
Degree project in Computer Science

Second cycle, 30 Credits

Using GPU-aware message passing
to accelerate high-fidelity fluid
simulations

JACOB WAHLGREN

KTH ROYAL INSTITUTE
OF TECHNOLOGY

Stockholm, Sweden, 2022

Using GPU-aware message
passing to accelerate
high-fidelity fluid simulations

JACOB WAHLGREN

Master’s Programme, Computer Science, 120 credits
Date: June 3, 2022

Supervisors: Niclas Jansson, Martin Karp
Examiner: Stefano Markidis

School of Electrical Engineering and Computer Science
Swedish title: Användning av grafikprocessormedveten
meddelandeförmedling för att accelerera nogranna
strömningsmekaniska datorsimuleringar

© 2022 Jacob Wahlgren

Abstract | i

Abstract

Motivated by the end of Moore’s law, graphics processing units (GPUs) are
replacing general-purpose processors as the main source of computational
power in emerging supercomputing architectures. A challenge in systems with
GPU accelerators is the cost of transferring data between the host memory and
the GPU device memory. On supercomputers, the standard for communication
between compute nodes is called Message Passing Interface (MPI). Recently,
many MPI implementations support using GPU device memory directly as
communication buffers, known as GPU-aware MPI.

One of the most computationally demanding applications on supercomput-
ers is high-fidelity simulations of turbulent fluid flow. Improved performance
in high-fidelity fluid simulations can enable cases that are intractable today,
such as a complete aircraft in flight.

In this thesis, we compare the MPI performance with host memory and
GPU device memory, and demonstrate how GPU-aware MPI can be used
to accelerate high-fidelity incompressible fluid simulations in the spectral
element code Neko. On a test system with NVIDIA A100 GPUs, we find that
MPI performance is similar using host memory and device memory, except
for intra-node messages in the range of 1-64 KB which is significantly slower
using device memory, and above 1 MB which is faster using device memory.
We also find that the performance of high-fidelity simulations in Neko can be
improved by up to 2.59 times by using GPU-aware MPI in the gather–scatter
operation, which avoids several transfers between host and device memory.

Keywords

high-performance computing, computational fluid dynamics, spectral element
method, graphical processing units, message passing interface

ii | Abstract

Sammanfattning | iii

Sammanfattning

Motiverat av slutet av Moores lag så har grafikprocessorer (GPU:er) börjat
ersätta konventionella processorer som den huvudsakliga källan till beräk-
ningingskraft i superdatorer. En utmaning i system med GPU-acceleratorer
är kostnaden att överföra data mellan värdminnet och acceleratorminnet. På
superdatorer är Message Passing Interface (MPI) en standard för kommunika-
tion mellan beräkningsnoder. Nyligen stödjer många MPI-implementationer
direkt användning av acceleratorminne som kommunikationsbuffertar, vilket
kallas GPU-aware MPI.

En av de mest beräkningsintensiva applikationerna på superdatorer är
nogranna datorsimuleringar av turbulenta flöden. Förbättrad prestanda i
nogranna flödesberäkningar kan möjliggöra fall som idag är omöjliga, till
exempel ett helt flygplan i luften.

I detta examensarbete jämför vi MPI-prestandan med värdminne och
acceleratorminne, och demonstrerar hur GPU-aware MPI kan användas
för att accelerera nogranna datorsimuleringar av inkompressibla flöden i
spektralelementkoden Neko. På ett testsystem med NVIDIA A100 GPU:er
finner vi att MPI-prestandan är liknande med värdminne och acceleratorminne.
Detta gäller dock inte för meddelanden inom samma beräkningsnod i
intervallet 1-64 KB vilka är betydligt långsammare med acceleratorminne,
och över 1 MB vilka är betydligt snabbare med acceleratorminne. Vi finner
också att prestandan av nogranna datorsimuleringar i Neko kan förbättras upp
till 2,59 gånger genom användning av GPU-aware MPI i den så kallade gather–
scatter-operationen, vilket undviker flera överföringar mellan värdminne och
acceleratorminne.

Nyckelord

högprestandaberäkningar, beräkningsströmningsdynamik, spektralelement-
metoden, grafikprocessorer, meddelandeförmedlingsgränssnitt

iv | Sammanfattning

Acknowledgments | v

Acknowledgments

First I would like to thank my supervisors and mentors Dr. Niclas Jansson
and Martin Karp for guiding me through the project and teaching me about
computational fluid dynamics. I would also like to thank my examiner Prof.
Stefano Markidis for introducing me to high-performance computing and
helping me find this thesis topic. My colleagues at PDC Center for High
Performance Computing have also been helpful, in particular, the assistance
of Gert Svensson, Gilbert Netzer, Ragnar Sundblad, and Luca Manzari has
been greatly appreciated. Mikael Öhman at C3SE has also been helpful in
answering questions about the MPI library on Alvis. Finally, feedback from
Sam Hedin and Henric Zazzi was valuable in finalizing the thesis manuscript.

The computations in this thesis were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre
for Computational Science and Engineering (C3SE) and PDC Center for
High Performance Computing at KTH Royal Institute of Technology, partially
funded by the Swedish Research Council through grant agreement no. 2018-
05973.

Stockholm, June 2022
Jacob Wahlgren

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 3
1.3 Purpose . 3
1.4 Goals . 4
1.5 Research methodology . 4
1.6 Delimitations . 5
1.7 Structure of the thesis . 5

2 Background 7
2.1 High-performance computing 7

2.1.1 Message passing . 8
2.1.2 GPU acceleration . 10

2.2 Fluid mechanics . 11
2.2.1 Applications of computational fluid dynamics 11
2.2.2 The Navier–Stokes equations 12

2.3 Spectral element method . 12
2.3.1 Discretization method 13
2.3.2 Iterative methods . 16

2.4 Related works . 17
2.5 Summary . 18

3 Methods 19
3.1 Research process . 19
3.2 Verification method . 19
3.3 Application performance evaluation 20
3.4 System performance evaluation 21
3.5 Gather–scatter operation benchmark 22
3.6 Experimental setup . 22

viii | Contents

4 Accelerated gather–scatter communication 25
4.1 Communication strategy . 25
4.2 Implementation . 26

5 Results and analysis 31
5.1 Verification result . 31
5.2 Performance results . 31

5.2.1 System performance 31
5.2.2 Gather–scatter performance 33
5.2.3 Application performance 33

5.3 Discussion . 37

6 Conclusions and future work 39
6.1 Conclusions . 39
6.2 Limitations . 40
6.3 Future work . 40
6.4 Reflections . 40

References 41

List of Figures | ix

List of Figures

1.1 Illustration of a simple GPU-accelerated compute node
architecture. Based on an AMD MI100 test node at PDC
Center for High Performance Computing. 2

2.1 Node architecture of the AMD CDNA 2 Flagship HPC
Topology with AMD MI250X GPUs [15]. Note that the CPU
is not directly connected to any NIC. 10

2.2 Illustration of a two-dimensional mesh with four square
elements and polynomial order N = 4. The assembled form
represents the complete domain. In the unassembled form, the
elements have been disconnected so they can be processed in
parallel. Arrows indicate shared points that are summed using
the gather–scatter operation to ensure continuity. 14

3.1 The number of iterations of the computationally expensive
pressure solver in the verification case. A low pass filter has
been applied to show a rolling average. 21

3.2 Alvis A100 compute node diagram. Connectivity captured
with the command nvidia-smi topo -m. 23

4.1 Illustration of the data flow in the accelerated gather–scatter
implementation. All ranks execute the operation in parallel. . . 26

5.1 Relative error in enstrophy as compared to reference data in
the verification case. The three lines overlap perfectly. 32

5.2 Time to complete a copy between host and device memory
(logarithmic). 32

5.3 Pingpong MPI latency, comparing messages in host memory
and device memory. Time for copy between device and host
memory is also shown as a reference. 34

x | List of Figures

5.4 Results of the gather–scatter benchmark, showing the average
time to complete a gather–scatter operation. Note the different
scales on the y-axes. 35

5.5 Application performance on the small Taylor–Green vortex
case. The shaded region indicates the standard deviation. . . . 36

5.6 Application performance on the large Taylor–Green vortex
case. The shaded region indicates the standard deviation. . . . 36

List of Tables | xi

List of Tables

3.1 Setup of the two test systems. 24

xii | List of Tables

Listings | xiii

Listings

2.1 Code example with MPI from host memory. 9
2.2 Code example with GPU-aware MPI from device memory. . . 9
3.1 Sample job script for Alvis to run Taylor–Green vortex case

on 2 nodes with 4 GPUs each. 23
3.2 Script for assigning GPUs to MPI ranks (ompi_launch). . . 24
4.1 Simplified code for gather–scatter using GPU-aware MPI.

The buf and map arrays are stored in device memory. The
kernel functions are executed on the GPU. 28

4.2 Code to pack data from the gather buffer into the send buffers
on the GPU. Each thread is assigned a single buffer index. The
code has been simplified by removing nonessential details. . . 29

4.3 Code to unpack data from the receive buffers into the gather
buffer on the GPU. Each thread is assigned a single buffer
index. The code has been simplified by removing nonessential
details. 29

xiv | Listings

List of acronyms and abbreviations | xv

List of acronyms and abbreviations

CFD Computational Fluid Dynamics
CG Conjugate Gradient method
CPU Central Processing Unit
CUDA Compute Unified Device Architecture

GCD Graphics Compute Die
GMRES Generalized Minimal Residual method
GPU Graphics Processing Unit

HIP Heterogeneous Interface for Portability
HPC High Performance Computing
HSMG Hybrid Schwarz Multigrid

MPI Message Passing Interface

NIC Network Interface Card
NUMA Non-Uniform Memory Access

PGAS Partitioned Global Address Space

RDMA Remote Direct Memory Access

SEM Spectral Element Method
SIMD Single Instruction, Multiple Data

xvi | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

Supercomputers power large-scale simulations in science and engineering as
well as training of large machine learning models. A modern supercomputer
consists of many independent compute nodes that are connected by a
high-speed network. Motivated by the end of Moore’s law, specialized
accelerators are replacing general-purpose processors as the main provider of
computational power in emerging supercomputing architectures.

Today, graphics processing units (GPUs) are used as compute accelerators
due to their high throughput. Seven of the top ten supercomputers use GPUs,
among them, the world’s fastest computer Frontier [1].

