Introduction	Method	Results	Discussion	Conclusion

Comparing strategies for pedestrian wind comfort and safety around high-rise buildings

Jacob Wahlgren

KTH

2021-06-06

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Method	Results	Discussion	Conclusion
●00	0000000	0000	000	000
Bridgewat	er Place UK			

- Strong winds caused by high-rise buildings
- Lethal accident by overturned truck in 2011

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Important	factors	0000		
Introduction	Method	Results	Discussion	Conclusion
	0000000	0000	000	000

- Height
- Shape
- Angle to the wind

- Surrounding buildings
- Trees and shrubbery
- Fences and podiums

Introduction	Method	Results	Discussion	Conclusion
00●	0000000	0000	000	
Research ques	stion			

What are the most effective designs for high-rise buildings to ensure pedestrian wind comfort and safety?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	Method	Results	Discussion	Conclusion
000	●000000	0000	000	000
Scenarios				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Method	Results	Discussion	Conclusion
000	o●ooooo	0000	000	
Measurements	5			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Wind speed at 1.5 m height
- Drag force on buildings
- Time period of 120 s

Introduction	Method	Results	Discussion	Conclusion
000	oo●oooo	0000	000	000
CFD method				

- Based on DFS from "Towards a parameter free-method for high Reynolds number turbulent flow simulation..."
- Building free-slip boundaries using skin friction penalty term
- Porous media using Darcy drag term from Brinkman model

Introduction 000	Method 000●000	Results 0000	Discussion	Conclusion
Boundarv	conditions			

Boundary	Condition	Formula
Ground	No slip	<i>u</i> = 0
Sky	Free slip	(u,n)=0
Building walls	Free slip	(u, n) = 0
Inflow	Velocity profile	$u = 6 \cdot (\frac{y}{10})^{0.2}$
Outflow	Zero pressure	p=0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Introduction	Method	Results	Discussion	Conclusion
000	oooo●oo	0000	000	
Inflow profile				

ヘロト ヘロト ヘヨト ヘヨト

æ

- Power law in height common model
- Moderate wind (6 m/s at 10 m height)

```
Method
                                       Results
                                                                           Conclusion
                    0000000
Porous media domain
    class PorousDomain(SubDomain):
         def inside(self, x, on boundary):
             for zx, zy, zr in porous_zones:
                 zr += 1
                 if between(np.sqrt((x[0]-zx)**2 + (x[1]-zy)**2), (0, zr)):
                     return True
             return False
     porous_domain = PorousDomain()
     domains = MeshFunction("size_t", mesh, mesh.topology().dim())
     domains.set all(0)
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
porous_domain.mark(domains, 1)
```

dx_sub = Measure("dx")(subdomain_data=domains)

Introduction	Method	Results	Discussion	Conclusion
000	oooooo●	0000	000	
Porous media	equation			

Fu = inner((u - u0)/dt + grad(um)*um1, v)*dx - p1*div(v)*dx + nu*inner(gra + d1*inner((u - u0)/dt + grad(um)*um1 + grad(p1), grad(v)*um1)*dx + d2

- + alpha*(inner(dot(um,normal), dot(v,normal)))*ds(5) + beta*(inner(dot
- + nu*Kinv_diag*(inner(um[0],v[0]) + inner(um[1],v[1]))*dx_sub(1)

 $K = 10^{-4}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Method	Results	Discussion	Conclusion
000	0000000	●000	000	000
Flow pattern				

See separate animations.

A D > A P > A D > A D >

э

- Decrease upstream, increase downstream
- Neighbors stands out

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Left twin lowest, right twin highest
- Podium is low close to building

Introduction	Method	Results	Discussion	Conclusion
000	000000	000●	000	000
Drag force				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	•00	000
Analysis				

- Similar results for standard, tapered and trees
- Twins had low winds between, but high downstream

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Neighbors had lower drag and overall wind speeds
- Podium had lower wind speeds within 5 m
- Correlation between wind speed and drag

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	0●0	000
Limitations of	2D model			

<ロト <回ト < 三ト < 三ト = 三

- 3D turbulence effects
- Street canyon effect for twins and neighbors

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	00●	000
Time period is	ssues			

- Observe oscillation to ensure stable state
- Divergence after 120 s
- Tentative: 200+ s possible by making timestep 7 times shorter (over 24 h simulation time)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	000	•00
Conclusion				

• Best strategy based on results was neighboring low-rise buildings, or several high-rise buildings together

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Lead to reduced wind speed and drag
- Refined experiments required to confirm

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	000	○●○
Future work				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Increased mesh resolution and shorter timestep
- Adaptive mesh refinement
- Use free-slip condition for ground boundary
- 3D model
- Use wind comfort model
- Wind tunnel experiments

Introduction	Method	Results	Discussion	Conclusion
000	0000000	0000	000	000
Thank you!				

Questions?

J

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● 9 Q @