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Abstract

Given a set of n points in the plane in general and convex position, let

Ωn be the set of closed line segments joining pairs of elements in the point

set. Let Dn be the graph whose vertex set is Ωn, where two line segments

are adjacent if and only if they are disjoint. In a more general setting,

Araujo, Dumitrescu, Hurtado, Noy, and Urrutia introduced the problem

of determining the chromatic number of Dn. Fabila-Monroy and Wood

showed that a lower bound is given by n − ⌊
√

2n+ 1

4
− 1

2
⌋. The main

result of the present note is that the chromatic number actually equals

this lower bound. The proof is constructive.

1 Introduction

Let n ≥ 3, and consider a convex n-gon Pn. Label the corners of Pn with the
integers 1, . . . , n in clockwise order. Define

Ωn = {ij : 1 ≤ i < j ≤ n}.

To each element ij in Ωn, we associate the closed line segment si,j between the
corners in Pn labelled i and j. We define Dn to be the graph on the vertex set
Ωn with the property that two vertices ij and kℓ are adjacent if and only if the
corresponding line segments si,j and sk,ℓ are disjoint.

The chromatic number of Dn has been studied by several authors [1, 2, 3].
The previous best known bounds are

n−
√

2n+ 1

4
+ 1

2
≤ χ(Dn) ≤ n−

√

1

2
n− 1

2
(lnn) + 4. (1)

Dujmović and Wood [2] established the upper bound, and Fabila-Monroy and
Wood [3] established the lower bound, improving earlier weaker bounds due to
Araujo et al. [1]. The main result of this note is that the chromatic number is
in fact given by the lower bound (rounded up to the nearest integer).
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Theorem 1.1 For n ≥ 3, we have that

χ(Dn) = n−

⌊

√

2n+ 1

4
− 1

2

⌋

.

An equivalent formulation is that

χ(Dn) = n− k,

where k is the unique integer satisfying
(

k+1

2

)

≤ n <
(

k+2

2

)

.
The proof of Theorem 1.1 is given by an explicit coloring, which we describe

in Section 3.

2 Illustrating the graph with a diagram
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Figure 1: On the left the vertex set Ω10 of D10 represented as a polyomino.
On the right a maximal independent set in D10 represented as a path in the
corresponding polyomino.

A polyomino is a finite subset of Z2. For later convenience, we adopt the
matrix convention for indexing rows and columns in Z

2; row a is just below row
a− 1, column b is just to the right of column b− 1, and ab refers to the lattice
point in row a and column b. We identify the vertex ab with the corresponding
lattice point, which we represent as a unit square in figures. In this manner, we
may represent Ωn as a triangle-shaped polyomino as illustrated on the left in
Figure 1.

Now, two distinct vertices ab and cd in Dn are joined by an edge if and only
if a ≤ c ≤ b ≤ d or c ≤ a ≤ d ≤ b. In particular, for ab and cd to be nonadjacent,
we must have that cd lies in the nonshaded region in Figure 2. Specifically, cd
cannot be strictly southwest or strictly northeast of ab. Moreover, we must have
that max{a, c} ≤ min{b, d}.
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Figure 2: An element (c, d) is adjacent to (a, b) (marked with a thick circle) in
the graph Dn if and only if (c, d) belongs to one of the shaded regions.

We conclude that any independent set σ ofDn is a subset of some rectangle of
the form [1, r]× [r, n] (with the southwest corner rr removed). Namely, choose
ab, cd ∈ σ such that a is maximal and d is minimal. Then a′ ≤ a ≤ d ≤ b′

for each a′b′ ∈ σ. In fact, it is straightforward to show that each maximal
independent set forms a path from 1r to rn for some r ∈ {2, . . . , n− 1}, where
each step in the path is of the form ij → i(j + 1) or ij → (i+ 1)j. An example
is given on the right in Figure 1. Conversely, every such path is a maximal
independent set. We refer to such a path as a thrackle path; the corresponding
set of line segments forms what is called a maximal thrackle [3].

To summarize, the chromatic number ofDn is given by the minimum number
of thrackle paths required to cover Ωn. In Figure 3, we show that it is possible
to cover Ω15 with ten thrackle paths. As a consequence, χ(D15) ≤ 10. Indeed,
we have equality by the lower bound (1) due to Fabila-Monroy and Wood [3].
The given set of thrackle paths in Figure 3 is the one obtained from our proof
of Theorem 1.1 given in Section 3. The paths are chosen in a greedy manner in
the sense that we select each new path to be as far to the southwest as possible,
while maintaining that each turn of the path should appear in an empty square.

