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Introduction

Summary

• We (re)developMorse theory for distance functions between subsets of 𝐑𝑛.

• We establish that the nondegeneracy of distance functions between algebraic

hypersurfaces is generic.

• We also compute bounds for the number of critical points of such functions.
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Subdifferential

• Let 𝑋 ⊆ 𝐑𝑛 be a smooth submanifold, 𝑓∶ 𝑋 → 𝐑 a locally Lipschitz function, and

𝑥 ∈ 𝑋.
• Denote by Ω(𝑓) the set of differentiable points of 𝑓, of full measure by

Rademacher’s theorem.

• The subdifferential of 𝑓 at 𝑥 is the convex body

𝜕𝑥𝑓 ≔ conv
⎧

⎨
⎩

lim
𝑥𝑘→𝑥

𝑥𝑘∈Ω(𝑓)

𝐷𝑥𝑘
𝑓

|

| the limit exists
⎫

⎬
⎭
.

• The point 𝑥 is critical if 0 ∈ 𝜕𝑥𝑓.
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Proposition

• Let 𝑋 ⊆ 𝐑𝑛 be a submanifold and 𝑌 ⊆ 𝐑𝑛 a closed semialgebraic set such that 𝑋
is transverse to 𝑌 (and the closure of its medial axis).

• Then the subdifferential of 𝑓 = dist𝑌|𝑋 at a point 𝑥 ∈ 𝑋 is

𝜕𝑥𝑓 = proj𝑇𝑥𝑋
conv{

𝑥 − 𝑦
‖𝑥 − 𝑦‖

| 𝑦 ∈ 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌} .
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Example:

𝑌

𝑋

𝑥−𝑦2
𝑟

𝑥−𝑦1
𝑟

𝜕𝑥𝑓

𝑥𝑦1 𝑦2
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Continuous selections

• Let 𝑓0,… , 𝑓𝑚 ∶ 𝑋 → 𝐑 be continuous functions.

• A continuous selection of 𝑓0,… , 𝑓𝑚 is a function 𝑓∶ 𝑋 → 𝐑 if 𝑓 is continuous and,
for all 𝑥 ∈ 𝑋, there exists 𝑖 ∈ {0,… ,𝑚} such that 𝑓(𝑥) = 𝑓𝑖(𝑥).

• For all 𝑥 ∈ 𝑋, we define its effective index set as

𝐼(𝑥) ≔ {𝑖 ∈ {0,… ,𝑚} ∣ 𝑥 ∈ clos int{𝑦 ∈ 𝑋 ∣ 𝑓(𝑦) = 𝑓𝑖(𝑦)}} .

• Fact: the subdifferential of 𝑓 at 𝑥 is conv{𝐷𝑥𝑓𝑖 ∣ 𝑖 ∈ 𝐼(𝑥)}.
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• A critical point 𝑥 of 𝑓 is nondegenerate if:

1. for every 𝑖 ∈ 𝐼(𝑥), the set of differentials {𝐷𝑥𝑓𝑗 ∣ 𝑗 ∈ 𝐼(𝑥) ∖ {𝑖}} is linearly
independent; and

2. writing ∑𝑖∈𝐼(𝑥) 𝜆𝑖𝐷𝑥𝑓𝑖 = 0 for the convex combination showing criticalness,

the second differential of ∑𝑖∈𝐼(𝑥) 𝜆𝑖𝑓𝑖 is nondegenerate on ⋂𝑖∈𝐼(𝑥) ker𝐷𝑥𝑓𝑖.

• We denote by 𝑘(𝑥) ≔ #𝐼(𝑥) − 1 the piecewise linear index of 𝑥 and by 𝜄(𝑥) the
negative inertia index of the above restricted second differential, which we call

the quadratic index of 𝑥.
• We denote by 𝐶𝑘,𝜄(𝑋, 𝑌) the set of nondegenerate critical points with
piecewise linear index 𝑘 and quadratic index 𝜄.
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Normal forms

Proposition [Jongen-Pallaschke 1988]

• For a continuous selection 𝑓∶ 𝑋 → 𝐑 and a nondegenerate critical point 𝑥 ∈ 𝑋
with piecewise linear index 𝑘 and quadratic index 𝜄, there exists a neighborhood 𝑈
of 𝑥 and a locally Lipschitz homeomorphism 𝜓∶ 𝐑𝑘 ×𝐑𝑛−𝑘 → 𝑈 such that

