
Using GPU-aware message passing to accelerate high-fidelity fluid
simulations

Jacob Wahlgren
jacobwah@kth.se



Outline

1. Background: supercomputers, GPUs, message passing with MPI

2. Benchmarking GPU-aware MPI

3. Use case: computational fluid dynamics and Neko

4. Gather–scatter operation using GPU-aware MPI

5. Performance evaluation: speedup at scale

6. Conclusions

1/26



High-performance computing

Large computational problems

▶ Simulations in science and engineering

▶ Training large machine learning models

Supercomputers

▶ The fastest computers in the world

▶ Consist of many independent nodes

▶ Connected by high-speed network
Figure: Installation of Dardel at KTH in 2021.
Source: PDC.
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GPU acceleration

A trend in supercomputing

▶ End of Moore’s law

▶ Need for specialized hardware

▶ Graphics processing units (GPUs) provide
high throughput

▶ Used in many of the fastest
supercomputers

Figure: Frontier supercomputer at Oak Ridge
National Laboratory. Source: ORNL.
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GPU compute node

Host and device
▶ Initialization and program flow in CPU

▶ Compute power in GPU

▶ Separate memories

▶ Data movement is expensive

▶ Connected to high-speed network

CPU
64 cores

128 GB memory

GPU0
7,680 cores

32 GB memory

GPU1
7,680 cores

32 GB memory

NIC
100 Gb/s link

Figure: Example of a simple GPU compute node.
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Inter-process communication

Distributed computation

▶ Distribute over several processes

▶ Larger problems (memory limit)

▶ Faster solution (compute limit)

Message passing between processes

▶ Message Passing Interface (MPI)

▶ Functions include MPI Send and MPI Recv

▶ One process per GPU Figure: Four interconnected compute nodes.
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GPU-aware MPI

▶ Normally MPI buffers in host memory

▶ GPU-aware MPI enables buffers in device
memory

▶ Avoids data movement between host and
device memory

CPU

GPU0

GPU1

NIC

Figure: Example of a simple GPU compute node.
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Example of GPU-aware MPI

Without GPU-aware MPI

f o r 1 . .N {
d y = gpu compute ( d x )
h y = d e v i c e t o h o s t ( d y )
h z = mpi communicate ( h y )
d x = h o s t t o d e v i c e ( h z )

}

With GPU-aware MPI

f o r 1 . .N {
d y = gpu compute ( d x )
d z = mpi communicate ( d y )
d x = d z

}
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Research question 1

How does GPU-aware message passing with device memory buffers perform compared to
conventional message passing from host memory?
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Experimental setup

Alvis supercomputer at C3SE

▶ Four NVIDIA A100 40GB per node

▶ NVLink between GPUs on the same node

▶ InfiniBand HDR network

CPU0

CPU1

GPU1GPU0

GPU3GPU2

NIC0

NIC1

Figure: Alvis compute node.
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Benchmarking GPU-aware MPI between nodes

Inter-node latency

▶ Host memory faster than device memory for
the most part

▶ Network communication faster than
host-device copy

▶ Device memory faster than host-device copy
+ host memory MPI
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Benchmarking GPU-aware MPI on the same node

Intra-node latency

▶ Host memory is basically memcpy

▶ Device memory is sending between two GPUs

▶ GDRCopy or CUDA IPC depending on size

▶ Latency spike around 8 KB

▶ Host is bandwidth limited above 1 MB
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Using it in practice

▶ Benchmarks of GPU-aware MPI show mixed, but overall good results

▶ What about in an application?
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Computational fluid dynamics

Fluid flow
▶ Navier–Stokes equations

▶ Solved with numerical methods

▶ High-fidelity solutions require a lot of
computation

Many use cases

▶ Aerodynamics of planes, cars

▶ Heat transport in nuclear reactors

▶ Efficiency of wind farms
Figure: High-fidelity simulation of a Flettner rotor.
Source: Karp et al. 2022.
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Neko

Solver for incompressible fluids

▶ Supports GPU-acceleration

▶ Uses MPI communication

▶ Can scale to hundreds of GPUs

▶ Spectral element method for solving
Navier–Stokes
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Spectral element method

Spectral element method

▶ Domain decomposed into many small
parts called elements

▶ Polynomial basis of order N on each
element

▶ Computations done independently for
every element

▶ Results are merged using the
gather–scatter operation

Figure: Four elements, N = 2.

Figure: Four elements, N = 4.
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Gather–scatter operation

Main communication kernel
▶ Sum values at element boundaries

▶ Use MPI if elements owned by different
process

▶ In Neko executed in host memory

Figure: Arrows indicate shared points.
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Research question 2

How can GPU-aware message passing be leveraged to optimize large-scale fluid simulations in
the spectral element method?

17/26



Gather–scatter using GPU-aware MPI

Process 1

Process 2

Process 3

Gather buffer Gather bufferSend buffer Receive bufferNeighbors

Pack UnpackMPI_Isend MPI_Irecv
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Experimental setup

Alvis supercomputer at C3SE

▶ Four NVIDIA A100 40GB per node

▶ NVLink between GPUs on the same node

▶ InfiniBand HDR network

▶ One Neko process per GPU

CPU0

CPU1

GPU1GPU0

GPU3GPU2

NIC0

NIC1

Figure: Alvis compute node.
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Benchmarking the accelerated gather–scatter

▶ Strong scaling with 262K elements

▶ Main solver orders

▶ Slower at higher N

▶ Speedup across whole range
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Benchmarking the accelerated gather–scatter

▶ Coarse grid orders

▶ Faster than higher orders, but called more
often

▶ Spikes in execution time correlate with
MPI latency spikes

▶ Run time auto-tuning?
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Taylor–Green vortex

Smaller version (Re = 1600)

▶ 32K elements, main order N = 7

▶ Reference solution for verification

Larger version (Re = 5000)

▶ 262K elements, main order N = 9

▶ For evaluating the scaling

Figure: Velocity magnitude of the Taylor–Green
vortex at Re = 5000. Source: Jansson et al. 2021.
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Small Taylor–Green vortex

Using accelerated gather–scatter

▶ With few processes, communication is
small fraction

▶ With more processes, communication is
larger fraction

▶ Speedup of 1.66 at 12 GPUs
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  4  6  8  10  12

T
im
e

 p
e
r 
tim

e
s
te
p

 (
s
)

GPUs

Baseline
Accelerated

Figure: Strong scaling results.
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Large Taylor–Green vortex

Accelerated performance at scale

▶ Up to 128 GPUs

▶ Speedup of 2.59 at 64 GPUs

▶ Speedup of 1.58 at 128 GPUs
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Figure: Strong scaling results (logarithmic).
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Conclusions

GPU-aware MPI
▶ Overall good performance

▶ Bad intra-node at 1-64 KB

Accelerated gather–scatter in Neko

▶ Avoiding data movement enables speedup

▶ Will be included in v0.4

Future work
▶ Investigate intra-node performance issues

▶ Test on other systems

▶ Usage of GPU-aware MPI in other
applications
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Thanks for listening!

Supervisors: Niclas Jansson, Martin Karp
Examiner: Stefano Markidis
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