FIVE-TORSION IN THE HOMOLOGY OF THE
MATCHING COMPLEX ON 14 VERTICES

JAKOB JONSSON

ABSTRACT. J. L. Andersen proved that there is 5-torsion in the
bottom nonvanishing homology group of the simplicial complex
of graphs of degree at most two on seven vertices. We use this
result to demonstrate that there is 5-torsion also in the bottom
nonvanishing homology group of the matching complex M4 on 14
vertices. Combining our observation with results due to Bouc and
to Shareshian and Wachs, we conclude that the case n = 14 is
exceptional; for all other n, the torsion subgroup of the bottom
nonvanishing homology group has exponent three or is zero. The
possibility remains that there is other torsion than 3-torsion in
higher-degree homology groups of M,, when n > 13 and n # 14.

This is a preprint version of a paper to appear in the Journal of Algebraic Combi-
natorics. The original publication will be available at www.springerlink.com.

1. INTRODUCTION

Throughout this note, by a graph we mean a finite graph with loops
allowed but with no multiple edges or multiple loops. The degree of
a vertex ¢ in a given graph G is the number of times ¢ appears as an
endpoint of an edge in G; thus a loop at ¢ (if present) is counted twice,
whereas other edges containing ¢ are counted once.

Given a family A of graphs on a fixed vertex set, we identify each
member of A with its edge set. In particular, if A is closed under
deletion of edges, then A is an abstract simplicial complex. Let n > 1
and let A = (A1,...,\,) be a sequence of nonnegative integers. We
define BDQ to be the simplicial complex of graphs on the vertex set
[n] :== {1,...,n} such that the degree of the vertex i is at most \;.
We write BDF := BD%*+*) and M,, := BD!: the latter complex is the
matching complex on n vertices.

The topology of M,, and related complexes has been subject to anal-
ysis in several theses [1, 7, 10, 12, 13, 15, 17] and papers [2, 3, 4, 5, 8,

Date: January 18, 2008.
Research supported by European Graduate Program “Combinatorics, Geometry,
and Computation”, DFG-GRK 588/2.
1



2 JAKOB JONSSON

9, 16, 19, 20, 22]; see Wachs [21] for an excellent survey and further
references.

The prime 3 is known to play a prominent part in the homology
of M,. Specifically, write v, = |2%52] = [25*]. By a result due
to Bjorner, Lovasz, Vredica, and Zivaljevi¢ [4], the reduced homol-
ogy group H;(M,;Z) is zero whenever i < 1,,. Bouc [5] showed that
ﬁyn(l\/ln;Z) & 7 whenever n = 3k + 1 > 7 and that lfL,n(Mn;Z) has
exponent dividing nine whenever n = 3k > 12. Shareshian and Wachs
extended and improved Bouc’s result:

Theorem 1.1 (Shareshian and Wachs [20]). H,,,(M,;Z) is an elemen-
tary 3-group for n € {7,10,12,13} and also for n > 15. The torsion
subgroup of ﬁ[,,n(Mn; 7) is again an elementary 3-group for n € {9,11}
and zero for n € {1,2,3,4,5,6,8}. For the remaining case n = 14,
I:_fyn(l\/ln; Z) is a finite group with nonvanishing 3-torsion.

To prove that the group H,, (M,;Z) is elementary for n = 0 (mod 3)
and n > 12 and for n = 2 (mod 3) and n > 17, Shareshian and
Wachs relied on a computer calculation of the group Hs(Mig;Z). The
existence of 3-torsion in the homology of Mg and M;; also relied on
such calculations. Unfortunately, attempts to stretch this computer
approach beyond n = 12 have failed; the size of M,, is too large for the
existing software to handle when n > 13. In particular, the structure
of the bottom nonvanishing homology group of My; has remained a
mystery.

For completeness, let us mention that there is 3-torsion also in higher-
degree homology groups [14]. More precisely, there is 3-torsion in
I:Id(l\/ln;Z) whenever v, < d < ”T_ﬁ. As a consequence, since there
is homology in degree [">2] but not above this degree [5], there is
3-torsion in almost all nonvanishing homology groups of M,,, the only
exceptions being the top degree L”T’Sj and possibly the degree "T’E’ just
below it for odd n. The homology in the latter degree is known to
contain 3-torsion for n € {7,9,11,13}; see Proposition 3.8 for the case
n = 13. A complete description of the homology groups of M,, is known
only for n < 12; see Table 1.