𝑓(𝜓(𝑡1,… , 𝑡𝑛)) = 𝑓(𝑥) + ℓ(𝑡1,… , 𝑡𝑘) −
𝑘+𝜄
∑

𝑗=𝑘+1
𝑡2𝑗 +

𝑛
∑

𝑗=𝑘+𝜄+1
𝑡2𝑗 ,

where ℓ is a continuous selection of 𝑡1,… , 𝑡𝑘, −(𝑡1 +⋯+ 𝑡𝑘).
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functions

Proposition

• Let 𝑌 ⊆ 𝐑𝑛 be a smooth submanifold, 𝜑∶ 𝑁𝑌 → 𝐑𝑛 the exponential map, sending

(𝑦, 𝑣) to 𝑦 + 𝑣, and 𝑥 ∈ 𝐑𝑛 a regular value of 𝜑.
• Then:

1. 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 is a finite set {𝑦0,… , 𝑦𝑘}; and
2. dist𝑌|𝐵(𝑥,𝛿) is a continuous selection of the functions dist𝐵(𝑦𝑖,𝜀)∩𝑌

|𝐵(𝑥,𝛿).
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Between critical values

Proposition [Agrachev-Pallaschke-Scholtes 1997] actually it’s Clarke

• Let 𝑓 = dist𝑌|𝑋 and [𝑎, 𝑏] ⊆ 𝐑 an interval containing no critical values.

• Then the space {𝑓 ≤ 𝑏} deformation retracts to the space {𝑓 ≤ 𝑎}.
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Morse theory for distance functions

Passing a critical value

Proposition, follows from [Agrachev-Pallaschke-Scholtes 1997]

• Let 𝑋 ⊆ 𝐑𝑛 be a smooth manifold and 𝑌 ⊆ 𝐑𝑛 a closed semialgebraic set.

• Let 𝑐 > 0 be a critical value of 𝑓 = dist𝑌|𝑋 such that the associated critical points

𝑥1,… , 𝑥𝑚 are all nondegenerate. Then

𝐻∗ ({𝑓 ≤ 𝑐 + 𝜀}, {𝑓 ≤ 𝑐 − 𝜀}) ≅
𝑚
⨁
𝑖=1

�̃�∗ (𝑆𝑘(𝑥𝑖)+𝜄(𝑥𝑖)) .
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Morse theory for distance functions

Morse inequalities

Proposition

• Let 𝑋 ⊆ 𝐑𝑛 be a smooth, compact, semialgebraic manifold and 𝑌 ⊆ 𝐑𝑛 a closed

semialgebraic set such that all critical points of dist𝑌|𝑋 are nondegenerate.

• Then, for every integer 𝜆 ≥ 0,

𝜆
∑
𝑖=0

(−1)𝑖+𝜆𝑏𝑖(𝑋) ≤
𝜆
∑
𝑖=0

(−1)𝑖+𝜆 (𝑏𝑖(𝑋 ∩ 𝑌) + ∑
𝑘+𝜄=𝑖

#𝐶𝑘,𝜄(𝑋, 𝑌)) ,

where the 𝑏𝑖 are cohomology dimensions.
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Morse theory for distance functions

• Moreover,

𝜒(𝑋 ∩ 𝑌) + ∑
𝑘,𝜄≥0

(−1)𝑘+𝜄#𝐶𝑘,𝜄(𝑋, 𝑌) = 𝜒(𝑋).

• If 𝑌 is also smooth and compact, and dist𝑋|𝑌 has only nondegenerate critical
points, then

𝜒(𝑌) + ∑
𝑘,𝜄≥0

(−1)𝑘+𝜄#𝐶𝑘,𝜄(𝑋, 𝑌) = 𝜒(𝑋) + ∑
𝑘,𝜄≥0

(−1)𝑘+𝜄#𝐶𝑘,𝜄(𝑌, 𝑋).
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Genericity for algebraic hypersurfaces

Setup

• Let 𝑝 and 𝑞 be two real 𝑛-variable polynomials, 𝑋 ≔ 𝑍(𝑝), and 𝑌 ≔ 𝑍(𝑞), and
consider dist𝑌|𝑋.