1.1 Motivation

In GPU-accelerated systems, a general-purpose central processing unit (CPU)
controls program flow and submits computationally heavy tasks for the GPU
accelerator to complete. In common terminology, the CPU is called the
host while the GPU is called the device. The host and device have separate
memories, with a cost associated with transferring data between them. To
achieve high performance, data must be kept in device memory as much as
possible to ensure it is readily available for computations on the GPU [2].

The architecture of a simple GPU-accelerated compute node is illustrated
in Figure 1.1. The two GPUs provide the majority of the compute capacity,
while the CPU handles initialization and program flow. The lines indicate
connections between components. The CPU is connected to a network
interface card (NIC) which is the link to the high-speed network for
communication with other compute nodes in the cluster.

The standard programming interface for communication between compute

2 | Introduction

CPU
64 cores

128 GB memory

GPU0
7,680 cores

32 GB memory

GPU1
7,680 cores

32 GB memory

NIC
100 Gb/s link

Figure 1.1: Illustration of a simple GPU-accelerated compute node
architecture. Based on an AMD MI100 test node at PDC Center for High
Performance Computing.

nodes on supercomputers is called Message Passing Interface (MPI). The MPI
programming interface consists of functions such as MPI_Send to send a
message to another process and MPI_Recv to receive a message from another
process. Further details are provided in Section 2.1.

Traditionally MPI operates exclusively in host memory. However, with
the rise of GPU accelerators many MPI libraries today support using
device memory directly as communication buffers, which enables the use
of GPU-optimized transport strategies. MPI libraries that support device
memory buffers are known as GPU-aware. Examples of GPU-aware MPI
implementations include OpenMPI and Cray-MPICH, which are used in this
thesis.

Computational fluid dynamics (CFD) studies the flow of fluids such as
air or water through computer simulation. In CFD, numerical methods are
used to solve the Navier–Stokes equations that describe fluid flow. There are
many applications of fluid simulations in science and engineering such as
aerodynamics in the vehicle industry, blood flow in medicine, ocean currents
in climate research, as well as fundamental research in fluid mechanics.

Accurate simulations of turbulent flows require high-fidelity methods and
large computational resources. The level of turbulence is characterized by the
Reynolds number Re. The computational complexity of a direct numerical
simulation grows quickly with the Reynolds number: the number of grid
points required for a direct numerical simulation is O(Re9/4), and the number
of operations is O(Re3) [3], [4]. Therefore direct numerical simulations of
turbulence are performed on supercomputers. Improved performance in high-
fidelity methods can enable more complex cases that are intractable today, such

Introduction | 3

as a complete simulation of an aircraft in flight.
The spectral element method is a numerical method that has successfully

been used for large-scale high-fidelity fluid simulations. Tufo and Fischer were
awarded the Gordon Bell Special Prize in 1999 for their work on the spectral
element code Nek5000 [5], [6], which has been shown to scale to 1 million
CPU cores [7]. The numerical methods used in Nek5000 are still highly
relevant. However, the Fortran 77 code of Nek5000 is not suited for modern
GPU-accelerated architectures [8]. Therefore new codes based on the spectral
element method are being developed. In particular, this thesis is concerned
with the Neko framework, which is currently developed by researchers at KTH
Royal Institute of Technology [8].

1.2 Problem

Software for high-fidelity simulations of turbulence requires large computa-
tional resources. Therefore, new codes are being developed to leverage the
power of modern supercomputers with GPU accelerators.

To achieve high performance in GPU-accelerated software, data transfers
between host and device memory must be avoided [2]. A promising
technology in this regard is GPU-aware MPI, which enables inter-process
communication directly to and from GPU device memory. We aim to answer
the following questions:

1. How does GPU-aware message passing with device memory buffers
perform compared to conventional message passing from host memory?

2. How can GPU-aware message passing be leveraged to optimize large-
scale fluid simulations in the spectral element method?

1.3 Purpose

The objectives of the project are:

• To optimize the scalability of the fluid solver Neko for NVIDIA and
AMD GPU clusters.

• To investigate how GPU-aware message passing can be leveraged to
accelerate scientific software.

4 | Introduction

The scientific results will be relevant both to users of fluid simulations and
to researchers in high-performance computing. The Neko project is conducted
in collaboration with the mechanics department at KTH, where high-fidelity
fluid simulations are used for instance to study flow across aircraft wings [9].
For HPC research the findings can be used to help accelerate other scientific
software.

The degree project is related to sustainability in two ways. First,
by accelerating scientific computations, the amount of energy used for
computational science may be reduced. Nine of the ten most energy-efficient
supercomputers in the world feature GPUs [10]. Second, more efficient fluid
solvers enable simulations at higher Reynolds numbers and larger domains
than currently possible.

1.4 Goals

The goals of the degree project are:

• To conduct a study of scientific literature and technical manuals to learn
how GPUs, and especially GPU-aware MPI, can be efficiently leveraged
in scientific software.

• To develop an optimized GPU-aware communication backend for Neko,
and make it available in a future release of the software. To achieve
this goal, familiarity with the existing codebase, and proficiency in the
programming languages Fortran and C++, as well as the MPI, CUDA,
and HIP programming interfaces is required.

• To characterize the performance of the optimized GPU implementation
in comparison to the baseline implementation. To achieve this goal,
computing resources on a GPU cluster as well as a relevant test case is
required.

1.5 Research methodology

A qualitative study of related works is conducted to collect experiences
for the design of a new GPU-aware communication backend. Quantitative
timing experiments are conducted to characterize the performance of GPU-
aware communication as well as the new communication backend. Isolated
benchmarks of the communication backend, as well as complete simulation

Introduction | 5

runs, are used. The benchmarks are run across various numbers of nodes to
characterize the parallel scaling behavior.

1.6 Delimitations

Since the project is based on the existing Neko software, there is no need to
develop a complete fluid solver from scratch. The codebase already includes a
baseline GPU implementation, using conventional message passing from host
memory.

The study is focused on the gather–scatter operation, which is the
main communication kernel in the method. The gather–scatter operation is
described in detail in Section 2.3. Other communication operations, such as
global reductions and file output are left as future work.

The performance is only evaluated on a single cluster with NVIDIA A100
GPUs due to limited hardware availability. On other systems, the performance
characteristics may differ.

Neko supports simulations in both single-precision and double-precision
floating-point numbers. This project is limited to the double-precision version
since it is the most used in practice.

1.7 Structure of the thesis

The thesis is organized as follows. The relevant background information is
presented in Chapter 2, the research methods are described in Chapter 3, the
implementation of the accelerated communication is described in Chapter 4,
the results of the experiments are presented and analyzed in Chapter 5, and the
conclusions and future work are presented in Chapter 6.

6 | Introduction

Background | 7

Chapter 2

Background

In this chapter, a survey of the relevant background information and context
of the thesis topic is presented. The field of high-performance computing
including message passing and GPU acceleration is introduced in Section 2.1.
Fluid mechanics, particularly computational fluid dynamics, is introduced
in Section 2.2. The numerical methods used in Neko are described in the
section on the spectral element method, Section 2.3. Finally, related works
are presented in Section 2.4, and a summary is provided in Section 2.5.

2.1 High-performance computing

In high-performance computing (HPC), highly parallel computer systems are
used to solve computationally demanding problems [11]. The most advanced
computer systems are called supercomputers and are composed of many
compute nodes connected by a high-speed network. A single application can
run on many nodes that use message passing to exchange data with each other.

Parallelization is commonly a trade-off between total execution time and
resource usage efficiency [11]. When more compute nodes are used, the ratio
of time spent in communication to time spent in computation increases, and
thus the efficiency decreases. However, as more compute nodes are used, the
total execution time also decreases.

The parallelization trade-off is illustrated by Amdahl’s law [12], which is a
model of the speedup S achieved by using P parallel processors. If a program
has a perfectly parallelizable fraction p and a serial fraction 1 − p then the
speedup according to Amdahl’s law is

S =
1

(1− p) + p/P
. (2.1)

8 | Background

There is a diminishing return inS of increasingP . Asymptotically the speedup
is limited by the serial fraction.

lim
P→∞

S =
1

(1− p)
(2.2)

The efficiency of a computation can be measured using the parallel
efficiency η. Parallel efficiency relates the execution time TP using P parallel
processors to the execution time using just a single processor T1. Depending
on the platform, P can denote the number of GPUs, CPU cores, etc.

η =
T1

PTP

(2.3)

End-users of high-performance software must decide which efficiency is
acceptable in their case. By improving the parallel efficiency, the total
execution time for end-users may be improved, as well as enabling larger
problem sizes.

2.1.1 Message passing

The standard interface for communication between compute nodes in high-
performance computing is called Message Passing Interface (MPI). An
application using MPI is divided into many distributed processes known as
ranks. Each process can send messages to the other processes by using a set of
functions supplied by the MPI library. In a cluster without accelerators, each
rank may be assigned to a CPU core. In a cluster with GPUs, each rank may
be assigned to a GPU instead.

Depending on the location of the sending and receiving ranks, the MPI
library may select different underlying transport methods. For instance, if the
ranks are assigned to two CPU cores on the same node, the MPI library can
simply use a memcpy from the sender’s send buffer to the receiver’s receive
buffer. If the ranks are assigned to two CPU cores on different nodes, the MPI
library must send the data in a packet on the high-speed network.

When GPU accelerators were first introduced to high-performance
computing, programs using MPI had to copy data back and forth between
host memory and device memory, since the computations were done in device
memory but the communication device memory is expensive.

The term GPU-aware is used to refer to MPI implementations that
support communication buffers in GPU device memory. With GPU-aware
MPI, there is no longer a need to copy data between host and device

Background | 9

Listing 2.1: Code example with MPI from host memory.
1 for 1.. N {
2 d_y = gpu_compute (d_x)
3 h_y = device_to_host (d_y)
4 h_z = mpi_communicate (h_y)
5 d_x = host_to_device (h_z)
6 }

Listing 2.2: Code example with GPU-aware MPI from device memory.
1 for 1.. N {
2 d_y = gpu_compute (d_x)
3 d_z = mpi_communicate (d_y)
4 d_x = d_z
5 }

memory for communication. It allows the MPI implementation to optimize
communication by using GPU-specific transport strategies, for instance, inter-
process communication (IPC) libraries from GPU vendors or remote direct
memory access (RDMA) to the NIC.

An example of how GPU-aware can be utilized is shown in Listings 2.1
and 2.2. In this code, a leading d_ indicates that the variable is stored in
device memory, and a leading h_ indicates that the variable is stored in host
memory. Both codes implement the same algorithm, with an outer loop that
alternates between computations on the GPU, and communication using MPI.
In Listing 2.1, data has to be moved between host and device memory, while
Listing 2.2 leverages GPU-aware MPI to do the communication in device
memory. Higher performance can be expected from Listing 2.2 since data
movement is avoided.