The appearance of 3-torsion being so prominent, it makes sense to
ask whether this is the only kind of torsion that appears in M,, for any
given n. Indeed, Babson, Bjorner, Linusson, Shareshian, and Welker
[3] asked this very question. Based on the overwhelming evidence pre-
sented in Theorem 1.1, Shareshian and Wachs [20] conjectured that
H,,,(Myy; Z) = Hy(My4; Z) is an elementary 3-group. Surprisingly, the
conjecture turns out to be false:
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Theorem 1.2. 15[4(M14;Z) is a finite group of exponent a multiple of
15.

Theorem 1.2 being just one specific example, the question of Bab-
son et al. remains unanswered in general; we do not know whether
there is other torsion than 3-torsion in the homology of other matching
complexes. See Section 4 for some discussion.

To prove Theorem 1.2, we use a result due to Andersen about the
homology of BD?:

Theorem 1.3 (Andersen [1]). We have that

H;(BD3;Z) = ¢ Z™ ifi=5;
0 otherwise.

Remark. We have verified Theorem 1.3 using the Homology computer
program [11].

Let &,, be the symmetric group on n elements. We relate Ander-
sen’s result to the homology of My, via a map 7* from }N[4(M14;Z)
to ﬁh(BD?;Z); this map is induced by the natural action on M4 by
the Young group (&,)”. Using a standard representation-theoretic ar-
gument, we construct an “inverse” ¢* of m* with the property that
7™ 0 @*(2) = [(6)7| - z for all z € H,(BD% Z). To conclude the proof,
one observes that ¢*(z) is nonzero unless the order of z divides the
order of (&,)7. Since the latter order is 128, the image under ¢* of any
nonzero element of order five is again a nonzero element of order five.

Using computer, we have also been able to deduce that there is 3-

torsion in the homology of }NI4(BD(72317); Z). where (2317) denotes the
sequence (2,2,2,1,1,1,1,1,1,1). An argument similar to the one above
yields that Hy(Mys;Z) contains 3-torsion. By the results of Bouc [5],
we already know that Hs(Ms; Z) = Zs.

For the sake of generality, we describe our simple representation-
theoretic construction in terms of an arbitrary finite group acting on
a chain complex of abelian groups; see Section 2. The particular case
that we are interested in is discussed in Section 3. In Section 4, we make
some remarks and discuss potential improvements and generalizations
of our result.

2. GROUP ACTIONS ON CHAIN COMPLEXES

We recall some elementary properties of group actions on chain com-
plexes; see Bredon [6] for a more thorough treatment. Let
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TABLE 1. The homology of M,, for n < 14; see Wachs
[21] for explanation of the parts that are not explained in
the present note. T} and 75 are nontrivial finite groups of
exponent a multiple of 3 and 15, respectively; see Propo-

sition 3.8 and Theorem 1.2.

H(My;Z) |i=0] 1 2 3 4 5
n=3| Z2 - - - _ _
4| z2 | - - . . -
50 - | z8 - - - -
6 - |z : : - -
7 - | Zs 720 . . §
] . . 7132 . _ _
9| - | - |ZBez® AN - -
10 _ _ Zg 21216 _ _
11 _ _ _ Z%S @ 71188 7,252 _
12 _ _ _ Zgﬁ Z12440 _
13 - _ _ ZB T & 7,24596 7,924
14 _ _ _ _ T2 Z138048

be a chain complex of abelian groups. Let GG be a group acting on C,
meaning the following for each k € Z:

e Every g € GG defines a degree-preserving automorphism on C.
e For every g,h € G and ¢ € Cy, we have that g(h(c)) = (gh)(c).
e For every g € G and ¢ € Cy, we have that Jx(g(c)) = g(9k(c)).