• We recover previously studied notions:

• When 𝑝 = 0 (and so 𝑋 = 𝐑𝑛), a critical point of piecewise linear index 𝑘 is a
real geometric (𝑘 + 1)-bottleneck [Di Rocco et al. 2023].

• The real bottleneck degree is the number of such geometric 2-bottlenecks.
• When 𝑌 = {𝑦} is a generic point, the number of critical points is (related to)

the Euclidean distance degree.

• Our bounds on the number of critical points complement and generalize the

known bounds on these values.
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Genericity for algebraic hypersurfaces

Theorem (Parametric transversality, Hirsch 1976)

• Let𝑀, 𝑁, 𝑃 be smooth manifolds,𝑊 ⊆ 𝑁 a submanifold of 𝑁, and 𝐹∶ 𝑃 ×𝑀 → 𝑁
a smooth map.

• For all 𝑝 in 𝑃, we denote by 𝐹𝑝 the map 𝐹(𝑝,−)∶ 𝑀 → 𝑁.
• If 𝐹 is transverse to𝑊, then the set {𝑝 ∈ 𝑃 ∣ 𝐹(𝑝,−) ⋔ 𝑊} is residual in 𝑃.

• In other words, for generic 𝑝 ∈ 𝑃, the map 𝐹𝑝 is transverse to𝑊.

• If𝑀 and𝑊 have small enough dimensions, then 𝐹𝑝 misses𝑊 entirely.
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Genericity for algebraic hypersurfaces

Theorem (Multijet parametric transversality)

• Now consider 𝑃 = 𝒫𝑑 the space of polynomials of degree at most 𝑑,
𝑀 = ((𝐑𝑛)𝑘 ∖ Δ) the space of 𝑘 distinct points in 𝐑𝑛, 𝑁 = 𝑘𝐽

𝑟(𝐑𝑛, 𝐑) the space of
𝑘-multijets of order 𝑟, and

𝐹∶
⎧⎪⎪

⎨⎪⎪
⎩

𝒫𝑑 × ((𝐑𝑛)𝑘 ∖ Δ) → 𝑘𝐽
𝑟(𝐑𝑛, 𝐑)

(𝑝, 𝑦1,… , 𝑦𝑘) ↦ (
𝜕|𝛼|𝑝
𝜕𝑥𝛼 (𝑦𝑖))

𝛼∈𝐍𝑛,|𝛼|≤𝑟,
𝑖∈{1,…,𝑘}

.

• Then there exists a function 𝑑(𝑘, 𝑟) such that, for all 𝑑 ≥ 𝑑(𝑘, 𝑟), the map 𝐹 is a

submersion (and so is transverse to every submanifold of 𝑁).
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Genericity for algebraic hypersurfaces

Proposition

• For 𝑞 generic of degree ≥ 2, for all 𝑥 ∈ 𝐑𝑛, the set 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 is a

nondegenerate simplex.

Idea of proof:

• We follow the strategy of [Yomdin 1981].

• In particular, we use the original parametric transversality theorem.

Isaac Ren Metric Algebraic Geometry Workshop 24/33



Genericity for algebraic hypersurfaces

Proposition

• For 𝑞 generic of degree ≥ 2, for all 𝑥 ∈ 𝐑𝑛, the set 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 is a

nondegenerate simplex.

Idea of proof:

• We follow the strategy of [Yomdin 1981].

• In particular, we use the original parametric transversality theorem.

Isaac Ren Metric Algebraic Geometry Workshop 24/33



Genericity for algebraic hypersurfaces

• For all 𝑘 ∈ {0,… , 𝑛 + 1}, define

𝐹𝑘 ∶ { 𝒫𝑑 ×𝐑𝑛 × (𝐑𝑛(𝑘+1) ∖ Δ) → 𝑘+1𝐽
0(𝐑𝑛, 𝐑2)

(𝑞, 𝑥, 𝑦) ↦ (𝑦,… , 𝑞(𝑦𝑖),… , ‖𝑥 − 𝑦𝑖‖
2,…),

𝑊𝑘 ≔ {(𝑧, 𝑠, 𝑡) ∈ 𝑘+1𝐽
0(𝐑𝑛, 𝐑2) | ∀𝑖 ∈ {0,… , 𝑘}, 𝑠𝑖 = 0,

∀𝑖 ∈ {1,… , 𝑘}, 𝑡𝑖 = 𝑡0
} .

