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Summary
e We (re)develop Morse theory for distance functions dist,, | , between subsets X
and Y of R".

e We establish that the nondegeneracy of distance functions between real
complete intersections is generic.

e \We also compute bounds for the number of critical points of such functions.
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Differential theory for locally Lipschitz functions
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éx?; fffffffff Subdifferential

e Let X < R" be a smooth submanifold, /: X — R alocally Lipschitz function, and
x € X.

e Denote by Q)(f) the set of differentiable points of f, of full measure by
Rademacher’s theorem.

e The subdifferential of / at x is the convex body

d,.f:=conv{ lim D, f the limit exists

Xp—X
XkEQ(f)

® The point x is critical if 0 € 0_f.
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Proposition

e Let X < R" be asubmanifoldand ¥ < R" a closed semialgebraic set such that X
is transverse to Y (and the closure of its medial axis).

e Then the subdifferential of f = dist, |, at a point x € X is

X_

——— | ¥ € B(x, disty(x)) N Y} .
[x = ¥li

d,f = proj; 5 conv {
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WE Subdifferential

Example: in R”, T X
X
Yo Y1
Y
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Example: in R?, T X

Yo Y1
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Example: in R?, T X

Yo Y1
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4 Continuous selections

e Let f,...,f : X — Rbe ¥~ functions.

* A continuous selectionof f,..., / isafunction f: X — RIf f is continuous and,
forall x € X, there exists i € {0, ..., m} such that f(x) = f.(x).
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wed  Continuous selections

e Let f,...,f : X — Rbe ¥~ functions.
* A continuous selectionof f,..., / isafunction f: X — RIf f is continuous and,
forall x € X, there exists i € {0, ..., m} such that f(x) = f.(x).

e Forall x € X, we define its effective index set as
I(x):={ie{0,...,m} | x €closint{x' € X | f(x") = fi(x")}}.

e Fact: the subdifferential of f at xisconv{D_f | i€ I(x)}.
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Example:
3’.1
Xy,
Y,
continuous selection not a continuous selection
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W Continuous selections

Example:
i Y1
dlsty1 .
'y() diStyO
dlsty2 .
Yo
continuous selection not a continuous selection
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e A critical point x of a continuous selection f is nondegenerate if:
1. forevery i € I(x), the set of differentials {ijj. | e I(x)~{i}}islinearly
independent; and
2. writing ), ;. A;D_f; = 0 for the convex combination showing criticalness,
the second differential of ), _, ., A,/ is nondegenerate on (), kerD_f.
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%% Nondegenerate critical points

Example: in R”,

Y
Yy, SR 7 Yo
\\ // \ / /
Yo
nondegenerate critical degenerate critical point ~ degenerate critical point
point for the first condition for the second condition
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Example: in R”,

Y1 Y
e N .
" Yo ! by y
Ovf <] +Yo 25 ¢ <)f> 1Yo of
\ / / Ocf =10}
Yo j/' é

nondegenerate critical degenerate critical point  degenerate critical point
point for the first condition for the second condition
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¥4 Critical indices

e We denote by k(x) := #1(x) — 1 the piecewise linear index of x and by ((x) the
negative inertia index of the above restricted second differential, which we call
the quadratic index of x.

e We denote by C; (X, Y) the set of nondegenerate critical points with piecewise
linear index k and quadratic index .
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Example: in R?,

Yoo

Yo
yO. X .yl X

Y

index (1,0) index (0, 0) index (0, 1)
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4o  Normal forms

Proposition [Jongen-Pallaschke 1988]

e For a continuous selection f: X — R and a nondegenerate critical point x € X
with piecewise linear index k and quadratic index (, there exists a neighborhood U
of x and a locally Lipschitz homeomorphism 1): R* x R" % — [/ such that

k+1 n
fQ@lty,ost)) = FO) + L(ty, ..., ) = ) 2+ ) (7,
j=k+1 j=k+1+1

where 7 is a continuous selectionof t, ..., ¢, —(f; + -+ ,).
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Y5 Sufficient condition for continuous selection

Proposition

e Let V < R" be a smooth submanifold, : NV — R" the exponential map, sending
(v,v)toy+v,and x € R" aregular value of ¢.

* Then:
1. B(x,dist,(x)) NYis afinite set {y,, ..., y,}; and
2. disty | 5, 5 is a continuous selection of the functions dist, | . |5 5)-
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s Qufficient condition for continuous selection

Example: T X

X

Yo Y1
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Example:
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w7 Between critical values

Proposition [Clarke 1976, Agrachev-Pallaschke-Scholtes 1997]

o |et and an interval containing no critical values.
e Then the space deformation retracts to the space
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Proposition, follows from [Agrachev-Pallaschke-Scholtes 1997]

e Let X < R" be asmooth manifold and ¥ < R" a closed semialgebraic set.

e Let c > 0 be a critical value of f = dist, |, such that the associated critical points
x,,...,x,  areallnondegenerate. Then

H>I< ({f < C+€}, {f < C_g}) ~ éH* (Sk(xi)+l(xi))-

i=1
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4% Morse inequalities
Proposition

e Let X < R" be a smooth, compact, semialgebraic manifold and ¥ < R" a closed
semialgebraic set such that all critical points of dist,, | , are nondegenerate.

