
A GPU-accelerated Jacobi preconditioner for

high-order fluid simulations

Author: Jacob Wahlgren <jacobwah@kth.se>

Supervisors: Niclas Jansson & Martin Karp

January 11, 2022

Abstract

Next-generation scientific software must take advantage of accelera-
tion to exploit emerging heterogeneous computing architectures. Neko is
a new computational fluid dynamics code in development at KTH. The
contributions of this work is to implement a GPU-accelerated Jacobi pre-
conditioner in Neko to decrease the time to solve the pressure equation,
and to compare the performance of different potential implementations on
a NVIDIA A100 GPU. We find that a natural kernel design without use
of shared memory performs the best. We conclude that on this device,
automatic caching performs better than explicit use of shared memory,
and that batching multiple computations in a single thread is not bene-
ficial. Additionally, there is no apparent cache penalty for not matching
execution blocks to geometric elements, allowing kernels to easily support
arbitrary polynomial degrees.

1 Introduction

Emerging heterogeneous architectures offer large gains in computing power over
conventional homogeneous architectures by the use of accelerators, but also
pose a challenge as they require a paradigm shift in how computing systems
are programmed. Fluid simulations are used in diverse fields such as mechani-
cal engineering, medicine and climate science but applications are often limited
by available computing capacity. Emerging heterogeneous computing systems,
using e.g. graphical processing units (GPUs), may provide a solution by of-
fering large computational capacity. However, codes must be adapted to use
heterogeneous accelerators.

The HPC group at KTH is developing the next-generation computational
fluid dynamics (CFD) solver Neko [2]. In the solver, the Poisson equation rep-
resenting the pressure field is the most computationally demanding. Without
a preconditioner it can take hundreds of iterations for the solver to converge.
Therefore it is important to use an efficient preconditioner, which can reduce
the number of iterations to the single digits. However, there is currently no

1

support for preconditioners in Neko’s GPU backend. The contributions in this
work are:

• A Jacobi preconditioner for the CUDA backend in Neko.

• An empirical performance evaluation of different kernel designs on the
NVIDIA A100 GPU.

2 Numerical method

The pressure u is given by Poisson’s equation.

∇2u = f (1)

To solve the equation for a given space and time interval, an approximate nu-
merical method is used.

2.1 Spectral element discretization

This section gives an overview of the spectral element method in the context of
solving the Poisson equation in a CFD application. A comprehensive explana-
tion of the method is available in [1, ch. 4].

We find an approximate solution u∗ by solving the following linear system.
The Laplacian ∇2 is represented by the stiffness matrix A, and the solution u∗

is a finite dimensional vector.
Au∗ = f (2)

A piecewise polynomial approximation space of hexahedral elements is used.
The polynomial degree p results in N = p+1 Gauss-Lobatto-Legendre quadra-
ture points in each spatial dimension. Thus there are EN3 degrees of freedom
(u∗ is a vector of EN3 components). In standard FEM, N is usually in the range
2-4, while in a high-order/spectral method N is usually around 8-12, achieving
greater accuracy for a given mesh.

In FEMwe can assembleA into a sparse representation requiringO(E(N3)2) =
O(EN6) memory. For higher-order polynomials that is not feasible. Instead we
use a matrix-free form (or factored representation) like below in (3). The local
stiffness matrix Ae describes the geometry of element e, where each component
represents one of the quadrature points. The tensor Ge consists of diagonal
matrices describing the mapping from e to the reference element ê, the cube
spanning [−1, 1]3. The tensor D consists of spatial derivative operators. Using
this matrix-free formulation reduces the memory usage for A to O(EN3).

Ae = DTGeD (3)

Let AL be the diagonal block matrix of each local stiffness matrix Ae. In a
parallel computation, each processor owns a subset of the elements and can
compute a part of AL independently.

AL = diag{A1, ..., AE} (4)

2

Neighbouring elements share some of the quadrature points. To ensure the
solution is continuous between different elements, we must ensure that the com-
ponents representing the same point in space have the same value. Therefore a
scatter-gather boolean matrix Q is applied to AL to finally construct the global
stiffness matrix A. This is the only step that requires communication between
parallel processors.