The concept of GPU-aware MPI was first introduced in the MVAPICH2
project in 2011 [13]. This implementation used pipelined transfers between
host and device to hide network latency. In 2013, NVIDIA’s GPUDirect was
used in MVAPICH2 to accelerate the GPU-aware MPI implementation by
avoiding transfers between host and device completely [14]. The authors found
that their design could improve the latency by up to 69% and the bandwidth by
up to 2x for small messages. Today GPU-aware features are included in many
MPI implementations, such as OpenMPI and Cray-MPICH.

Emerging high-performance node architectures like the AMD CDNA 2
Flagship HPC Topology with AMD MI250X GPUs are optimized for direct

10 | Background

CPU

GPU2 GPU3

GPU0 GPU1NIC0 NIC1

NIC2 NIC3

Figure 2.1: Node architecture of the AMD CDNA 2 Flagship HPC Topology
with AMD MI250X GPUs [15]. Note that the CPU is not directly connected
to any NIC.

transfers from device memory to NIC [15]. It is featured in the world’s first
exascale supercomputer Frontier [16], and also the Dardel supercomputer at
KTH Royal Institute of Technology in Sweden [17]. The node architecture is
illustrated in Figure 2.1.

2.1.2 GPU acceleration

Starting with NVIDIA’s introduction of CUDA in 2007 [18], GPUs
(graphics processing units) have evolved from specialized graphics processors
to generally programmable computing accelerators. Modern GPUs are
optimized for massive throughput and are especially useful in the scientific
computing and machine learning domains [15].

A GPU-accelerated application has two parts: a program running on the
host processor (CPU), and programs known as kernels that run on the device
(GPU). The host sends commands to the device to transfer data between host
and device memory, and to launch kernels on the device. High throughput is
achieved by overlapping compute operations with memory access operations
[19].

A GPU is a massively parallel processor consisting of many compute units.
Each compute unit contains a register file and an execution pipeline with scalar
and vector instructions, as well as matrix instructions in recent models [15].
An AMD Instinct compute unit has four 16-wide Single Instruction Multiple
Data (SIMD) units that together can process 64 double-precision floating-
point numbers per cycle, in what is called a wavefront [20]. An AMD MI100
contains 120 compute units executing in parallel [20]. Depending on the

Background | 11

number of registers occupied by each wavefront, an MI100 compute unit can
handle up to ten wavefronts at a time [20].

A GPU has a hierarchical memory system. At the top is a large but slow
global memory that can be accessed by all compute units, as well as a smaller
global L2 cache. Further on, each compute unit has a fast L1 cache as well as a
programmable local data store (also known as shared memory) for data shared
between the lanes within a wavefront [15]. If a kernel has a high operational
intensity it may be beneficial to load data in global memory to the local data
share at the start of the kernel [19].

Software written for regular CPU processors cannot be compiled to run
on a GPU. Code running on GPUs is written using a special programming
interface in C++, for NVIDIA GPUs the CUDA interface is used and for AMD
GPUs the HIP interface is used.

2.2 Fluid mechanics

Fluid mechanics is devoted to the study of fluid motion in physics. Fluid
flow is described by the Navier–Stokes equations. Due to the non-linearity of
the equations, fluid mechanics often have to be studied using computational
methods [21]. The study of the Navier–Stokes equations using computational
methods is known as computational fluid dynamics (CFD).

The Reynolds number Re is a non-dimensional quantity used to
characterize a flow. The Reynolds number indicates the relative influence
of inertial forces to viscous forces. The higher the Reynolds number, the
more turbulent and unstable a flow is. At high Reynolds numbers, the physics
becomes very complicated and chaotic, with turbulent structures at spatial
scales spanning several orders of magnitude [22]. As famously put by fluid
dynamics pioneer Richardson in 1922: “Big whirls have little whirls that feed
on their velocity, and little whirls have lesser whirls and so on to viscosity”
[23].

In general, a fluid simulation problem is defined by a domain Ω, boundary
conditions on ∂Ω, and an initial condition at time t = 0. The problem is to
determine how the flow develops using the Naiver–Stokes equations.

2.2.1 Applications of computational fluid dynamics

This section describes some examples of important applications of computa-
tional fluid dynamics [21]. Historically, the most prominent applications have
been in aerospace engineering. Automotive applications are also increasingly

12 | Background

moving to computational methods in addition to wind tunnel experiments.
In modern biomedicine, fluid simulations are used in vascular dynamics to
simulate blood flow for diagnosis and surgical planning. Simulations also play
an important role in the energy sector, both in ensuring the safety of nuclear
reactors and the design of efficient wind farms. Other applications include
oceanography, metrology, and heat-exchanger design [22].

2.2.2 The Navier–Stokes equations

The Navier–Stokes equations are a set of nonlinear partial differential
equations describing the flow of viscous fluids [22]. The equations have
been known since the 19th century, but they are still not fully understood by
mathematicians. The existence of smooth (physically reasonable) solutions to
the incompressible Navier–Stokes equations in three dimensions is one of the
Clay Institute’s $1 million Millennium Prize problems [24].

Let u be the velocity, p the pressure, f a given volume force, and Re =

UL/ν the Reynolds number, where U is a reference velocity, L is a reference
length, and ν is the kinematic viscosity. The following equations show the
non-dimensional form of the Navier–Stokes equations [8].

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f (2.4)

In many technically important cases, the flow can be regarded as incom-
pressible, meaning that the density of each material particle is constant [25,
p. 38]. An incompressible flow is modeled by the incompressible Navier–
Stokes equations which additionally include the divergence-free condition
below.

∇ · u = 0 (2.5)

2.3 Spectral element method

Many mathematical problems are too complex to solve analytically, therefore
numerical methods are used to find approximate solutions. As previously
noted, one such problem is the solution of the incompressible Navier–Stokes
equations (Equations 2.4 and 2.5). This section describes the numerical
methods used for incompressible fluid simulations in Neko.

In general, the method to solve a system of partial differential equations,
such as the Navier–Stokes equations, is to first reformulate the continuous
problem as a discrete problem. The domain is modeled using a finite grid and

Background | 13

time is modeled as a finite set of time steps. The discretization enables posing
the problem as a set of linear equations, resulting in one linear system (matrix
equation) per time step and unknown. In the three-dimensional Navier–Stokes
equations there are four unknowns: pressure and velocity in the three spatial
dimensions. Thus in each time step, four linear systems are solved.

In the spectral element method, the grid is defined by a mesh of elements.
In Neko, the elements are hexahedra (e.g. cubes). On each element, a
polynomial basis of order N is used. There are thus N+1 nodal points in each
direction on each element. An example of a spectral element mesh is shown
in Figure 2.2. All computations are performed in the unassembled form. By
using the gather–scatter operation the assembled form is avoided entirely.

The gather–scatter operation w = QTQu is key to the thesis topic. It is
described in detail in the following subsection, but a simple explanation is
provided here. The vector u has one or more components per point in the
domain. To ensure that the solution is continuous, we must ensure that all
components that represent the same point have the same value. This is done
using the gather–scatter operation, which sums values representing the same
points together. For instance, if ui and uj represent the same point, then wi =

wj = ui+uj . In practice, the vectors u and w are distributed over all the MPI
ranks, therefore communication between the ranks is required to implement
the operation.

2.3.1 Discretization method

For discretizing the problem, a spectral element method pioneered by Patera
[26] is used. The method is known as the PN − PN method in Nek5000 [27],
and is described in [8] and in more detail in [28]. The monograph [22] is a
complete review of spectral element methods.

The Navier–Stokes equations are separated into four independent implicit
problems per time step [28]. The pressure in the next time step is given by a
Poisson equation

−∇2u = f

while each component of the velocity is given by an inhomogeneous
Helmholtz equation

−∇2u+ qu = f

with constants q, f . The unknown u represents the pressure or a velocity
component in our domain Ω ⊂ R3, i.e. u : Ω → R.

Decoupling the pressure and velocity components allows us to solve the

14 | Background

(a) Unassembled form. (b) Assembled form.

Figure 2.2: Illustration of a two-dimensional mesh with four square elements
and polynomial order N = 4. The assembled form represents the complete
domain. In the unassembled form, the elements have been disconnected so
they can be processed in parallel. Arrows indicate shared points that are
summed using the gather–scatter operation to ensure continuity.

problems using different techniques best suited for each problem (explained
in the next section on iterative methods). Also note that the Poisson equation
is a special case of the Helmholtz equation (q = 0), which means that the
implementation of the discretization can be shared in practice [7].

First, we cast the partial differential equations (a Poisson or Helmholtz
equation plus boundary conditions) into their weak form, namely to find a
function u in the solution space V ⊂ Ω → R such that

A(u, v) = L(v) ∀v ∈ V

where A is a bilinear form, and L is a linear form. The solution space V is
limited to continuous functions.

The domain Ω is partitioned into E hexahedral elements. On each,
element we use orthogonal Legendre polynomial basis functions Lijk of
degree N based on Gauss–Lobatto–Legendre quadrature points. Each local
basis function φe

ijk corresponds to some piecewise global basis function φl:

φl(x) =

{
φe
ijk(x) if x ∈ Ωe

0 otherwise

Background | 15

for some global index 1 ≤ l ≤ n, element 1 ≤ e ≤ E, and local coordinates
1 ≤ i, j, k ≤ N + 1. This results in a piecewise polynomial approximation
space Vn ≈ V with n = E(N + 1)3 basis functions.

Let xl = xe
ijk denote the corresponding nodal points. Note however that the

global basis is not completely orthogonal. At the edge between two elements,
the local basis functions share the same nodal point, and thus the number of
unique nodal points m is less than the number of basis functions n.

With the approximation space defined, we now discretize the weak form
by Galerkin projection onto Vn. We obtain the discrete unknown u =

(u1, u2, ..., un)
T , the discrete bilinear form A (the Helmholtz operator), and

the load vector b [22, p. 175]. Note that A = K+qM where K is the stiffness
matrix and M is the (diagonal) mass matrix.

u =
n∑

i=1

uiφi

Aij = A(φj, φi)

bi = L(φi)

The discrete problem is to find the coefficients u (also known as degrees of
freedom, dofs) to satisfy the following matrix equation.