Let C¢ be the subgroup of C, generated by {c—g(c) : ¢ € Cy, g € G}
and let C be the corresponding chain complex. C% is indeed a chain
complex, because 9y(c — g(c)) = 0a(c) — g(d4(c)) € C§ , whenever
c € Cyq. Writing Cy/G = C,/CS, we obtain the quotient chain complex

84_1 8d—2

Oa+1 _Ga-t, Cd,Q/G Ga-2

C/G - 2 oG -2 0y /G

In particular, we have the following exact sequence of homology groups
for each d:

Hyq(C/G) — Hd(CG> — Hy4(C) L Hy(C/G) — Hd—l(CG)§

7 is the map induced by the natural projection map m; : Cy — Cy/G.
From now on, assume that G is finite. For an element ¢ € Cy, let
[c] denote the corresponding element in Cy/G; [¢] = ¢ + C¥. Define
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Oc(c) = > ,cq 9(c). Clearly, Og(c) = 0 for all ¢ € C% and Og com-
mutes with 9;. Let ¢4 : Cy/G — Cy4 be the homomorphism defined
by @a([c]) = Og(c). Since Og vanishes on C§, we have that g is
well-defined. Moreover, 0; 0 o4 = pgq_1 © Oy, because

9a(a(ld])) = 04(Oc(c)) = Oc(8a(c)) = ¢a-1([9a(c)]) = pa-1(a(lc])).
Let ¢} : Hy(C/G) — Hy(C) be the map induced by ¢g4; this is a
well-defined homomorphism by the above discussion.

Lemma 2.1. The kernel of ¢} has finite exponent dividing |G|. As
a consequence, if the torsion subgroup of Hy(C) has finite exponent e
(e = 1 if there is no torsion), then the exponent of the torsion subgroup

of Hy(C/G) is also finite and divides |G| - e.

Proof. Let ¢ € Hy(C). Since [¢}i([c])] = [Oclc)] = |G| - [¢] and 0 =
le-vi([c])] = e |G| - [¢], we are done. O

3. DETECTING 5-TORSION IN THE HOMOLOGY OF My,

Let A = (A, ..., \,) be a sequence of nonnegative integers summing
to N. Define &, to be the Young group &y, x --- x &,,. Write [N] as
a disjoint union |J;_, U; such that |U;| = A; for each i and let &), act
on U; in the natural manner for each . This yields an action of &) on
[N], and this action induces an action on the chain complex C(My). In
particular, we have the following result:

Lemma 3.1. Let ¢ : Hy(C(My)/G,) — Hy(My) be defined as in
Lemma 2.1. Then the kernel of ¢} has finite exponent dividing [[;_, A!.

Proof. This is an immediate consequence of Lemma 2.1. U

Let Ay be the subfamily of My consisting of all o such that there are
two distinct edges ab and cd in o with the property that {a,c} C U;
and {b,d} C U, for some i and j (possibly equal). Write I'y = My \ Aj;
this is a simplicial complex. Define x : [N] — [n] by ' ({i}) = U..
Extend k to I') by defining

k({aiby, ... a,:b.}) = {k(a1)k(br), ..., k(a.)k(b.)}.

Lemma 3.2. We have that k is a dimension-preserving surjective map
from Ty to BD).

Proof. To see that x is dimension-preserving, note that |k(o)| = |o|
whenever o belongs to I'y. Namely, there are no multiple edges or
multiple loops in x(c) by definition of T'y. Moreover, k(o) belongs to
BD?, because for each i € [n], the degree in x(0) of the vertex i equals
the sum of the degrees in o of all vertices in Uj; this is at most |U;| = ;.
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To prove surjectivity, use a simple induction argument over \; remove
one edge at a time from a given graph in BD. O

Lemma 3.3. For o,7 € Ty, we have that k(o) = k(7) if and only if
there is a g in &y such that g(o) = 7.

Proof. Clearly, k(o) = k(g(0)) for all o € I'y and g € &,. For the
other direction, write o = {a;b; : j € J} and 7 = {a} : j € J}, where
k(a;) = r(a;) and k(b;) = k(b)) for each j € J. Define g(a;) = a}
and g(b;) = b} for each j € J and extend g to a permutation on [N]
such that g(U;) = U; for each i € [n]. One easily checks that g has the
desired properties. O

For a set o, we let 0°" denote the oriented simplex corresponding to
o; fixing an order of the elements in o, this is well-defined. Given an
oriented simplex 0" = a1b; A - -+ A a,.b,, we define

k(o) = k(ay)k(by) A -+ A k(a,)k(b,),
thereby preserving orientation. Extend  linearly to a homomorphism
C(T)) — C(BDY).