A = QTALQ (5)

Since Q is large it is not explicitly formed either. In fact, the computations are
always done in unassembled form. The solver only needs to compute matrix-
vector products like w = Ax, which corresponds to the following operation in
unassembled form.

w = Ax ⇐⇒ wL = QQTALxL (6)

2.2 Iterative method

To solve a large linear system such as (2), we use an iterative method. At a
high level, an iterative method generates successively improving approximate
solutions until the required precision (tolerance) has been reached. In Neko, a
Krylov subspace method such as the conjugate gradient method is used. The
error in the approximation is called the residual.

How fast an iterative method converges for some problem Ax = b is de-
pendent on the condition number of the problem. The condition number is a
measure of how sensitive a system is to a small change in its output, and thus
indicates how many iterations are required to reach a certain tolerance. To in-
crease the performance of an iterative solver, a preconditioner can be applied to
the system to reduce the condition number. Designing a good preconditioner is
a trade-off between how long it takes to compute the preconditioner and how
much it can reduce the condition number of the system.

Formally, the preconditioner M of a matrix A is a matrix such that the
condition number of M−1A is smaller than the condition number of A. For
efficient computation, finding the inverse M−1 should be fast (in the extreme
M = A and we have to solve the system to solve the system...).

Perhaps the simplest variant is the Jacobi preconditioner J = diag(A). It
is effective if the diagonal of A is dominant, i.e. much larger than other parts
of the matrix. Since J is a diagonal matrix the inverse can be computed very
efficiently.

(J−1)ii = (Jii)
−1 = (Aii)

−1 (7)

Let JL be the unassembled formulation of J , i.e. with duplicate values for
shared points. We construct JL by assembling diag(AL) and then applying the
gather-scatter operation QQT .

JL = QQTdiag(AL) (8)

3

The following closed form of de = diag(Ae) is used to compute the precondi-
tioner JL [1, eq. (4.4.13)].

deijk =

N∑
l=0

[
D̂2

li(G
e
11)ljk + D̂2

lj(G
e
22)ilk + D̂2

lk(G
e
33)ijl

]
(9)

3 Implementation

The implementation consists of two operations, to compute the inverse precon-
ditioner M−1 and to apply it to a vector. The basic structure for these is given
in algorithm 1 and 2 respectively. The gather-scatter action QQT is already
implemented in Neko, as well as the basic component-wise invert and multiply
operations. What remains is to find a suitable implementation of the diagonal
assembly operation (9) in the form of a GPU-accelerated kernel.

Input: G,D
Output: Diagonal of J−1 stored in j.

j ← assemble diag(AL) using G and D

apply QQT to j
for i← 1 to EN3 do

ji ← 1/ji
end

Algorithm 1: Construct Jacobi preconditioner.

Input: j, r
Output: J−1x stored in z.

for i← 1 to EN3 do
zi ← ji · ri

end

Algorithm 2: Apply Jacobi preconditioner, i.e. solve Jz = r.

3.1 Diagonal assembly kernels

A major consideration in the design of a kernel is how to divide the work across
computation threads and blocks. Each block consists of up to 1024 threads and
has a fast shared memory and cache. Several variants are tried to see which
yield the best performance.

Each kernel variant is described in text and then illustrated by a simplified
CUDA-like code snippet. The snippets only show computation in the first di-
mension, since the others follow the same pattern. The variables i, j, k are the
quadrature point indices and e the element index.

4

Natural kernel A natural division of the work is to assign one quadrature
point to each thread, and use one block per element. The code for this kernel
is straight-forward, with one N -iteration loop per spatial dimension.

int e = blockIdx . x ;
int k = threadIdx . z ;
int j = threadIdx . y ;
int i = threadIdx . x ;

for (int l = 0 ; l < N; l++) {
double g = G11 [l + N∗ j + N∗N∗k + N∗N∗N∗e] ;
double t = D1 [i + N∗ l] ;
d += g∗ t ∗ t ;

}

Shared memory kernel Since each component of G11, G22 and G33 are
used by multiple threads in each block, efficient use of the shared memory is
important to achieve high performance. To ensure that the shared memory is
fully utilized, each thread in this kernel loads its quadrature point from each Gii

into the shared memory before the computations are carried out. The threads
are synchronized after the loads so that all data is initialized before being read.

s h a r e d double G11e [N] [N] [N] ;
G11e [i] [j] [k] = G11 [i + N∗ j + N∗N∗k + N∗N∗N∗e] ;

s ync th r ead s () ;
for (int l = 0 ; l < N; l++) {

double g = G11e [l] [j] [k] ;
double t = D1 [i + N∗ l] ;
d += g∗ t ∗ t ;