Au = b

While the n-dimensional vector b is manageable, the n2 components of the
matrix A pose a challenge. It is infeasible to assemble and store A explicitly.
Luckily A is sparse, since Aij = 0 if φi and φj belong to different elements
and xi ̸= xj . In fact, A is composed of the entries for the shared nodes, plus
dense (N +1)3× (N +1)3 submatrices Ae where the basis functions are from
the same element.

Additionally, we need to restrict the problem by enforcing continuity of
u across element boundaries by equating the coefficients at shared points. In
practice, we work with the unassembled matrix AL = diag(A1, A2, ..., AE)

plus the gather–scatter operator QTQ. The gather matrix Q maps from
n local coefficients uL to M globally unique coefficients by summing the
contributions at shared nodes. The scatter matrix QT copies the M unique
coefficients back into n coefficients. Let uL be some coefficient vector. Then
u = QTQuL represents a continuous version of uL where the values at
shared nodes have been averaged. This operation is also called direct stiffness
summation. We modify the matrix equation to include AL and the continuity

16 | Background

constraint.
QTQALuL = b

Using this formulation we can partition the elements onto a set of parallel
processors such that computations involving AL are local to the processor,
and only the gather-scatter operator QTQ requires communication between
the processors. In practice, the matrices Q and QT need not be assembled, the
operator can be implemented efficiently by maintaining a two-way mapping
between local degrees of freedom and global unique nodal points.

The size of the dense local element matrix Ae is (N + 1)6, which quickly
becomes infeasible for higher-order (spectral) methods. It is common to use
polynomial degrees in the range 7–11. Taking advantage of the local tensor-
product Lagrange basis, we can factorize Ae using (N +1)3 geometric factors
per element, and 3(N +1)2 Lagrange derivatives [22]. Thus our factorization
of A reduces the problem size from O(n2) = O(E2N6) to O(EN3).

2.3.2 Iterative methods

To solve the sparse linear systems Ax = b described in the previous
section, iterative methods are employed. In an iterative method, successive
approximations of x are generated in a loop until the required accuracy has
been reached [29]. The rate of convergence depends on the condition number,
i.e. how sensitive x is to small perturbations in A or b. For symmetric systems,
the condition number can be defined as the ratio of the largest to the smallest
eigenvalue of A, and this is a good approximation for nonsymmetric systems
as well [22]. The convergence rate can be improved by using a preconditioner
M and solving M−1Ax = M−1b instead.

In Neko, the Krylov subspace methods conjugate gradient (CG) and
generalized minimal residual (GMRES) are used [8]. Each iteration of these
methods requires one or more calls to the gather–scatter operation.

The linear systems differ in condition number [8]. The velocity systems are
well-conditioned and thus a simple Jacobi preconditioner is used. The Jacobi
preconditioner is computed by assembling the diagonal M = diag(A). The
pressure system is ill-conditioned and requires an advanced preconditioner
like a Hybrid-Schwarz Multigrid method (HSMG) [30], [31]. In the HSMG
preconditioner, the system is solved on a coarser grid with linear elements
(N = 1) and then interpolated to the full grid (e.g. N = 7) [8].

The number of iterations required to solve the systems also depends on the
quality of the initial guess x(0). The fact that the operator A is constant over
all the time steps can be leveraged to improve x(0). By storing a number of old

Background | 17

problems b and solutions x, a space is constructed, and the new b is projected
onto it to obtain the new initial guess [32].

2.4 Related works

The Neko code is presented and analyzed in [8]. The GPU backend already
takes advantage of some optimizations introduced for the NEC SX Vector
Engine backend [33].

There are several other efforts to accelerate spectral element fluid
simulations. NekRS is another modern SEM code that supports GPU
acceleration using the OCCA abstraction layer [28]. Part of Nek5000 has been
accelerated using OpenACC directives [34].

The NekRS code can take advantage of GPU-aware MPI in their gather–
scatter implementation [28]. At initialization time different gather–scatter
implementations are tested and the fastest is chosen. This has been further
studied in the proxy application hipBone, where efforts are also made to
overlap gather–scatter with computation [35].

High-performance GPU-aware communication has previously been stud-
ied by Dryden, Maruyama, Moon, et al. in the context of deep neural
networks [36]. They find that global reduction communication (allreduce) is
a significant bottleneck for training at scale, and propose a communication
library called Aluminum to provide asynchronous communication backed by
CUDA, NCCL, and MPI. In the bandwidth-limited regime, the NCCL (i.e.
GPU-aware) backend performs best, while in the latency-limited regime, the
NCCL backend performs better up to 32 GPUs and the host MPI backend
performs better at 64 GPUs and above. This is attributed to the fact that
NCCL is optimized for bandwidth but also can take advantage of direct GPU
transfers and knowledge of the node-local topology. Unfortunately, Aluminum
does not fully support GPU-aware MPI or AMD hardware. The library
provides a model for overlapping communication with computation similar
to CUDA streams, which is not as useful in the context of numerical codes
where the computations are usually dependent on data from the preceding
communication.

The developers of PETSc, a general-purpose library for scalable numerical
solvers, are also faced with the challenges posed by upcoming exascale
architectures [37]. The library is migrating from direct MPI calls to a
generalized communication module called PetscSF based on a star forest
model [38]. A star forest is a graph with multiple depth 1 trees. This
model is similar to the gather–scatter model in Neko. Internally the PetscSF

18 | Background

module takes advantage of GPU-aware MPI when available, in addition to
other methods like NVSHMEM.

2.5 Summary

In high-performance computing, highly parallel computer systems are studied.
These systems are composed of many compute nodes that communicate,
commonly by message passing using the MPI interface. Many modern
supercomputers feature GPU accelerators, which provide large computational
capacity.

In computational fluid dynamics, numerical methods are used to
understand the behavior of fluid flow. Incompressible flow is described by
a set of partial differential equations called the incompressible Navier–Stokes
equations.

The spectral element method is a numerical method used to solve the
incompressible Navier–Stokes equations on parallel computers. A key
operation in the spectral element method is the so-called gather–scatter
operation which is the main communication kernel.

Methods | 19

Chapter 3

Methods

In this chapter, the research methods used in the degree project are described.
An overview of the research process used is presented in Section 3.1, the
verification method is described in Section 3.2, the method of application
performance evaluation is described in Section 3.3, the system performance
evaluation method is described in Section 3.4, the gather–scatter benchmark
method is described in Section 3.5, and the experimental setup is presented in
Section 3.6.

3.1 Research process

The first step of the research process was to learn about computational fluid
mechanics, numerical methods, and high-performance computing. The focus
was particularly on the spectral element method, GPU programming, and MPI
communication. The next step was to establish a verification and performance
baseline using the current Neko version. Then profiling, development, and
testing of new code were conducted. When the code was finished, final
verification and performance experiments were run. The results were then
analyzed and compared to the baseline. To aid the analysis, additional system
performance tests were then conducted.

3.2 Verification method

To verify the accuracy of the code, a previously well-studied simulation case
is used. The problem is a direct numerical simulation of the Taylor–Green
vortex at Re = 1600 [39, Problem C3.5]. This problem is designed to test
the accuracy and performance of high-order methods on the direct numerical

20 | Methods

simulation of the transition from laminar to turbulent flow. The initial
condition is simple, while the final state is highly chaotic. This benchmark
case has previously been used to validate the accuracy of the CPU and Vector
Engine backends of Neko [8]. The simulation runs from time t = 0 to t = 20.

We capture the enstrophy E at regular intervals, which is a scalar integral
quantity related to the vorticity ω. The vorticity field describes the tendency
for fluid to rotate. Since the enstrophy is very sensitive to solver accuracy it is
suitable for verification. For incompressible flow, it can be computed as

E =

∫
Ω

|ω|2 dx. (3.1)

The same simulation is run for both the baseline and the optimized version.
The results are then compared to reference data from direct numerical
simulations [39]. Due to limited computing resources, the case is run at a
lower resolution of 323 elements and 2243 grid points, resulting in an implicit
large eddy filter. The reference data resolve all scales using 5123 grid points.
While this means that the verification case is not equivalent to the reference
case, it still constitutes an approximate solution.

The time step is length 10−3 and the order is 7. We use the coarse
grid pressure preconditioner and dealiasing. The verification is performed
using a varied number of GPUs to ensure correctness across different network
topologies.

3.3 Application performance evaluation

Two simulation cases are used to evaluate the impact of an accelerated gather–
scatter operation on overall application performance. For both cases, a strong
scaling study is conducted and the time per time step and parallel efficiency
is measured. The time per time step is read from the output log file and the
average and standard deviation are computed using an AWK script.

The smaller case tests the scaling from 1 to 12 GPUs. The simulation
case used for verification is used in this case as well. The accelerated gather–
scatter operation is used forN > 1. For this case, we measure the performance
indicators in the most computationally intensive region 8 ≥ t ≥ 10, since in
practice the execution time of real cases is dominated by such computationally
intensive regions. The computational cost can be measured by the number of
pressure solver iterations required per time step, which for this case is shown
in Figure 3.1.

Methods | 21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18 20

P
re
s
s
u
re

 it
e
ra
tio
n
s

Simulation time

Figure 3.1: The number of iterations of the computationally expensive
pressure solver in the verification case. A low pass filter has been applied
to show a rolling average.

The larger case tests the scaling from 16 to 128 GPUs. For this case, 16
GPUs is the smallest possible number due to memory limitations, and 128
GPUs is the largest number of GPUs in a single run on the test system. The
case is a larger version of the Taylor–Green vortex at Re = 5000. This
has been used for strong scaling tests of Neko previously [8]. We use the
same parameters as [8] with time step 5 · 10−4, order 9, 643 elements, and
no dealiasing. Due to limited computing resources, the only first 1000 time
steps are computed. Thus the simulation does not have time to reach the most
computationally costly region.

To characterize the parallel performance we compute the parallel efficiency
(Equation 2.3). For the larger case, the following formula is used since the
memory requirement prevents running on one GPU.

η =
8T8

PTP

(3.2)

3.4 System performance evaluation

To compare the performance of GPU-aware MPI with device memory to
MPI from host memory, a ping-pong benchmark is used. In this benchmark,
the MPI performance is tested in isolation. The benchmark is called
osu_latency and is part of the OSU Micro-Benchmarks suite, version 5.9
[40]. The test measures the average time to send messages up to 4 MB in
size. We run it both between two GPUs on the same node and two GPUs on

22 | Methods

different nodes. In both cases, the test results are averaged over ten different
node configurations. For the intra-node test, GPU0 and GPU1 were used. For
the intra-node test, GPU0 on each node was used. Performance may differ for
other GPUs on the node depending on the interconnect topology.

