

Morse theory of distance functions between algebraic varieties

Isaac Ren with A. Guidolin, A. Lerario, and M. Scolamiero
September 8-12, 2025 — 10th International Mathematics and Informatics Conference

Summary

- We (re)develop Morse theory for distance functions $\operatorname{dist}_Y|_X$ between subsets X and Y of \mathbb{R}^n .
- We establish that the **nondegeneracy** of distance functions between real complete intersections is **generic**.
- We also compute bounds for the number of critical points of such functions.

Subdifferential

- Let $X \subseteq \mathbb{R}^n$ be a smooth submanifold, $f: X \to \mathbb{R}$ a locally Lipschitz function, and $x \in X$.
- Denote by $\Omega(f)$ the set of differentiable points of f, of full measure by Rademacher's theorem.
- The subdifferential of f at x is the convex body

$$\partial_x f := \operatorname{conv} \left\{ \lim_{\substack{x_k \to x \\ x_k \in \Omega(f)}} D_{x_k} f \mid \text{ the limit exists} \right\}.$$

• The point x is **critical** if $0 \in \partial_x f$.

Subdifferential

Proposition

- Let $X \subseteq \mathbb{R}^n$ be a submanifold and $Y \subseteq \mathbb{R}^n$ a closed semialgebraic set such that X is transverse to Y (and the closure of its medial axis).
- Then the subdifferential of $f = \operatorname{dist}_{V}|_{X}$ at a point $X \in X$ is

$$\partial_x f = \operatorname{proj}_{T_x X} \operatorname{conv} \left\{ \frac{x - y}{\|x - y\|} \mid y \in B(x, \operatorname{dist}_Y(x)) \cap Y \right\}.$$

Subdifferential

Subdifferential

Subdifferential

Continuous selections

- Let $f_0, \ldots, f_m : X \to \mathbb{R}$ be \mathscr{C}^2 functions.
- A continuous selection of $f_0, ..., f_m$ is a function $f: X \to \mathbb{R}$ if f is continuous and, for all $x \in X$, there exists $i \in \{0, ..., m\}$ such that $f(x) = f_i(x)$.

Continuous selections

- Let $f_0, \ldots, f_m : X \to \mathbb{R}$ be \mathscr{C}^2 functions.
- A continuous selection of f_0, \ldots, f_m is a function $f: X \to \mathbb{R}$ if f is continuous and, for all $x \in X$, there exists $i \in \{0, \ldots, m\}$ such that $f(x) = f_i(x)$.
- For all $x \in X$, we define its **effective index set** as

$$I(x) := \{i \in \{0, ..., m\} \mid x \in \text{clos int} \{x' \in X \mid f(x') = f_i(x')\}\}.$$

• Fact: the subdifferential of f at x is $conv\{D_x f_i \mid i \in I(x)\}$.

Continuous selections

Example:

Continuous selections

Nondegenerate critical points

- A critical point x of a continuous selection f is nondegenerate if:
 - 1. for every $i \in I(x)$, the set of differentials $\{D_x f_j \mid j \in I(x) \setminus \{i\}\}$ is linearly independent; and
 - 2. writing $\sum_{i \in I(x)} \lambda_i D_x f_i = 0$ for the convex combination showing criticalness, the second differential of $\sum_{i \in I(x)} \lambda_i f_i$ is nondegenerate on $\bigcap_{i \in I(x)} \ker D_x f_i$.

Nondegenerate critical points

nondegenerate critical point

degenerate critical point for the first condition

degenerate critical point for the second condition

Nondegenerate critical points

Example: in R³,

nondegenerate critical point

degenerate critical point for the first condition

degenerate critical point for the second condition

Critical indices

- We denote by k(x) := #I(x) 1 the **piecewise linear index of** x and by $\iota(x)$ the negative inertia index of the above restricted second differential, which we call the **quadratic index of** x.
- We denote by $C_{k,\iota}(X,Y)$ the set of nondegenerate critical points with piecewise linear index k and quadratic index ι .