Our proof requires that we analyze certain induced subgraphs of Dn. For
r ≤ n, let Dn,r be the induced subgraph of Dn obtained by removing all vertices
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Figure 3: Ten thrackle paths covering Ω15. Note that the first three paths cover
Ω6 and that the first six paths cover Ω10.

ij such that j ≤ r; the vertex set of Dn,r is

Ωn,r = Ωn \ Ωr

= [1, r]× [r + 1, n] ∪ {(i, j) : r + 1 ≤ i < j ≤ n},

Note that Dn,1 = Dn.

3 Proof of the main result

To prove Theorem 1.1, it suffices to prove that there is a coloring of Dn with

f(n) = n −
⌊
√

2n+ 1

4
− 1

2

⌋

colors. By the discussion in Section 2, this is

equivalent to covering Ωn with f(n) thrackle paths.

Lemma 3.1 For r ≥ 1 and n ≥ 2r+1, we have that χ(Dn,r) ≤ χ(Dn−r,r+1)+r.

Proof. For r + 1 ≤ j ≤ 2r, let

Aj = [1, 2r − j + 1]× {j} ∪ [2r − j + 1, j]× {j + 1} ∪ {j} × [j + 2, n].

Each Aj is a thrackle path, and the union U = Ar+1 ∪ · · · ∪A2r is equal to the
complement in Ωn,r of the set

W = [1, r]× [2r + 2, n] ∪ {(i, j) : 2r + 1 ≤ i < j ≤ n}.
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Figure 4: Six thrackle paths leaving only the shaded part W of Ω18,6 uncovered.
After applying the relabeling i 7→ i−6 to the higher-valued vertices as illustrated
on the right, we may identify W with Ω18−6,6+1 = Ω12,7.

See Figure 4 for an illustration.
Applying the relabelling i 7→ i − r for 2r + 1 ≤ i ≤ n, we obtain that the

induced subgraph of Dn,r on the vertex set W is isomorphic to the induced
subgraph on the vertex set

[1, r]× [r + 2, n− r] ∪ {(i, j) : r + 1 ≤ i < j ≤ n− r}

= [1, r + 1]× [r + 2, n− r] ∪ {(i, j) : r + 2 ≤ i < j ≤ n− r},

which is Ωn−r,r+1.
By construction, we can color the region U with r colors and the region W

with χ(Dn−r,r+1) colors, which concludes the proof. �

Lemma 3.2 For 1 ≤ k ≤ n ≤ 2k, we have that χ(Dn,k) = n− k.

Proof. The elements (1, n), (2, n − 1), . . . , (n − k, k + 1) form a clique; hence
χ(Dn,k) ≥ n− k.

It remains to show that χ(Dn,k) ≤ n − k. The construction is very similar
to that in the proof of Lemma 3.1. For k + 1 ≤ j ≤ n− 1, again let

Aj = [1, 2k − j + 1]× {j} ∪ [2k − j + 1, j]× {j + 1} ∪ {j} × [j + 2, n].
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Figure 5: Six thrackle paths almost covering Ω15,8; we need a seventh path to
cover the two shaded squares (1, 15) and (2, 15) in the upper right corner.

Moreover, define
An = [1, n− 1]× {n}.

Each Aj forms an independent set in Dn,k, and the union Ak+1∪Ak+2∪· · ·∪An

equals the vertex set of Dn,k. See Figure 5 for an illustration. As a consequence,
we indeed have that χ(Dn,k) ≤ n− k. �

Theorem 3.3 For n ≥ r, we have that

χ(Dn,r) = n−

⌊

√

2n+ r(r − 1) + 1

4
− 1

2

⌋

.

Proof. Define dr,r = 0 and

dr,m = dr,m−1 + (m− 1) =
(r +m− 1)(m− r)

2

for m > r. By Lemma 3.1, we have that

χ(Dn,r) ≤ χ(Dn−dr,m,m) + dr,m

whenever n− dr,m ≥ m. Let k ≥ r be maximal such that n− dr,k ≥ k; thus

n− dr,k+1 = n− dr,k − k < k + 1,
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which means that k ≤ n− dr,k ≤ 2k. Lemma 3.2 yields that

χ(Dn,r) ≤ χ(Dn−dr,k,k) + dr,k = n− dr,k − k + dr,k = n− k.

Now,

n ≥ dr,k + k =
(r + k − 1)(k − r)

2
+ k =

k2 + k − r(r − 1)

2
,

which yields that

k ≤
√

2n+ r(r − 1) + 1

4
− 1

2
.

By maximality of k, we obtain that

χ(Dn,r) ≤ n−

⌊

√

2n+ r(r − 1) + 1

4
− 1

2

⌋

.

To show that we indeed have equality, note that

χ(Dn,r) ≥ χ(Dn+d1,r
, 1)− d1,r

≥ n+ d1,r −
√

2(n+ d1,r) +
1

4
+ 1

2
− d1,r

= n−
√

2n+ r(r − 1) + 1

4
+ 1

2
.

Here, we apply the lower bound in (1) due to Fabila-Monroy and Wood [3]. �
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