e Then, for every integer 1 = 0,

Z( Db, (X) < Z( Dl (b XNY)+ ), #C (X, Y))

k+(=i

where the b. are cohomology dimensions.
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Y Morse inequalities

e Consequently,

XxXNY)+ ) (—D#C (X, 7) = x(X).
k,.=0

e |f Vis also smooth and compact, and dist, |, has only nondegenerate critical
points, then

x(Y)+ ) (—D#C (X, V) = x(X) + ), (-D*"#C, (¥, X).
k,.=0 k,.=0
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4w Complete intersections

e Consider the set of complete intersections in R" of codimension m whose
defining polynomials all have degree at most d.

e Denote by ¢ the open subset of (R[x,...,x |_;)" whose elements generate
such complete intersections.

Isaac Ren 10th International Mathematics and Informatics Conference 22/30



as

ag?%%%a

EEEEEEEEE

e Consider the set of complete intersections in
defining polynomials all have degree at most

e Denote by the open subset of
such complete intersections.

of codimension m whose

whose elements generate

o |et and be tuples of n-variable polynomials, and

, and consider

e We will show that, generically, the function
critical points are nondegenerate.

is “Morse”, i.e. all of its
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e We recover real versions of previously studied notions:
e When (and so ), a critical point of piecewise linear index k is a
real geometric -bottleneck [Di Rocco et al. 2023].
® The real bottleneck degree is the number of such geometric 2-bottlenecks.
* When IS a generic point, the number of critical points is related to
the Euclidean distance degree.

e Our bounds on the number of critical points complement and generalize the
known bounds on these values.
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Proposition

e Ford = 2 and generic § € ¢, forall x € R", the set B(x, dist,(x)) NYisa
nondegenerate simplex.
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e Ford = 2 and generic § € ¢, forall x € R", the set B(x, dist,(x)) NYisa
nondegenerate simplex.

Idea of proof:
e We follow the strategy of [Yomdin 1981].
* |n particular, we use the parametric transversality theorem of [Hirsch 1976].
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Theorem
® Ford,,d, = 3 and generic p Céjl and g € <€”; there are a finite number of

critical points.
e The number of critical points with piecewise linear index k is bounded above by

c(k, £,m,n)drdy "+,
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Theorem

e For and generic and , there are a finite number of
critical points.
e The number of critical points with piecewise linear index k is bounded above by

Idea of proof:

e We follow a similar approach to [Di Rocco et al. 2023], defining necessary
algebraic equations for critical points of

e We use a parametric transversality result to show that this set is finite.

e The upper bound follows from a bound on the Betti numbers of an algebraic set
[Basu-Rizzie 2018].



&

L% Genericity for complete intersections
gKTHg@

EEEEEEEEE
28 OCH KONST 9%
G sl
Lo

e Specifically, we define

€q X Cg X R"x RV N A) xR — JIRY,RY) x ;. JI(R",R™) x R

F: > - > 7 5 (ij)(x))vp)(x)yy) C_l)()_’)), vq(j}))
(paqaxayzﬂ-ap:'zar) — Zﬁ';'r)

4

( (x,3,@1) € J'(R",RY), x—Zf 11U + YK Ay \
(J,T,V) € e J TR, R™), Zl:o& — .
W= d A € R*, Vjie{l,...,0}, s;=0, }
' ii € R, Vie{0,...,k}, Yje{l,...,m}, t; =0, [~
5 e R&+Dxm Vi €40, ...,k}, [|x —y,;||> =17,
\ r € R Vie{0,...,k}, T, &v; = x — y, J

e The intersection im F(p, g, —) N W defines algebraic k-critical points w.r.t. j, q.
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Proposition

® Ford, = 3andd, = 4, and generic p Céfl and g € <€C’];, the distance function
dist, | , is a continuous selection around each of its critical points.
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Proposition

® Ford, =3 andd, = 4,and generic p %jl and g € <€”; the distance function
dist, | , is a continuous selection around each of its critical points.

Idea of proof:

e We show that the critical points of dist, | , are all regular values of the
exponential map of V.
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Theorem

® Ford,,d, = 4andgeneric p € %fl and g < ¢, the critical points of disty |, are
all nondegenerate.

Isaac Ren 10th International Mathematics and Informatics Conference

28/30



by

L% Genericity for complete intersections
ZKTH?Y

VETENSKAP %
28 OCH KONST 9%

St

Theorem

® Ford,,d, = 4andgeneric p € %jl and g € Cg”; the critical points of dist, | , are
all nondegenerate.

Idea of proof:

e \We define necessary algebraic equations for degenerateness, and then
generically avoid this set.
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Summary

e We (re)develop Morse theory for distance functions between subsets of
using the notion of continuous selections.

e We establish that the nondegeneracy of distance functions between algebraic
hypersurfaces is generic.

e We also compute bounds for the number of critical points of such functions,
which generalize bounds on the bottleneck degree and the Euclidean distance
degree.

® Our results should hold in the complex case as well.
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