Critical indices

Normal forms

Proposition [Jongen-Pallaschke 1988]

• For a continuous selection $f: X \to \mathbb{R}$ and a nondegenerate critical point $x \in X$ with piecewise linear index k and quadratic index ι , there exists a neighborhood U of x and a locally Lipschitz homeomorphism $\psi: \mathbb{R}^k \times \mathbb{R}^{n-k} \to U$ such that

$$f(\psi(t_1,\ldots,t_n)) = f(x) + \ell(t_1,\ldots,t_k) - \sum_{j=k+1}^{k+l} t_j^2 + \sum_{j=k+l+1}^{n} t_j^2,$$

where ℓ is a continuous selection of $t_1, \ldots, t_k, -(t_1 + \cdots + t_k)$.

Sufficient condition for continuous selection

Proposition

- Let $Y \subseteq \mathbb{R}^n$ be a smooth submanifold, $\varphi \colon NY \to \mathbb{R}^n$ the exponential map, sending (y, v) to y + v, and $x \in \mathbb{R}^n$ a regular value of φ .
- Then:
 - 1. $B(x, \operatorname{dist}_{Y}(x)) \cap Y$ is a finite set $\{y_0, \dots, y_k\}$; and
 - 2. $\operatorname{dist}_{Y}|_{B(x,\delta)}$ is a continuous selection of the functions $\operatorname{dist}_{B(y_i,\varepsilon)\cap Y}|_{B(x,\delta)}$.

Sufficient condition for continuous selection

Example:

Sufficient condition for continuous selection

Example:

Between critical values

Proposition [Clarke 1976, Agrachev-Pallaschke-Scholtes 1997]

- Let $f = \operatorname{dist}_V|_X$ and $[a, b] \subseteq \mathbb{R}$ an interval containing no critical values.
- Then the space $\{f \leq b\}$ deformation retracts to the space $\{f \leq a\}$.

Passing a critical value

Proposition, follows from [Agrachev-Pallaschke-Scholtes 1997]

- Let $X \subseteq \mathbb{R}^n$ be a smooth manifold and $Y \subseteq \mathbb{R}^n$ a closed semialgebraic set.
- Let c > 0 be a critical value of $f = \operatorname{dist}_Y|_X$ such that the associated critical points x_1, \ldots, x_m are all nondegenerate. Then

$$H^*\left(\{f \leq c + \varepsilon\}, \{f \leq c - \varepsilon\}\right) \cong \bigoplus_{i=1}^m \tilde{H}^*\left(S^{k(x_i) + \iota(x_i)}\right).$$

Morse inequalities

Proposition

- Let $X \subseteq \mathbb{R}^n$ be a smooth, compact, semialgebraic manifold and $Y \subseteq \mathbb{R}^n$ a closed semialgebraic set such that all critical points of $\operatorname{dist}_V|_X$ are nondegenerate.
- Then, for every integer $\lambda \geq 0$,

$$\sum_{i=0}^{\lambda} (-1)^{i+\lambda} b_i(X) \le \sum_{i=0}^{\lambda} (-1)^{i+\lambda} \left(b_i(X \cap Y) + \sum_{k+\iota = i} \# C_{k,\iota}(X,Y) \right),$$

where the b_i are cohomology dimensions.

Morse inequalities

· Consequently,

$$\chi(X \cap Y) + \sum_{k,\iota \geq 0} (-1)^{k+\iota} \# C_{k,\iota}(X,Y) = \chi(X).$$

• If Y is also smooth and compact, and $\operatorname{dist}_X|_Y$ has only nondegenerate critical points, then

$$\chi(Y) + \sum_{k,\iota \geq 0} (-1)^{k+\iota} \# C_{k,\iota}(X,Y) = \chi(X) + \sum_{k,\iota \geq 0} (-1)^{k+\iota} \# C_{k,\iota}(Y,X).$$

Complete intersections

- Consider the set of **complete intersections** in \mathbb{R}^n of codimension m whose defining polynomials all have degree at most d.
- Denote by \mathscr{C}_d^m the open subset of $(\mathbf{R}[x_1,\ldots,x_n]_{\leq d})^m$ whose elements generate such complete intersections.

