sequence of finitely generated Abelian

groups such that Ai = 0 for all sufficiently large i. There is a bipartite graph G
with nonempty parts such that H̃i(IG;Z) ∼= Ai for i ≥ 0 if and only if either A0

is zero and A1 is free or A0
∼= Z and Ai = 0 for i ≥ 1.
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Proof. Shifting the indices one step down, we get a characterization of all
possible sequences of homology groups for a nonempty finite simplicial complex.
By Theorem 1, we are done. �
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Figure 1: The bipartite graph G1 obtained from the six-vertex triangulation of
the projective plane RP2 via the procedure in the proof of Theorem 3.2. Vertices
with the same label are the same.

The most important consequence is that there are bipartite graphs G such
that the homology of IG contains arbitrarily complicated torsion. The smallest
simplicial complex with torsion in its homology is the six-vertex triangulation
of the projective plane RP2; the maximal faces of this complex are

{012, 123, 234, 034, 014, 025, 245, 145, 135, 035}.

Using the proof of Theorem 3.2, we obtain that IG1 ≃ Susp(RP2), where G1 is
the bipartite graph in Figure 1. In particular, H̃2(IG1 ;Z) ∼= Z2. Note that G1

consists of 16 vertices and 30 edges. We are not aware of any bipartite graph G
with fewer vertices such that the homology of IG contains torsion. It might be
worth mentioning that the f -vector of IG1 is

(1, 16, 90, 230, 310, 288, 217, 120, 45, 10, 1)

One may compare to the graphG2 in Figure 2. This graph has eleven vertices
and 25 edges, and the associated independence complex IG2 is a triangulation
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Figure 2: On the left a graph G2 on eleven vertices such that the independence
complex IG2 is a triangulation of the projective plane RP2. On the right a
geometric realization of IG2 .

of RP2. In particular, H̃1(IG2)
∼= Z2. Note that G2 contains triangles and also

cycles of length five. The f -vector of IG2 is (1, 11, 30, 20).

4 On graphs with a certain girth

For a graph G, let g(G) denote the girth of G, i.e., the shortest length of a cycle
in G. We have not been able to find a characterization of possible homology
groups of IG for graphs G with a certain girth, but we have some partial results.

Lemma 4.1 Let G be a graph such that there are κ distinct cycles of length

g(G) in G. Then there is a graph G′ satisfying

IG′ ≃ Susp(IG)

such that g(G′) ≥ g(G) and such that there are at most κ− 1 distinct cycles of

length g(G) in G′.

a b
r s t

G

a b
s t

H1

a b
r s t

H2

a b
r s t

G′

Figure 3: The graphs G, H1, H2, and G′ in the proof of Lemma 4.1.
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Proof. Let a and b be any adjacent vertices in G such that there is a cycle of
length g(G) in G containing the edge ab = {a, b}. Form a new graph H1 from
G by adding the vertices s and t and the edge st. Form another new graph H2

from G by adding three new vertices r, s and t and the four edges ar, rs, st, tb.
Finally, let G′ be the graph obtained from H1 by removing the edge ab.

The process of replacing the edge ab with the sequence of edges (ar, rs, st, tb)
corresponds to replacing every cycle in G containing ab with a new cycle con-
taining three more vertices. Since there is at least one such cycle of length g in
G, and since there are no cycles of length less than g, the number of cycles of
length g in G′ is strictly less than κ.

Note that
IH2 ≃ IG′ .

Namely, we obtain a collapse from IG′ to IH2 by collapsing all pairs of the form
(σ ∪ {a, b}, σ ∪ {a, b, s}), where σ ∩ {a, b, r, s, t} = ∅. Moreover, by construction
we have that

Susp(IG) = IH1 .

In particular, it remains to prove that

IH1 ≃ IH2 . (1)

First, consider H1. Let ∆1 be the subcomplex of IH1 generated by all faces
containing t but not containing a. It is clear that IH1/∆1 consists of all faces
σ ∈ IH1 such that σ ∩ {a, b, r, s, t} ∈ {{a}, {a, s}, {a, t}, {s}, {b, s}}.

Next, consider H2. Let ∆2 be the subcomplex of IH2 generated by all faces
containing r. This time, IH2/∆2 consists of all faces σ ∈ IH2 such that σ ∩
{a, b, r, s, t} ∈ {{a}, {a, s}, {a, t}, {s}, {b, s}}.

Since H1 \ {s, t} and H2 \ {r, s, t} are identical, and since there are no edges
from {r, s, t} to any vertex outside {a, b, r, s, t}, the conclusion is that

IH1/∆1 = IH2/∆2.

Since ∆1 and ∆2 are cones, they are both collapsible. By Lemma 2.2, this
implies (1). �

Theorem 4.2 Let g ≥ 3. For every simplicial complex Γ, there is an integer

k ≥ 0 and a graph G such that g(G) ≥ g and IG ≃ Suspk(Γ).

Proof. Taking the barycentric subdivision of Γ, we obtain that the theorem is
true for g = 3; we may pick k = 0. Assume that g > 3, and assume by induction
that there is a graph G such that g(G) ≥ g − 1 and

IG ≃ Suspk0(Γ)

for some k0 ≥ 0. As in Lemma 4.1, let κ be the number of cycles of length g− 1
in G. If κ = 0, then g(G) ≥ g, and we are done. Otherwise, use Lemma 4.1 to
deduce that there is a graph G(1) satisfying

IG(1) ≃ Susp(IG)
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such that g(G(1)) ≥ g − 1 and such that there are at most κ− 1 distinct cycles
of length g − 1 in G(1). Applying the same lemma to G(1), we obtain a graph
G(2) satisfying

IG(2) ≃ Susp(IG(1)) ≃ Susp2(IG)

with the same properties as G(1), except that the number of distinct cycles of
length g − 1 is strictly smaller. Repeating this procedure, we finally arrive at a
graph G(r) with no cycles of length less than g such that

IG(r) ≃ Suspr(IG) ∼= Suspk0+r(Γ).

�
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