Lemma 3.4. The map & : C(Ty)/Gx — C(BD)) defined as #([c]) =
k(c) is a chain complex isomorphism.

Proof. First of all, one easily checks that & is well-defined and com-
mutes with the boundary operator; for the former property, note that
k(0°") = k(g(c°")) for all g € &, and o € I'y. Moreover, £ is surjective,
because k is surjective by Lemma 3.2. Finally, to see that & is injective,
define p1 : C(BD}) — C(T'»)/S, as p(¢) = [c], where ¢ is any element
in C(Ty) such that s(c) = ¢; this is well-defined by Lemma 3.3. Since
o k(lc]) = u(k(c)) = [c], injectivity follows. O

Theorem 3.5. We have the chain complex isomorphism
C(My)/6, = C(BD;) ® C(A,)/G).
Proof. By Lemma 3.4, it suffices to prove that
C(My)/Gy =2 C(I))/6, @ C(A))/6,.

Clearly, the boundary in C(My)/&) of any element in C(T'y)/&y is
again an element in C(I'y)/&,, T'y being a subcomplex of My. It re-
mains to prove that [d(c”")] € C(Ay)/Gy for each o € A,. Write
0% = a1by AN asby A 7", where ay, ap € U; and by, by € U; for some ¢ and
j. We obtain that

8(O'OT) = ang AT — a1b1 AT + Clel VAN a2b2 VAN @(TOT).
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Since the group element (ag,as)(by,by) belongs to &, and transforms
a1by A T°" into asby A 79, it follows that

(9([007"]) = [albl VAN a2b2 A a(TOT)] s
which is indeed an element in C(A,)/G,. O

Remark. One may note that C(A,)/S, is a chain complex of elemen-
tary 2-groups. Namely, with notation as in the above proof, we have
that (a1, az2)(by,by) maps 6 = a1by A asbs A 7 to asbs A ajby A 77 =
—0°". As a consequence, [0°] = —[0°"|, which implies that 2[c°"] = 0.

Theorem 3.6. There is a homomorphism Hy(BD)) — Hy(My) such
that the kernel has finite exponent dividing [[;_, Al

Proof. This follows immediately from Lemma 3.1 and Theorem 3.5. [
Let us summarize the situation.

Corollary 3.7. We have a long exact sequence
——  HyC(My)®)  —— Hy(My) —— Hy(C(My)/6))

—— Hy 1 (Co(My)®) ——s

where

)

Hy(C(My)/6,) = Hy(BD)) & Hy(C(A))/S))
and ; has an “inverse” @Y satisfying 7o o5 = [1'_, Al -id. In partic-
ular, if [T, A is a unit in the underlying coefficient ring, then

Hy(My) = Hy(BD)) @ Hy(C(My)®).

For the final statement, note that C(Ay)/&, is zero if 2 is a unit in
the underlying coefficient ring or if A = (1,...,1).

Proof of Theorem 1.2. By Theorem 1.1, we already know that there
are elements of order three in ]:14(|\/|14; Z) and that the group is finite.
Applying Theorem 1.3, we obtain that the exponent of H(BD2;Z) is
five. Selecting A = (2,2,2,2,2,2,2) and noting that [[, \;! = 128 and
ged(5,128) = 1, we are done by Theorem 3.6. O

Let (2¢1%) denote the sequence consisting of a occurrences of the
value 2 and b occurrences of the value 1. One may try to obtain further
information about the homology of M4 by computing the homology of

2a114—2a

BDS47G ) for a < 6. The ideal, of course, would be to compute the
homology of My4 directly, but this appears to be beyond the capacity of
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TABLE 2. Torsion subgroup of ﬁi(BDia_l:ﬂa; Z) for n =

21+ 9.
a=0] 1|2 |3 ]|4|5]|6|7
n=3 0 - - - -l - -
5 0|0 |- |-1]-1]-]-
7| Zs O] OO - |-]-]-
9| z§ |Zs| 0 | OO |- |-]-
11 2 |Z3| 23| 0| 0 - -
13 ? ? |ZP | Zs | O -
5 ? 20?2 |21 ?2|Z|0] 0O

today’s (standard) computers. Using the computer program CHomP [18],
we managed to compute the Z,-homology of BDéQGlQ) for p € {2,3,5},
and the results suggest that H,(BDE );Z) =~ H,(BD%Z) = Zs. In
particular, it seems that we cannot gather any additional information

about the homology of M4 from that of BD?GIQ).
Via a calculation with the Homology computer program [11], we dis-
covered that

[:[4(BD§21219); Z) ~ Zéo D 26142.