Complete intersections

- Consider the set of **complete intersections** in \mathbb{R}^n of codimension m whose defining polynomials all have degree at most d.
- Denote by \mathcal{C}_d^m the open subset of $(\mathbf{R}[x_1,\ldots,x_n]_{\leq d})^m$ whose elements generate such complete intersections.
- Let $\vec{p} \in \mathscr{C}^{\ell}_{d_1}$ and $\vec{q} \in \mathscr{C}^m_{d_2}$ be tuples of n-variable polynomials, $X \coloneqq Z(\vec{p})$ and $Y \coloneqq Z(\vec{q})$, and consider $\operatorname{dist}_Y|_X$.
 - We will show that, generically, the function $\operatorname{dist}_Y|_X$ is "Morse", i.e. all of its critical points are nondegenerate.

Related settings

- We recover real versions of previously studied notions:
 - When $\vec{p} = \{0\}$ (and so $X = \mathbb{R}^n$), a critical point of piecewise linear index k is a real geometric (k+1)-bottleneck [Di Rocco et al. 2023].
 - The real bottleneck degree is the number of such geometric 2-bottlenecks.
 - When $Y = \{y\}$ is a generic point, the number of critical points is related to the **Euclidean distance degree**.
- Our bounds on the number of critical points complement and generalize the known bounds on these values.

Proposition

• For $d \ge 2$ and generic $\vec{q} \in \mathscr{C}_d^m$, for all $x \in \mathbb{R}^n$, the set $B(x, \operatorname{dist}_Y(x)) \cap Y$ is a nondegenerate simplex.

Proposition

• For $d \ge 2$ and generic $\vec{q} \in \mathscr{C}_d^m$, for all $x \in \mathbb{R}^n$, the set $B(x, \operatorname{dist}_Y(x)) \cap Y$ is a nondegenerate simplex.

Idea of proof:

- We follow the strategy of [Yomdin 1981].
- In particular, we use the parametric transversality theorem of [Hirsch 1976].

Theorem

- For $d_1, d_2 \ge 3$ and generic $\vec{p} \in \mathscr{C}^{\ell}_{d_1}$ and $\vec{q} \in \mathscr{C}^m_{d_2}$, there are a finite number of critical points.
- The number of critical points with piecewise linear index k is bounded above by $c(k, \ell, m, n)d_1^nd_2^{n(k+1)}$.

Theorem

- For $d_1, d_2 \ge 3$ and generic $\vec{p} \in \mathscr{C}_{d_1}^{\ell}$ and $\vec{q} \in \mathscr{C}_{d_2}^{m}$, there are a finite number of critical points.
- The number of critical points with piecewise linear index k is bounded above by $c(k, \ell, m, n)d_1^n d_2^{n(k+1)}$.

Idea of proof:

- We follow a similar approach to [Di Rocco et al. 2023], defining necessary algebraic equations for critical points of $\operatorname{dist}_{v}|_{v}$.
- We use a parametric transversality result to show that this set is finite.
- The upper bound follows from a bound on the Betti numbers of an algebraic set [Basu-Rizzie 2018].

• Specifically, we define

$$F \colon \left\{ \begin{array}{l} \mathcal{C}_{d_{1}}^{\ell} \times \mathcal{C}_{d_{2}}^{m} \times \mathbf{R}^{n} \times (\mathbf{R}^{n(k+1)} \smallsetminus \Delta) \times \mathbf{R}^{L} \to J^{1}(\mathbf{R}^{n}, \mathbf{R}^{\ell}) \times_{k+1} J^{1}(\mathbf{R}^{n}, \mathbf{R}^{m}) \times \mathbf{R}^{L} \\ (\vec{p}, \vec{q}, x, \vec{y}, \vec{\lambda}, \vec{\mu}, \Xi, r) & \mapsto \begin{pmatrix} (x, \vec{p}(x), \nabla \vec{p}(x), \vec{y}, \vec{q}(\vec{y}), \nabla \vec{q}(\vec{y}), \\ \vec{\lambda}, \vec{\mu}, \Xi, r) \end{pmatrix} \\ W \coloneqq \left\{ \begin{array}{l} (x, \vec{s}, \vec{u}) \in J^{1}(\mathbf{R}^{n}, \mathbf{R}^{\ell}), \\ (\vec{y}, T, V) \in_{k+1} J^{1}(\mathbf{R}^{n}, \mathbf{R}^{m}), \\ \vec{\lambda} \in \mathbf{R}^{k+1}, \\ \vec{\mu} \in \mathbf{R}^{\ell}, \\ \Xi \in \mathbf{R}^{(k+1) \times m}, \\ r \in \mathbf{R} \end{array} \right. \left\{ \begin{array}{l} x = \sum_{j=1}^{\ell} \mu_{j} u_{j} + \sum_{i=0}^{k} \lambda_{i} y_{i}, \\ \sum_{i=0}^{k} \lambda_{i} = 1, \\ \forall j \in \{1, \dots, \ell\}, \ s_{i} = 0, \\ \forall i \in \{0, \dots, k\}, \ \forall j \in \{1, \dots, m\}, \ t_{ij} = 0, \\ \forall i \in \{0, \dots, k\}, \ \|x - y_{i}\|^{2} = r^{2}, \\ \forall i \in \{0, \dots, k\}, \ \sum_{j=1}^{m} \xi_{ij} v_{ij} = x - y_{i} \end{array} \right\}$$

