
A simple GPU ray tracer: Project report DD2360

Jacob Wahlgren <jacobwah@kth.se>

Expected grade: A

January 11, 2022

1 Introduction

Ray tracing is a 3D rendering technique enabling realistic optical effects by
simulating light rays. It is often used for visual effects and animation in film
and television. Using ray tracing is computationally expensive since a ray has
to be simulated for each pixel. However, since the rays are independent the
problem is embarrassingly parallel and easy to accelerate using GPUs.

A ray tracer casts a ray from the camera, through each pixel, into the scene.
The intersection points of the ray and all objects are computed and the point
closest to the camera is used to color the pixel. Material properties, reflection
angles, light sources etc are used to compute the final color.

2 Methodology

We used the Blinn-Phong shading model, where the color C at an intersection
point is given by the following formula. Let Ca be the ambient color, D the
amount of diffuse lighting, N the normal, L a normal vector pointing to the
light source, Cm the material color, c the amount of specular lighting, Cl the
color of the light source, H the normal vector halfway vector between the ray
and the light source, and k the specular exponent.

C = Ca + Cm ·D ·max{(N,L), 0}+ Cl · c ·max{(H,N), 0}k (1)

We render a scene with a single light source and a single solid sphere. The
resulting image is written to a file in the PPM format using 3 bytes per pixel.
Each pixel is computed by one thread in square tile blocks of configurable size.

The kernel is similar to the Python code in structure and content. The
thread and block indices are used to calculate the pixel coordinates. Operator
overloading on the float3 type is used to simplify vector operations. The color
is computed in [0, 1] float space and at the end converted to [0, 255] int space.

Since the task is IO bound, we investigate three different techniques for
writing the image to file. The fwrite version is the simplest, where the whole
image is rendered, then copied to RAM, and then written to file with a single

1

GPU Implementation Execution time (s)

NVIDIA Quadro K240 streams (pinned) 0.95± 0.38
NVIDIA Tesla K80 fwrite (pinned) 1.32± 0.48

Table 1: Fastest configurations at 10,000x10,000 pixels.

write call. The mmap version truncates the file to the output size and then
memory maps the whole file. Once the image is rendered it is copied directly
into the memory mapped file. The streams version uses multiple overlapping
streams to render, copy, and write chunks of the image in parallel. Each chunk
corresponds to a horizontal line of blocks in the image.

The code is available at https://github.com/jacwah/cuda-raytracer.

3 Experimental setup

Experiments are run on the Tegner cluster at the PDC Center for High Per-
formance Computing at KTH. These nodes have two 12 core Intel E5-2690v3
Haswell processors with 512 GB RAM. Files are written to a parallel Lustre
file system. The performance is evaluated both on nodes with NVIDIA Quadro
K240 and the NVIDIA Tesla K80. The GPUs are programmed using CUDA.

The reference CPU implementation in Python was modified to call savefig
to write the image to a file instead of displaying it interactively.

4 Results

 0

 5

 10

 15

 20

 25

 10 100 1000 10000

E
x
e
c
u
tio
n

 t
im
e

 (
s
)

Image dimension

CPU
GPU

Figure 1: Comparison between Python
CPU and fwrite 8x8 GPU, average of 10
runs, on Tegner thin node.

Visual inspection of the generated im-
ages using the display command val-
idated the results. For the largest im-
age size ImageMagick was used to re-
size the image before viewing. Exam-
ple images are shown in figure 2.

The performance comparison of
the CPU and GPU versions showed
that the GPU vastly outperforms the
CPU version on this task. The differ-
ence was more noticeable at larger im-
age dimensions. In fact, results were
not obtained for the CPU version
above image dimension 1000 since it
was too slow. The results are pre-
sented in figure 1, were the Quadra
K240 fwrite 8x8 configuration is used
to represent the GPU.

2

https://github.com/jacwah/cuda-raytracer

(a) CPU (b) GPU

Figure 2: Sample output images.