Additionally, the time to copy data between host and device memory is
measured. For powers of two up to 4 MB, a data buffer is copied from
host memory to device memory and back using cudaMemcpy. Below
512 KB 10,000 warmup iterations and 10,000 timed iterations are used,
and above 1,000 iterations are used. Average time per copy call is
reported. Time is measured at the start and end using the Linux system call
clock_gettime(CLOCK_MONOTONIC).

3.5 Gather–scatter operation benchmark

For a deeper understanding of the performance characteristics, an isolated
benchmark of the gather–scatter operation is used. The benchmark consists
of 1000 calls to the gather–scatter operation (gs_op) on a vector. The
polynomial order is varied to reflect different parts of the application. The
orders 7 and 11 represent the main solver, while the orders 1 and 3 represent
the coarse grid solver of the pressure preconditioner. At higher orders, more
data is processed and the operation takes longer. At lower orders, there is less
data and the operation is faster. However, the lowest order operation is called
roughly ten times as often as the higher-order operations in the full application
due to the construction of the coarse grid preconditioner.

A mesh with 643 elements is used and has been pre-partitioned to achieve
a realistic balance of internal to external points at different numbers of GPUs
and polynomial orders. The benchmark is run for 8 to 128 GPUs and the time
per operation is measured using the function MPI_Wtime. The average and
standard deviation are reported.

3.6 Experimental setup

Verification and performance measurement experiments are carried out on the
Alvis supercomputer at C3SE at Chalmers Technical University. The used
compute nodes have four NVIDIA A100 40GB GPUs, and two Intel Xeon
Gold 6338 CPUs with 256 GB DDR4 memory. The GPUs are connected
by a bonded NVLink interface for intra-node communication, and the node
has two Mellanox ConnectX-6 200 Gb/s network interface cards (NICs). A

Methods | 23

CPU0

CPU1

GPU1GPU0

GPU3GPU2

NIC0

NIC1

Figure 3.2: Alvis A100 compute node diagram. Connectivity captured with
the command nvidia-smi topo -m.

Listing 3.1: Sample job script for Alvis to run Taylor–Green vortex case on 2
nodes with 4 GPUs each.

1 #!/ bin / bash -e
2
3 # SBATCH -A XXX
4 # SBATCH --gpus -per - node = A100 :4
5 # SBATCH -N 2
6 # SBATCH -t 1:00:00
7 # SBATCH --ntasks -per - node =4
8 # SBATCH -- gres = gpuexcl :1
9

10 module load fosscuda
11
12 mpirun ./ ompi_launch ./ neko tgv . case

diagram of the compute node is shown in Figure 3.2. The code is compiled
using GCC 10.2 and CUDA 11.1.1, compute capability 8.0, with NVIDIA
driver 510.39.01. The MPI library is OpenMPI 4.0.5 with UCX 1.9.0.

To execute a program on the cluster, the batch job system SLURM is used
together with the mpirun command. A sample job script is shown in Listing
3.1. To assign GPUs to MPI ranks the script in Listing 3.2 is used. We rely on
SLURM and OpenMPI to pair GPU devices to CPU cores. Better performance
may be achievable by making the pairing explicitly with consideration of
NUMA domains.

Additionally, verification of the AMD/HIP version is performed on a test
system at PDC Center of High Performance Computing at KTH Royal Institute
of Technology. This system has two AMD MI100 GPUs with 32 GB memory
each, one 64-core AMD EPYC 7742 CPU, and 128 GB RAM. The code was

24 | Methods

Listing 3.2: Script for assigning GPUs to MPI ranks (ompi_launch).
1 #!/ bin / bash
2
3 export CUDA_VISIBLE_DEVICES =${

OMPI_COMM_WORLD_LOCAL_RANK }
4 exec $*

Alvis compute node AMD test node

GPU model 4x NVIDIA A100 40GB 2x AMD MI100 32GB
CPU 2x Intel Xeon Gold 6338 1x AMD EPYC 7742
Memory 256 GB 128 GB
GPU interconnect Bonded NVLink –
NIC 2x Mellanox ConnectX-6 –
Fortran compiler GCC 10.2 Cray 13.0.0
GPU runtime CUDA 11.1.1 ROCm 4.5.2
MPI OpenMPI 4.0.5 Cray-MPICH 8.1.12

Table 3.1: Setup of the two test systems.

compiled with Cray Fortran 13.0.0 and ROCm 4.5.2. The MPI library is Cray-
MPICH 8.1.12. The node architecture is illustrated in Figure 1.1. The setups
of both test systems are also listed in Table 3.1.

The baseline Neko implementation is version 0.3.1 with the CUDA device
backend for the NVIDIA system and the HIP device backend for the AMD
system. The accelerated version is enabled by setting the configuration flag
--enable-device-mpi. The Neko code base is hosted on Github, and
can be found online at https://github.com/ExtremeFLOW/neko.

https://github.com/ExtremeFLOW/neko

Accelerated gather–scatter communication | 25

Chapter 4

Accelerated gather–scatter com-
munication

In this chapter, the implementation of the accelerated gather–scatter operation
leveraging GPU-aware MPI is described. Alternative strategies are discussed
in Section 4.1 and the implementation details are described in Section 4.2.

4.1 Communication strategy

To implement the gather–scatter operation, we must decide on a strategy for
communication between ranks. The communication is used to exchange the
values at element boundaries. For instance, assume rank A owns element E1

and rank B owns element E2. If elements E1 and E2 are touching, then rank A

must send the values of E1 along their intersection to rank B, and vice versa.
We use a strategy similar to the baseline implementation, where data is

packed into contiguous buffers and transferred using non-blocking send and
receive operations with MPI. However, instead of copying the data from device
memory to host memory, and packing it using the CPU, we do all operations
in device memory using GPU-aware MPI. This allows portability across many
types of systems since MPI is a well-established standard. The MPI library is
free to choose the transport (i.e. CUDA IPC, GPU RDMA, etc.) depending
on message size and destination.

An alternative implementation could use MPI datatypes of type indexed
block to avoid explicit pack and unpack kernels. This could simplify the
code and potentially provide better performance if well supported by the
MPI implementation. MVAPICH2 has optimized support for non-contiguous
datatypes in GPU memory [41], but in OpenMPI non-contiguous datatypes

26 | Accelerated gather–scatter communication

Rank 1

Rank 2

Rank 3

Gather buffer Gather bufferSend buffer Receive bufferNeighbors

Pack UnpackMPI_Isend MPI_Irecv

Figure 4.1: Illustration of the data flow in the accelerated gather–scatter
implementation. All ranks execute the operation in parallel.

incur a high overhead [42].
Other communication libraries include NVIDIA’s NCCL and AMD’s

RCCL which implement an interface similar to MPI but adapted specifically
for GPU communication. However, RCCL has only "initial support" for
point-to-point communication [43]. In the completely different Partitioned
Global Address Space model, there is NVSHMEM from NVIDIA [44], and
an "experimental prototype" ROC_SHMEM from AMD [45].

4.2 Implementation

Two device memory areas are allocated for send and receive buffers. A vector
stores the mapping from the gather vector to the send buffer, and another
vector stores the mapping from the receive buffer back to the gather vector.
Two kernels are implemented in both CUDA and HIP, to pack and unpack the
communication buffers. The data flow is shown in Figure 4.1.

A high-level simplified version of the implemented code is shown in
Listing 4.1. The comments denote operations that were already implemented
in Neko. First, the non-blocking receive operations are started. Then the
shared points are gathered locally and then packed into the send buffer based
on which neighbors share which points. Then device_sync is used to wait
for the pack kernel to finish. This function blocks the host until all currently
running GPU kernels are completed. Then the non-blocking send operations
are initiated. During the non-blocking communication, the internal points are

Accelerated gather–scatter communication | 27

gather–scattered. We wait for the receive operations to finish and then invoke
the unpack kernel to sum the received data into the gather buffer. We wait for
the send operations to finish. A final synchronization is done to avoid a race
condition.

Simplified versions of the pack and unpack kernels in CUDA/HIP are
shown in Listings 4.2 and 4.3 respectively. Note that indices from the mapping
have to be offset to translate between Fortran semantics of 1-based indexing
and C semantics of 0-based indexing. The pack kernel is a simple indirect
copy operation. During unpacking the received data is summed into the gather
buffer. If a point is shared with multiple neighbors, it is marked with a negative
index, and summed using an atomic operation. Using atomics for all points
would be expensive at higher polynomial orders since atomics are comparably
expensive and duplicated points are uncommon.

While the main code is written in Fortran, the calls to MPI using device
buffers are made from wrapper functions written in C. Attempting to pass a
type(c_ptr) pointing to device memory to the Fortran MPI interface leads
to crashes on the AMD test system.

28 | Accelerated gather–scatter communication

Listing 4.1: Simplified code for gather–scatter using GPU-aware MPI. The
buf and map arrays are stored in device memory. The kernel functions are
executed on the GPU.

1 do i = 1, num_neighbors
2 call MPI_Irecv (recv_buf , offset (i),
3 num_points (i), source (i))
4 end do
5
6 ! ... Gather shared points to gather_buf ...
7
8 call pack_kernel (gather_buf , send_buf , send_map)
9 call device_sync ()

10
11 do i = 1, num_neighbors
12 call MPI_Isend (send_buf , offset (i),
13 num_points (i), dest (i))
14 end do
15
16 ! ... Gather - scatter internal points ...
17
18 call MPI_Waitall (recv_requests)
19 call unpack_kernel (gather_buf , recv_buf , recv_map)
20
21 call MPI_Waitall (send_requests)
22 call device_sync ()
23
24 ! ... Scatter shared points in gather_buf to u ...

Accelerated gather–scatter communication | 29

Listing 4.2: Code to pack data from the gather buffer into the send buffers on
the GPU. Each thread is assigned a single buffer index. The code has been
simplified by removing nonessential details.

1 __global__ void pack_kernel (
2 double * gather_buf ,
3 double * send_buf ,
4 int * send_map ,
5 int n)
6 {
7 int j = threadIdx .x + blockDim .x* blockIdx .x;
8
9 if (j >= n)

10 return ;
11
12 send_buf [j] = gather_buf [send_map [j] -1];
13 }

Listing 4.3: Code to unpack data from the receive buffers into the gather buffer
on the GPU. Each thread is assigned a single buffer index. The code has been
simplified by removing nonessential details.