}

Extended kernel A downside of the natural kernel is that it can only sup-
port N ≤ 10 since the number of threads per block cannot exceed 1024. To
work around this limitation, we instead assign to each block 1024 consecutive
quadrature points, not necessarily all from the same element. The kernel code
is the same, except for how the indices are calculated.

int idx = threadIdx . x + blockIdx . x ∗ blockDim . x ;
int e = idx / (N∗N∗N) ;
int k = idx / (N∗N) % N;
int j = idx / N % N;
int i = idx % N;

Wide kernel CPUs can achieve higher performance when batching operations
together due to e.g. SIMD execution. We attempt the same technique in the

5

Figure 1: Solver residual with and without preconditioner.

GPU kernel by having each thread compute N quadrature points instead of just
one. Versions both with and without shared memory are implemented.

for (int l = 0 ; l < N; l++) {
for (int i = 0 ; i < N; i++) {

double g = G11 [l + N∗ j + N∗N∗k + N∗N∗N∗e] ;
double t = D1 [i + N∗ l] ;
d [i] += g∗ t ∗ t ;

}
}

4 Evaluation

The correctness and performance of the implementation is evaluated experimen-
tally. The experiments are run on an Nvidia A100 40GB card with an AMD
EPYC 7302P host.

4.1 Correctness

We evaluate the impact of using the Jacobi preconditioner on a sample case. The
case is discretized with N = 10 and 32,768 elements, and we use a conjugate
gradient iterative method. The residual size is saved in each iteration of the
solver and shown in figure 1. It shows that the solver performs slightly better
when using the Jacobi preconditioner. It requires 10% less iterations to reach a
tolerance of 10−14.

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 8 9 10 11 12

T
im
e

 (
m
s
)

N

Natural
Shared

Extended
Wide

Wide shared

Figure 2: Average execution time of construct Jacobi operation with the dif-
ferent kernels variants, 4096 elements. See section 3.1 for a description of the
kernels.

To ensure correctness we also compare the computed preconditioner J−1 for
each kernel to the previous non-accelerated Jacobi preconditioner implementa-
tion in Neko. We test all combinations of N ∈ [8, 12] and E ∈ 2[7,15]. The
difference computed component-wise never exceeded 2 · 10−13.

4.2 Performance

We evaluate the performance of the kernel versions by averaging the execution
time of 100 warm cache runs for 4096 elements and different values of N . The
results are shown in figure 2. The relative performance of the kernels were
similar also for other problem sizes.

The best performing kernels are natural and extended which have indistin-
guishable results. The shared kernel performs a little worse, except for N = 9
where it matches the natural and extended. The two wide kernels perform much
worse in all cases.

5 Conclusion

The natural and extended kernels were the best performing in all cases. There
was no cache related penalty even though there was not exactly one block per
element. Since the extended kernel can also support arbitrary N , it is used in
the final implementation in Neko. Using shared memory explicitly lead to the

7

same or worse performance in all cases, which means that the automatic cache
of the A100 performs very well on this type of workload. Using wider kernels
resulted in even worse performance, so there seems to be no gain from batching
operations within a single thread.

5.1 Future work

While the Jacobi preconditioner slightly reduced the number of solver iterations,
greater reductions are possible with a more advanced preconditioner such as a
hybrid-Schwarz multigrid method [3]. An accelerated implementation of such a
method is not yet a part of Neko.

The methods presented here only apply to hexahedral elements, though small
modifications would make them work for deformed (i.e. curved) hexahedral
elements as well.

References

[1] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for
Incompressible Fluid Flow. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, 2002. doi: 10.1017/
CBO9780511546792.

[2] Niclas Jansson et al. Neko: A Modern, Portable, and Scalable Framework
for High-Fidelity Computational Fluid Dynamics. 2021. arXiv: 2107.01243
[cs.MS].

[3] James W. Lottes and Paul F. Fischer. “Hybrid Multigrid/Schwarz Algo-
rithms for the Spectral Element Method”. In: Journal of Scientific Com-
puting 24 (2005), pp. 45–78.

8

https://doi.org/10.1017/CBO9780511546792
https://doi.org/10.1017/CBO9780511546792
https://arxiv.org/abs/2107.01243
https://arxiv.org/abs/2107.01243

	Introduction
	Numerical method
	Spectral element discretization
	Iterative method

	Implementation
	Diagonal assembly kernels

	Evaluation
	Correctness
	Performance

	Conclusion
	Future work