We evaluate the performance of different GPU configurations at image size
1000x1000 (normal) and 10,000x10,000 (huge). The image files are 3 MB and
287 MB respectively.

At the normal image size, all configurations perform similarly to each other.
The K240 is consistently faster. Figure 3 shows the results for all configurations.

At the huge image size, the results were more varied. On the Quadro K240
the fastest configurations were streams (pinned) with 8x8 or larger block size.
Also close were fwrite (pinned) with 8x8 block size. On the Tesla K80 the fastest
configuration was fwrite (pinned) 16x16. Also close were regular fwrite 16x16
and streams 8x8 and 16x16. The execution time of the fastest configurations
are presented in table 1. Figure 4 shows the results for all configurations.

5 Discussion and conclusion

The massive parallelism offered by the GPU vastly outperforms the reference
CPU implementation. However, a more fair comparison would use a faster
language than Python and utilize all the available compute power of the CPU
rather than a single thread.

The specular highlight in output images from the CPU and the GPU versions
are slightly different. This is likely caused by using different floating point
precision (double in Python, single in CUDA).

When it comes to comparing the various GPU implementations, the differ-
ences at a normal image size of 1000x1000 pixels are negligible. The reason could
be that a configuration independent overhead, such as initializing the CUDA
context, dominates the run time.

In contrast, for the huge image size of 10,000x10,000 pixels the differences

3

are very large. The various implementations perform differently on the two
GPUs used. On the K240 usage of pinned memory clearly improves the results
for fwrite and streams which both perform well. On the K80 fwrite performs
well both with and without pinned memory, while streams performs well only
without pinned memory.

The mmap implementation has very large variations in run time, and is
overall the slowest. The results indicate that the overhead of memory mapping
is not worth it, since each byte is only accessed once. In the words of Linus
Torvalds, “playing games with the virtual memory mapping is very expensive
in itself”1.

In conclusion, ray tracing is a task that can greatly benefit from GPU ac-
celeration. Depending on which GPU is used various techniques can be used to
reduce IO cost.

Future work could investigate how the streams implementation can be tweaked
to increase performance. What chunk sizes and number of streams are optimal?
Why does the pinned version perform poorly on the K80? On a parallel file
system, is it better to buffer the writes?

A more complex scene and shading model could also change the performance
characteristics, since the computation would occupy a larger fraction of the run
time. How would this change the behavior of the different implementations?

1https://yarchive.net/comp/mmap.html#6

4

https://yarchive.net/comp/mmap.html#6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

fwrite mmap streams fwrite(p) mmap(p) streams(p)

E
x
e
c
u
tio
n

 t
im
e

 (
s
)

4x4
8x8

16x16
32x32

(a) NVIDIA Quadro K240

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

fwrite mmap streams fwrite(p) mmap(p) streams(p)

E
x
e
c
u
tio
n

 t
im
e

 (
s
)

4x4
8x8

16x16
32x32

(b) NVIDIA Tesla K80

Figure 3: Performance results for 1000x1000 image with various block sizes.
Bars show average, whiskers show standard deviation. Usage of pinned memory
is indicated by (p). The black dotted line shows the minimum value.

5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

fwrite mmap streams fwrite(p) mmap(p) streams(p)

E
x
e
c
u
tio
n

 t
im
e

 (
s
)

4x4
8x8

16x16
32x32

(a) NVIDIA Quadro K240

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

fwrite mmap streams fwrite(p) mmap(p) streams(p)

E
x
e
c
u
tio
n

 t
im
e

 (
s
)

4x4
8x8

16x16
32x32

(b) NVIDIA Tesla K80

Figure 4: Performance results for 10,000x10,000 image with various block sizes.
Bars show average, whiskers show standard deviation. Usage of pinned memory
is indicated by (p). The black dotted line show the minimum value.

6

	Introduction
	Methodology
	Experimental setup
	Results
	Discussion and conclusion