1 __global__ void unpack_kernel (
2 double * gather_buf ,
3 double * recv_buf ,
4 int * recv_map ,
5 int n)
6 {
7 int j = threadIdx .x + blockDim .x* blockIdx .x;
8
9 if (j >= n)

10 return ;
11
12 int idx = recv_map [j];
13 double val = recv_buf [j];
14
15 if (idx < 0) {
16 atomicAdd (& gather_buf [-idx -1] , val);
17 } else {
18 gather_buf [idx -1] += val ;
19 }
20 }

30 | Accelerated gather–scatter communication

Results and analysis | 31

Chapter 5

Results and analysis

In this chapter, the results are presented and discussed. The result of the
verification is presented in Section 5.1, and the performance results are
presented in Section 5.2. The chapter ends with a discussion in Section 5.3.

5.1 Verification result

The verification runs showed that the baseline and accelerated implementa-
tions are numerically equivalent. The relative error in enstrophy as compared
to the reference solution is shown in Figure 5.1. The figure shows that
both the baseline implementation and the accelerated implementation reach a
maximum of 6.7% relative error at t = 14.4. The error in enstrophy fluctuates
during the run since the smallest scales are not resolved due to the coarser
mesh.

5.2 Performance results

In this section, the results from the system performance tests, gather–scatter
benchmark and the application benchmarks on Alvis are presented.

5.2.1 System performance

The latency of copies between host and device memory is shown in Figure
5.2. Up to 4 KB a copy between device and host memory takes 5.5 to 7.5 µs.
Above 4 KB the latency increases roughly linearly.

The results of the message passing benchmark are shown in Figure 5.3. For
inter-node communication, shown in Figure 5.3a, using host buffers or device

32 | Results and analysis

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20

R
e
la
tiv
e

 e
rr
o
r

Time

Baseline (8x NVIDIA A100)
Accelerated (8x NVIDIA A100)
Accelerated (2x AMD MI100)

Figure 5.1: Relative error in enstrophy as compared to reference data in the
verification case. The three lines overlap perfectly.

 1

 10

 100

 1000

20 25 210 215 220

L
a
te
n
c
y
 (
u
s
)

Size (B)

Figure 5.2: Time to complete a copy between host and device memory
(logarithmic).

Results and analysis | 33

buffers leads to comparable performance, although host buffers are faster for
most of the message size range. However, for intra-node communication,
shown in Figure 5.3b, there is a significant difference between using host
buffers and device buffers. There is a large spike in latency centered around
message size 8 KB. In fact, it takes longer to send a message of size 8 KB than
a message of size 256 KB. In contrast, for messages above 1 MB, the cost of
using host buffers increases significantly while device buffers are fast.

5.2.2 Gather–scatter performance

The performance of the new accelerated gather–scatter implementation as
compared to the baseline implementation is shown in Figure 5.4. At
polynomial orders 7 and 11 (Figure 5.4a), corresponding to the main solver,
there is a significant speedup across the whole strong scaling range. ForN = 7

the speedup is between 1.34 and 3.59. For N = 11 the speedup is between
1.23 and 3.65.

At polynomial orders 1 and 3 (Figure 5.4b), corresponding to the coarse
grid preconditioner, the results are more varied. For N = 1 the results are
better at 4 GPUs and similar at 64 and 128 GPUs. However, the performance
is worse for 8 to 64 GPUs, with as much as 6.73 times slower for 32 GPUs.
For N = 3 there is a 1.98 to 4.06 speedup between 4 to 32 GPUs, but with
a similar spike in execution time at 64 GPUs where the operation takes 2.88
times as long.

5.2.3 Application performance

The results of the application performance on the small case are shown in
Figure 5.5, and on the large case in Figure 5.6. The results show that the
performance of the application is improved by using the accelerated gather–
scatter operation in both cases. For the small case, the speedup is between
1.08 and 1.66 depending on the number of GPUs used. For the large case, the
speedup is between 1.58 and 2.59.

The scaling profile shown by the parallel efficiency is better for the
accelerated version. At 128 GPUs the relative scaling performance is similar
for both versions. However, since the accelerated version is faster at 16 GPUs,
it is still also faster at 128 GPUs.

34 | Results and analysis

 0

 5

 10

 15

 20

20 22 24 26 28 210 212 214 216

L
a
te
n
c
y
 (
u
s
)

Message size (B)

MPI (host memory) MPI (device memory) Device-host copy

1 B to 64 KB

 0

 50

 100

 150

 200

 250

 300

216 217 218 219 220 221 222

L
a
te
n
c
y
 (
u
s
)

Message size (B)

64 KB to 4 MB

(a) Inter-node communication (between two nodes).

 0

 5

 10

 15

 20

20 22 24 26 28 210 212 214 216

L
a
te
n
c
y
 (
u
s
)

Message size (B)

MPI (host memory) MPI (device memory) Device-host copy

1 B to 64 KB

 0

 50

 100

 150

 200

 250

 300

216 217 218 219 220 221 222

L
a
te
n
c
y
 (
u
s
)

Message size (B)

64 KB to 4 MB

(b) Intra-node communication (within a single node).

Figure 5.3: Pingpong MPI latency, comparing messages in host memory and
device memory. Time for copy between device and host memory is also shown
as a reference.

Results and analysis | 35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 8 16 32 64 128

T
im
e

 (
m
s
)

GPUs

Baseline Accelerated

N = 7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 8 16 32 64 128
T
im
e

 (
m
s
)

GPUs

N = 11

(a) Polynomial orders 7 and 11, corresponding to the main solver.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 4 8 16 32 64 128

T
im
e

 (
m
s
)

GPUs

Baseline Accelerated

N = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 4 8 16 32 64 128

T
im
e

 (
m
s
)

GPUs

N = 3

(b) Polynomial orders 1 and 3, corresponding to the coarse grid preconditioner.

Figure 5.4: Results of the gather–scatter benchmark, showing the average time
to complete a gather–scatter operation. Note the different scales on the y-axes.

36 | Results and analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12

T
im
e

 p
e
r
tim

e
s
te
p

 (
s
)

GPUs

Baseline
Accelerated

(a) Strong scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12
P
a
ra
lle
l
e
ffi
c
ie
n
c
y

GPUs

Baseline
Accelerated

(b) Parallel efficiency

Figure 5.5: Application performance on the small Taylor–Green vortex case.
The shaded region indicates the standard deviation.

 0.1

 1

 16 32 64 128

T
im
e

 p
e
r
tim

e
s
te
p

 (
s
)

GPUs

Baseline
Accelerated
Ideal scaling

(a) Strong scaling (logarithmic)

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128

P
a
ra
lle
l
e
ffi
c
ie
n
c
y

GPUs

Baseline
Accelerated

(b) Parallel efficiency

Figure 5.6: Application performance on the large Taylor–Green vortex case.
The shaded region indicates the standard deviation.

Results and analysis | 37

5.3 Discussion

The results of the message passing benchmark show that the GPU-aware MPI
implementation on the test system is not necessarily tuned perfectly for intra-
node communication. The fact that it takes longer to send smaller messages
than larger messages indicates that different transport strategies are used based
on the message size. It is also surprising that transfer between device and host
memory is slower than inter-node communication.

In the UCX library, which is used by the MPI library on Alvis, the transport
strategy is selected dynamically. The UCX library can be configured using
hundreds of options, shown with the ucx_info -c command. Future
investigations could utilize the UCX_PROTO_INFO=y option to debug which
strategies are selected by UCX [46], to see if it correlates with the observed
MPI performance.

The inconsistent message passing performance is reflected in the results
of the gather–scatter benchmark. In certain configurations, the lower order
operations are significantly slower, which correlates with the spike in intra-
node MPI latency. However, the communication pattern in the latency test
and the gather–scatter operations are quite different. In the latency test,
there are only two ranks sending one message at a time, while in the gather–
scatter operation there are many ranks, sending several messages concurrently.
Therefore the results are not directly comparable. Further investigation
is necessary to find out why the accelerated gather–scatter operation is
significantly slower in these specific configurations. It is also unclear if these
findings generalize to other clusters, MPI implementations, etc.

However, for most configurations, the accelerated gather–scatter operation
provides a significant speedup. The speedup may be explained by the fact that
the baseline implementation first has to copy the gather buffer from device
memory to host memory, and then copy it back after the communication is
complete. As illustrated by Figure 5.3, the cost of copying memory between
host and device is in most cases larger than MPI communication itself.

The results of the application performance evaluation show that the
performance of the gather–scatter operation has a large impact on the overall
application performance. Performance is improved for both test cases, but
the improvement is larger for the larger case. This reinforces the fact that
communication latency is key in strong scaling application performance.
It also encourages further exploration of GPU-aware message passing in
scientific computing.

Since each run was done in a separate job, they were executed on different

38 | Results and analysis

sets of compute nodes. To increase the reliability of the study, all runs could
be executed on the same set of compute nodes.

Since the gather–scatter performance varies based on configuration, it may
be beneficial to try different implementations at runtime and choose the fastest
one dynamically. This is an approach taken by NekRS [28].

Conclusions and future work | 39

Chapter 6

Conclusions and future work

In this chapter, the conclusions of the degree project and how the work may
be continued are described. The conclusions are presented in Section 6.1,
limitations of the work are described in Section 6.2, future work is suggested in
Section 6.3, and reflections on environmental aspects of the work are presented
in Section 6.4.

6.1 Conclusions

Leveraging GPU-aware message passing to avoid copying data between host
and device memory can significantly improve large-scale fluid simulations
on GPU-accelerated supercomputers. However, performance may vary for
different parts of the application, and therefore system-specific tuning may
be needed. The answers to the research questions are:

1. On the test system, GPU-aware message passing with device memory
buffers had a similar performance to conventional message passing with
host memory buffers for most messages. However, in the range 1-64 KB
the performance was significantly worse for intra-node communication,
and above 1 MB the performance was significantly better.

2. By utilizing GPU-aware message passing in the gather–scatter opera-
tion, expensive data transfers between host and device memory can be
avoided by packing and unpacking communication buffers on the GPU.
It is possible to achieve up to a 2.59 speedup when running a fluid
simulation across 64 GPUs using this method.

40 | Conclusions and future work

6.2 Limitations

All performance measurements have been done on a single NVIDIA A100
cluster. Performance characteristics may differ depending on the GPU model,
interconnect type, etc. In particular, the upcoming AMD MI250X architecture
is specifically optimized for network communication from device memory.
The characteristics may also differ for other simulation cases with different
domain sizes.