By Theorem 3.6 and well-known properties of the rational homology
of My3 [5], this yields the following result:

Proposition 3.8. We have that Hy(Mys; Z) = T @® Z2*% where T is
a finite group containing Z3° as a subgroup.

See Tables 2 abmnd 3 for more information about torsion in the ho-
mology of BDzilb for small values of @ and b. The numerical data in

Table 2 suggests that the Sylow 3-subgroup of H, s /2(BDZ 7

is an elementary 3-group of rank ((7711:-%)_/12)'

4. REMARKS AND FURTHER DIRECTIONS

Using CHomP [18], we managed to compute a generator 4" for the
homology group H,(BD2;Z) = Zs;
v = ([12,45,23] + [12,23,34] + [12,34,15] + [12, 15, 33] + [12, 33, 45]
+[22,33,15] + [22, 15, 34] + [22, 34, 11] + [22, 11, 45] + [22, 45, 33]
+[11,23,45] + [11,34,23]) A (46 — 66) A (57 — 77);
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TABLE 3. Torsion subgroup of ﬁi(BDia_l:ﬂa; Z) for n =

21 + 6.
a=01] 1 2131415 6 | 7
n=2 0 0 - - - - - -
4 0 O[O0} -|-1- - -
6 0 O[O0 |0 -] - - -
8 0 O |0]O0|O0] - - -
10| Zs 0O l0O|O|O0]O - -
12 z3% |z°|Zs| 0] 0] 0 0 -
14 ? ? T | 7| Zs? | Zs

ab,cd,ef] = ab A cd A ef. Note that v/ = v/& 97y, where
(27

v = ([12,54,23] 4 [12,23,34] + [12,34,51] + [12,51, 33] 4 [12, 33, 54]
+ [22,33,51) 4 22,51, 34] + (22,34, 11] + [22, 11, 54] 4 (22, 54, 33]
+ [11,23,54] + [11,34,23]) A (46 — 66) A (75 — 77).

Here, 7 denotes the vertex i + 7, and the group action is given by the
partition {U; : i € [7]}, where U; = {i,7}. Since Hy(Myy;Z) is finite,
we conclude that v has finite exponent a multiple of five in ﬁ4(M14; 7).
Note that we may view ~ as the product of one cycle in ffg(Mg; Z) and
two cycles in Hy(Ms; Z) (defined on three disjoint vertex sets).

Another observation is that we have the following portion of the long
exact sequence for the pair (M4, My3):

1{]4(M13;Z) — ﬁ4(M14;Z) — @131{[3(“/'12;2);

see Bouc [5]. Since H3(Myy;Z) is an elementary 3-group by the data in
Table 1, this yields that there must be some element & in Hy(My3; Z)
such that ¢ is identical in ]:14(|\/|14; Z) to 7 or 3v. Obviously, the expo-
nent of § in FI4(M13; Z) is either infinite or a nonzero multiple of five;
we conjecture the former.

As mentioned in Section 1, we do not know whether there is 5-torsion
in the homology of M,, when n > 13 and n # 14. We would indeed
have such torsion for all even n > 16 if

(1) Hy(My; Z) = Hy(My, \ €5 2) @ Hy1(My5; Z)

for all even n > 16 and d = n/2 — 3. Here, e is the edge between n — 1
and n and M,, \ e is the complex obtained from M,, by removing the
0O-cell e. Using computer, we have verified (1) for all (n,d) such that
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n < 11 and d > 0. Note that (1) would follow if the sequence
0— HyM,\ &;Z) —— Hy(M;Z) —— Hy 1(M,_9;Z) — 0

turned out to be split exact. By the long exact sequence for the pair
(M,,, M,, \ e), the mid-portion of this sequence is indeed exact.
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