• The intersection $\operatorname{im} F(\vec{p}, \vec{q}, -) \cap W$ defines algebraic k-critical points w.r.t. \vec{p}, \vec{q} .

Proposition

• For $d_1 \geq 3$ and $d_2 \geq 4$, and generic $\vec{p} \in \mathscr{C}_{d_1}^{\ell}$ and $\vec{q} \in \mathscr{C}_{d_2}^{m}$, the distance function $\operatorname{dist}_{\gamma}|_{X}$ is a continuous selection around each of its critical points.

Proposition

• For $d_1 \geq 3$ and $d_2 \geq 4$, and generic $\vec{p} \in \mathscr{C}_{d_1}^{\ell}$ and $\vec{q} \in \mathscr{C}_{d_2}^{m}$, the distance function $\operatorname{dist}_{Y}|_{X}$ is a continuous selection around each of its critical points.

Idea of proof:

• We show that the critical points of $\operatorname{dist}_Y|_X$ are all regular values of the exponential map of Y.

Theorem

• For $d_1, d_2 \ge 4$ and generic $\vec{p} \in \mathscr{C}^{\ell}_{d_1}$ and $\vec{q} \in \mathscr{C}^m_{d_2}$, the critical points of $\operatorname{dist}_Y|_X$ are all nondegenerate.

Theorem

• For $d_1, d_2 \ge 4$ and generic $\vec{p} \in \mathscr{C}^{\ell}_{d_1}$ and $\vec{q} \in \mathscr{C}^m_{d_2}$, the critical points of $\operatorname{dist}_Y|_X$ are all nondegenerate.

Idea of proof:

• We define necessary algebraic equations for degenerateness, and then generically avoid this set.

Summary

- We (re)develop Morse theory for distance functions between subsets of \mathbb{R}^n using the notion of **continuous selections**.
- We establish that the **nondegeneracy** of distance functions between algebraic hypersurfaces **is generic**.
- We also compute bounds for the number of critical points of such functions, which generalize bounds on the bottleneck degree and the Euclidean distance degree.
 - Our results should hold in the complex case as well.

Thank you for your attention :)

References

- F. H. Clarke. On the inverse function theorem, 1976.
- Y. Yomdin. On the local structure of a generic central set, 1981.
- H. T. Jongen and D. Pallaschke. On linearization and continuous selections of functions, 1988.
- A. A. Agrachev, D. Pallaschke, and S. Scholtes. On Morse theory for piecewise smooth functions, 1997.
- S. Di Rocco, P. B. Edwards, D. Eklund, O. Gäfvert, and J. D. Hauenstein. *Computing Geometric Feature Sizes for Algebraic Manifolds*, 2023.
- A. Song, K. M. Yim, and A. Monod. *Generalized Morse theory of distance functions to surfaces for persistent homology*, 2023.
- **Preprint:** A. Guidolin, A. Lerario, I. Ren, and M. Scolamiero. *Morse theory of Euclidean distance functions and applications to real algebraic geometry*, arXiv:2402.08639.