6.3 Future work

More work is needed to fully understand the observed inconsistent MPI
performance. Runtime profiling and debug options may be used to show
which transport strategy is used by the MPI library. Running the tests on other
systems may reveal if the issues are related to the specific system, library, or
something else.

To ensure the application is performance portable across systems,
automatic selection of communication strategy can be implemented.

Since using MPI with device buffers has been successful for the gather–
scatter operation it may be extended to other parts of the application as well.
In particular, the other sections with MPI communication is a global vector
sum operation and MPI-IO calls for writing data to disk.

Other communication models such as Partitioned Global Address Space
using the NVSHMEM library may also be tried.

6.4 Reflections

Optimizations of high-performance software lead to reduced energy con-
sumption. This means both that the software becomes more environmentally
friendly, and that it becomes cheaper to use and thus enables new applications
in science and engineering. In particular, fluid simulations are used to design
more energy-efficient means of transport.

References | 41

References

[1] TOP500.org, Top500 list june 2022, 2022. [Online]. Available:
https://www.top500.org/lists/top500/2022/06/
(visited on 06/03/2022).

[2] NVIDIA, CUDA C++ programming guide, Version 11.7.0. [Online].
Available: https://docs.nvidia.com/cuda/cuda- c-
programming-guide/index.html (visited on 05/12/2022).

[3] R. S. Rogallo and P. Moin, “Numerical simulation of turbulent flows”,
Annual Review of Fluid Mechanics, vol. 16, no. 1, pp. 99–137, Jan.
1984. doi: 10.1146/annurev.fl.16.010184.000531.

[4] G. N. Coleman and R. D. Sandberg, “A primer on direct numerical
simulation of turbulence – methods, procedures and guidelines”, 2010.
[Online]. Available: https://www.mech.kth.se/flow-old/
nordita2010/coleman_dns.pdf (visited on 05/12/2022).

[5] H. M. Tufo and P. F. Fischer, “Terascale spectral element algorithms and
implementations”, in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing, ser. SC ’99, New York, NY, USA: Association for
Computing Machinery, Jan. 1, 1999, 68–es, isbn: 9781581130911. doi:
10.1145/331532.331599.

[6] J. Bashor. “ACM Gordon Bell Prize recognizes top accomplishments
in running science apps on HPC”. (Aug. 25, 2016), [Online]. Available:
http : / / sc16 . supercomputing . org / 2016 / 08 /
25 / acm - gordon - bell - prize - recognizes - top -
accomplishments-running-science-apps-hpc/ (visited
on 01/28/2022).

[7] N. Offermans, O. Marin, M. Schanen, et al., “On the strong scaling
of the spectral element solver nek5000 on petascale systems”, in
Proceedings of the Exascale Applications and Software Conference
2016, ACM, Apr. 2016. doi: 10.1145/2938615.2938617.

https://www.top500.org/lists/top500/2022/06/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1146/annurev.fl.16.010184.000531
https://www.mech.kth.se/flow-old/nordita2010/coleman_dns.pdf
https://www.mech.kth.se/flow-old/nordita2010/coleman_dns.pdf
https://doi.org/10.1145/331532.331599
http://sc16.supercomputing.org/2016/08/25/acm-gordon-bell-prize-recognizes-top-accomplishments-running-science-apps-hpc/
http://sc16.supercomputing.org/2016/08/25/acm-gordon-bell-prize-recognizes-top-accomplishments-running-science-apps-hpc/
http://sc16.supercomputing.org/2016/08/25/acm-gordon-bell-prize-recognizes-top-accomplishments-running-science-apps-hpc/
https://doi.org/10.1145/2938615.2938617

42 | References

[8] N. Jansson, M. Karp, A. Podobas, S. Markidis, and P. Schlatter,
“Neko: A modern, portable, and scalable framework for high-fidelity
computational fluid dynamics”, CoRR, vol. abs/2107.01243, 2021.
arXiv: 2107.01243.

[9] Á. Tanarro, R. Vinuesa, and P. Schlatter, “Effect of adverse pressure
gradients on turbulent wing boundary layers”, Journal of Fluid
Mechanics, vol. 883, A8, 2020. doi: 10.1017/jfm.2019.838.

[10] TOP500.org, Green500 june 2022, 2022. [Online]. Available: https:
//www.top500.org/lists/green500/2022/06/ (visited
on 06/03/2022).

[11] T. Sterling, M. Anderson, and M. Brodowicz, High performance
computing: modern systems and practices. Elsevier, 2018, isbn: 0-12-
420215-2. doi: 10.1016/C2013-0-09704-6.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities”, in Proceedings of the April 18-20,
1967, spring joint computer conference, ACM Press, 1967. doi: 10.
1145/1465482.1465560.

[13] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda,
“MVAPICH2-GPU: Optimized GPU to GPU communication for
InfiniBand clusters”, Computer Science - Research and Development,
vol. 26, no. 3, p. 257, Apr. 12, 2011, issn: 1865-2042. doi: 10.1007/
s00450-011-0171-3.

[14] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K.
Panda, “Efficient inter-node MPI communication using GPUDirect
RDMA for InfiniBand clusters with NVIDIA GPUs”, in 2013 42nd
International Conference on Parallel Processing, ISSN: 2332-5690,
Oct. 2013, pp. 80–89. doi: 10.1109/ICPP.2013.17.

[15] AMD, AMD CDNA 2 architecture, 2021. [Online]. Available: https:
/ / www . amd . com / system / files / documents / amd -
cdna2-white-paper.pdf (visited on 01/18/2022).

[16] Oak Ridge National Laboratory, Frontier. [Online]. Available: https:
//www.olcf.ornl.gov/frontier/ (visited on 05/03/2022).

[17] PDC Center for High Performance Computing, About Dardel. [Online].
Available: https : / / www . pdc . kth . se / hpc - services /
computing-systems/about-dardel-1.1053338 (visited
on 05/03/2022).

https://arxiv.org/abs/2107.01243
https://doi.org/10.1017/jfm.2019.838
https://www.top500.org/lists/green500/2022/06/
https://www.top500.org/lists/green500/2022/06/
https://doi.org/10.1016/C2013-0-09704-6
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/s00450-011-0171-3
https://doi.org/10.1007/s00450-011-0171-3
https://doi.org/10.1109/ICPP.2013.17
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.olcf.ornl.gov/frontier/
https://www.olcf.ornl.gov/frontier/
https://www.pdc.kth.se/hpc-services/computing-systems/about-dardel-1.1053338
https://www.pdc.kth.se/hpc-services/computing-systems/about-dardel-1.1053338

References | 43

[18] NVIDIA, NVIDIA CUDA compute unified device architecture pro-
gramming guide, Version 1.0, 2007. [Online]. Available: https://
developer.download.nvidia.com/compute/cuda/1.
0/NVIDIA_CUDA_Programming_Guide_1.0.pdf (visited on
05/12/2022).

[19] AMD, AMD Instinct MI100 instruction set architecture: Reference
guide, 2020. [Online]. Available: https : / / developer . amd .
com / wp - content / resources / CDNA1 _ Shader _ ISA _
14December2020.pdf (visited on 02/21/2022).

[20] AMD, AMD Instinct high performance computing (HPC) and tuning
guide, Rev. 1027, 2021.

[21] J. Tu, G. H. Yeoh, and C. Liu, Computational Fluid Dynamics: A
Practical Approach, eng. Saint Louis: Elsevier Science & Technology,
2018, isbn: 9780081011270.

[22] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Meth-
ods for Incompressible Fluid Flow (Cambridge Monographs on
Applied and Computational Mathematics). Cambridge: Cambridge
University Press, 2002, isbn: 9780521453097. doi: 10 . 1017 /
CBO9780511546792.

[23] L. F. Richardson, Weather Prediction by Numerical Process (Cam-
bridge mathematical library), eng, Second edition.. Cambridge: Uni-
versity Press, 2007, isbn: 9780511340123.

[24] Clay Mathematics Institute, Navier–stokes equation. [Online]. Avail-
able: http : / / www . claymath . org / millennium -
problems/navier%E2%80%93stokes- equation (visited
on 01/25/2022).

[25] J. H. Spurk and N. Aksel, Fluid Mechanics. Springer International
Publishing, 2020. doi: 10.1007/978-3-030-30259-7.

[26] A. T. Patera, “A spectral element method for fluid dynamics: Laminar
flow in a channel expansion”, Journal of Computational Physics,
vol. 54, no. 3, pp. 468–488, Jun. 1984. doi: 10 . 1016 / 0021 -
9991(84)90128-1.

[27] G. E. Karniadakis, M. Israeli, and S. A. Orszag, “High-order splitting
methods for the incompressible Navier-Stokes equations”, eng, Journal
of computational physics, vol. 97, no. 2, pp. 414–443, 1991, issn: 0021-
9991. doi: 10.1016/0021-9991(91)90007-8.

https://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
https://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
https://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://doi.org/10.1017/CBO9780511546792
https://doi.org/10.1017/CBO9780511546792
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
https://doi.org/10.1007/978-3-030-30259-7
https://doi.org/10.1016/0021-9991(84)90128-1
https://doi.org/10.1016/0021-9991(84)90128-1
https://doi.org/10.1016/0021-9991(91)90007-8

44 | References

[28] P. Fischer, S. Kerkemeier, M. Min, et al., “NekRS, a GPU-Accelerated
Spectral Element Navier-Stokes Solver”, arXiv:2104.05829 [cs], Apr.
2021, arXiv: 2104.05829.

[29] R. Barrett, B. MW, T. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. Jan. 1, 1994, vol. 43.
doi: 10.1137/1.9781611971538.

[30] P. F. Fischer, “An overlapping schwarz method for spectral element
solution of the incompressible navier–stokes equations”, Journal of
Computational Physics, vol. 133, no. 1, pp. 84–101, May 1, 1997, issn:
0021-9991. doi: 10.1006/jcph.1997.5651.

[31] P. F. Fischer and J. W. Lottes, “Hybrid schwarz-multigrid methods for
the spectral element method: Extensions to navier-stokes”, in Domain
Decomposition Methods in Science and Engineering, T. J. Barth, M.
Griebel, D. E. Keyes, et al., Eds., ser. Lecture Notes in Computational
Science and Engineering, Berlin, Heidelberg: Springer, 2005, pp. 35–
49, isbn: 9783540268253. doi: 10.1007/3-540-26825-1_3.

[32] P. F. Fischer, “Projection techniques for iterative solution of ax = b with
successive right-hand sides”, Computer Methods in Applied Mechanics
and Engineering, vol. 163, no. 1, pp. 193–204, Sep. 21, 1998, issn:
0045-7825. doi: 10.1016/S0045-7825(98)00012-7.

[33] N. Jansson, “Spectral element simulations on the NEC SX-aurora
TSUBASA”, in The International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPC Asia 2021, New York, NY,
USA: Association for Computing Machinery, Jan. 20, 2021, pp. 32–39,
isbn: 9781450388429. doi: 10.1145/3432261.3432265.

[34] S. Markidis, J. Gong, M. Schliephake, et al., “OpenACC acceleration of
the nek5000 spectral element code”, The International Journal of High
Performance Computing Applications, vol. 29, no. 3, pp. 311–319, Mar.
2015. doi: 10.1177/1094342015576846.

[35] N. Chalmers, A. Mishra, D. McDougall, and T. Warburton, “HipBone:
A performance-portable GPU-accelerated c++ version of the NekBone
benchmark”, arXiv:2202.12477 [cs], Feb. 24, 2022. arXiv: 2202 .
12477.

https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1006/jcph.1997.5651
https://doi.org/10.1007/3-540-26825-1_3
https://doi.org/10.1016/S0045-7825(98)00012-7
https://doi.org/10.1145/3432261.3432265
https://doi.org/10.1177/1094342015576846
https://arxiv.org/abs/2202.12477
https://arxiv.org/abs/2202.12477

References | 45

[36] N. Dryden, N. Maruyama, T. Moon, et al., “Aluminum: An asyn-
chronous, GPU-aware communication library optimized for large-
scale training of deep neural networks on HPC systems”, in 2018
IEEE/ACM Machine Learning in HPC Environments (MLHPC), Nov.
2018, pp. 1–13. doi: 10.1109/MLHPC.2018.8638639.

[37] R. T. Mills, M. F. Adams, S. Balay, et al., “Toward performance-
portable PETSc for GPU-based exascale systems”, Parallel Computing,
vol. 108, p. 102 831, Dec. 1, 2021, issn: 0167-8191. doi: 10.1016/
j.parco.2021.102831.

[38] J. Zhang, J. Brown, S. Balay, et al., “The PetscSF scalable communi-
cation layer”, IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, pp. 842–853, Apr. 2022. doi: 10.1109/tpds.2021.
3084070.

[39] Z. Wang, K. Fidkowski, R. Abgrall, et al., “High-order CFD methods:
Current status and perspective”, International Journal for Numerical
Methods in Fluids, vol. 72, no. 8, pp. 811–845, 2013, issn: 1097-0363.
doi: 10.1002/fld.3767.

[40] Network-Based Computing Laboratory, OSU micro-benchmarks. [On-
line]. Available: https://mvapich.cse.ohio-state.edu/
benchmarks/ (visited on 04/26/2022).

[41] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-
aware MPI on RDMA-enabled clusters: Design, implementation and
evaluation”, IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595–2605, Oct. 2014, issn: 1558-2183. doi: 10.
1109/TPDS.2013.222.

[42] The Open MPI Project, FAQ: Running CUDA-aware Open MPI.
[Online]. Available: https : / / www . open - mpi . org / faq /
?category=runcuda (visited on 03/30/2022).

[43] AMD, ROCm collective communications library. [Online]. Available:
https : / / github . com / ROCmSoftwarePlatform / rccl
(visited on 04/26/2022).

[44] NVIDIA, NVSHMEM. [Online]. Available: https://developer.
nvidia.com/nvshmem (visited on 05/09/2022).

[45] AMD, ROCm OpenSHMEM (ROC_SHMEM). [Online]. Available:
https://github.com/ROCm- Developer- Tools/ROC_
SHMEM (visited on 04/26/2022).

https://doi.org/10.1109/MLHPC.2018.8638639
https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.1109/tpds.2021.3084070
https://doi.org/10.1109/tpds.2021.3084070
https://doi.org/10.1002/fld.3767
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1109/TPDS.2013.222
https://www.open-mpi.org/faq/?category=runcuda
https://www.open-mpi.org/faq/?category=runcuda
https://github.com/ROCmSoftwarePlatform/rccl
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://github.com/ROCm-Developer-Tools/ROC_SHMEM

46 | References

[46] Unified Communication Framework, OpenUCX frequently asked ques-
tions. [Online]. Available: https://openucx.readthedocs.
io/en/master/faq.html (visited on 05/09/2022).

https://openucx.readthedocs.io/en/master/faq.html
https://openucx.readthedocs.io/en/master/faq.html

TRITA-EECS-EX- 2022:00

www.kth.se

For DIVA
{
"Author1": { "Last name": "Wahlgren",
"First name": "Jacob",
"Local User Id": "u1gn1jgz",
"E-mail": "jacobwah@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
}
},
"Degree1": {"Educational program": "Master’s Programme, Computer Science, 120 credits"
,"programcode": "TCSCM"
,"Degree": "Master’s Programme, Computer Science, 120 credits"
,"subjectArea": "Computer Science"
},
"Title": {
"Main title": "Using GPU-aware message passing to accelerate high-fidelity fluid simulations",
"Language": "eng" },
"Alternative title": {
"Main title": "Användning av grafikprocessormedveten meddelandeförmedling för att accelerera nogranna strömningsmekaniska datorsimuleringar",
"Language": "swe"
},
"Supervisor1": { "Last name": "Jansson",
"First name": "Niclas",
"Local User Id": "u1fr0htl",
"E-mail": "njansson@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "PDC Center for High Performance Computing" }
},
"Supervisor2": { "Last name": "Karp",
"First name": "Martin",
"Local User Id": "u1g1zh7w",
"E-mail": "makarp@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "Computer Science" }
},
"Examiner1": { "Last name": "Markidis",
"First name": "Stefano",
"Local User Id": "u1y5heyt",
"E-mail": "markidis@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "Computer Science" }
},
"National Subject Categories": "10206, 20306",
"Other information": {"Year": "2022", "Number of pages": "xv,46"},
"Series": { "Title of series": "TRITA-EECS-EX" , "No. in series": "2022:00" },
"Opponents": { "Name": "Hilaire Bouaddi"},
"Presentation": { "Date": "2022-05-27 10:00"
,"Language":"eng"
,"Room": "Room 4423, Ingrid Melinder"
,Äddress": L̈indstedtsvägen 5, floor 4"
,"City": "Stockholm" },
"Number of lang instances": "2",
"Abstract[eng]": CCCC
Motivated by the end of Moore’s law, graphics processing units (GPUs) are replacing general-purpose processors as the main source of
computational power in emerging supercomputing architectures. A challenge in systems with GPU accelerators is the cost of transferring data
between the host memory and the GPU device memory. On supercomputers, the standard for communication between compute nodes is called
Message Passing Interface (MPI). Recently, many MPI implementations support using GPU device memory directly as communication buffers,
known as GPU-aware MPI.
One of the most computationally demanding applications on supercomputers is high-fidelity simulations of turbulent fluid flow. Improved
performance in high-fidelity fluid simulations can enable cases that are intractable today, such as a complete aircraft in flight.
In this thesis, we compare the MPI performance with host memory and GPU device memory, and demonstrate how GPU-aware MPI can be used to
accelerate high-fidelity incompressible fluid simulations in the spectral element code Neko. On a test system with NVIDIA A100 GPUs, we find that
MPI performance is similar using host memory and device memory, except for intra-node messages in the range of 1-64 KB which is significantly
slower using device memory, and above 1 MB which is faster using device memory. We also find that the performance of high-fidelity simulations in
Neko can be improved by up to 2.59 times by using GPU-aware MPI in the gather–scatter operation, which avoids several transfers between host
and device memory. CCCC,
"Keywords[eng]": CCCC
high-performance computing, computational fluid dynamics, spectral element method, graphical processing units, message passing interface
CCCC,
"Abstract[swe]": CCCC
Motiverat av slutet av Moores lag så har grafikprocessorer (GPU:er) börjat ersätta konventionella processorer som den huvudsakliga källan till
beräkningingskraft i superdatorer. En utmaning i system med GPU-acceleratorer är kostnaden att överföra data mellan värdminnet och
acceleratorminnet. På superdatorer är Message Passing Interface (MPI) en standard för kommunikation mellan beräkningsnoder. Nyligen stödjer
många MPI-implementationer direkt användning av acceleratorminne som kommunikationsbuffertar, vilket kallas GPU-aware MPI.
En av de mest beräkningsintensiva applikationerna på superdatorer är nogranna datorsimuleringar av turbulenta flöden. Förbättrad prestanda i
nogranna flödesberäkningar kan möjliggöra fall som idag är omöjliga, till exempel ett helt flygplan i luften.
I detta examensarbete jämför vi MPI-prestandan med värdminne och acceleratorminne, och demonstrerar hur GPU-aware MPI kan användas för

att accelerera nogranna datorsimuleringar av inkompressibla flöden i spektralelementkoden Neko. På ett testsystem med NVIDIA A100 GPU:er
finner vi att MPI-prestandan är liknande med värdminne och acceleratorminne. Detta gäller dock inte för meddelanden inom samma beräkningsnod
i intervallet 1-64 KB vilka är betydligt långsammare med acceleratorminne, och över 1 MB vilka är betydligt snabbare med acceleratorminne. Vi
finner också att prestandan av nogranna datorsimuleringar i Neko kan förbättras upp till 2,59 gånger genom användning av GPU-aware MPI i den
så kallade gather–scatter-operationen, vilket undviker flera överföringar mellan värdminne och acceleratorminne. CCCC,
"Keywords[swe]": CCCC
högprestandaberäkningar, beräkningsströmningsdynamik, spektralelementmetoden, grafikprocessorer, meddelandeförmedlingsgränssnitt CCCC,
}

	Introduction
	Motivation
	Problem
	Purpose
	Goals
	Research methodology
	Delimitations
	Structure of the thesis

	Background
	High-performance computing
	Message passing
	GPU acceleration

	Fluid mechanics
	Applications of computational fluid dynamics
	The Navier–Stokes equations

	Spectral element method
	Discretization method
	Iterative methods

	Related works
	Summary

	Methods
	Research process
	Verification method
	Application performance evaluation
	System performance evaluation
	Gather–scatter operation benchmark
	Experimental setup

	Accelerated gather–scatter communication
	Communication strategy
	Implementation

	Results and analysis
	Verification result
	Performance results
	System performance
	Gather–scatter performance
	Application performance

	Discussion

	Conclusions and future work
	Conclusions
	Limitations
	Future work
	Reflections

	References