• We show 𝐹𝑘 ⋔ 𝑊𝑘, so 𝐹𝑘(𝑞,−) ⋔ 𝑊𝑘 for generic 𝑞 by parametric transversality.

• This implies that 𝑦0,… , 𝑦𝑘 ∈ 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 the {𝑦𝑖 − 𝑦0}
𝑘
𝑖=1 are linearly

independent.

• The case 𝑘 = 𝑛 + 1 implies that 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 has at most 𝑛 + 1 elements,

and these elements thus form a nondegenerate simplex.
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• The case 𝑘 = 𝑛 + 1 implies that 𝐵(𝑥,dist𝑌(𝑥)) ∩ 𝑌 has at most 𝑛 + 1 elements,

and these elements thus form a nondegenerate simplex.
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Genericity for algebraic hypersurfaces
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2,…),

𝑊𝑘 ≔ {(𝑧, 𝑠, 𝑡) ∈ 𝑘+1𝐽
0(𝐑𝑛, 𝐑2) | ∀𝑖 ∈ {0,… , 𝑘}, 𝑠𝑖 = 0,

∀𝑖 ∈ {1,… , 𝑘}, 𝑡𝑖 = 𝑡0
} .
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Genericity for algebraic hypersurfaces

Theorem

• For 𝑝 and 𝑞 generic of degree ≥ 3, there are a finite number of critical points.

• The number of critical points with piecewise linear index 𝑘 is bounded above by

𝑐(𝑘, 𝑛)deg(𝑝)𝑛 deg(𝑞)𝑛(𝑘+1).

Idea of proof:

• We follow a similar approach to [Di Rocco et al. 2023], defining necessary

algebraic equations for critical points.

• The set of polynomials and points satisfying these equations is our𝑊, and we

apply parametric transversality.

• The upper bound follows from a bound on the Betti numbers of an algebraic set

[Basu-Rizzie 2018].
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Genericity for algebraic hypersurfaces

• Specifically, we define

𝐹1 ∶
⎧⎪

⎨⎪
⎩

𝒫𝑑1
×𝒫𝑑2

×𝐑𝑛 × (𝐑𝑛(𝑘+1) ∖ Δ) × 𝐑𝑘+3 → 𝐽1(𝐑𝑛, 𝐑) × 𝑘+1𝐽
1(𝐑𝑛, 𝐑) × 𝐑𝑘+3

(𝑝, 𝑞, 𝑥, 𝑦, 𝜆, 𝜇, 𝑟) ↦
(𝑥, 𝑝(𝑥), ∇𝑝(𝑥), 𝑦, 𝑞(𝑦),

∇𝑞(𝑦), 𝜆, 𝜇, 𝑟)
,

𝑊1 ≔

⎧⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪
⎩

(𝑥, 𝑠, 𝑢) ∈ 𝐽1(𝐑𝑛, 𝐑),
(𝑦, 𝑡, 𝑣) ∈ 𝑘+1𝐽

1(𝐑𝑛, 𝐑),
𝜆 ∈ 𝐑𝑘+1,

𝜇, 𝑟 ∈ 𝐑

||||||||||||||||

|

𝑥 = 𝜇𝑢 + ∑𝑘
𝑖=0 𝜆𝑖𝑦𝑖,

∑𝑘
𝑖=0 𝜆𝑖 = 1,

𝑠 = 0,
∀𝑖 ∈ {0,… , 𝑘}, 𝑡𝑖 = 0,
∀𝑖 ∈ {0,… , 𝑘}, ‖𝑥 − 𝑦𝑖‖

2 = 𝑟2,
∀𝑖 ∈ {0,… , 𝑘}, rk(𝑥 − 𝑦𝑖, 𝑣𝑖) ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎪

⎬⎪⎪⎪⎪⎪⎪⎪
⎭

.

• The intersection im𝐹1(𝑝, 𝑞, −) ∩𝑊1 defines algebraic 𝑘-critical points.
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Genericity for algebraic hypersurfaces

Proposition

• For 𝑝 and 𝑞 generic of degrees ≥ 3 and ≥ 4, respectively, the distance function
dist𝑌|𝑋 is a continuous selection around each of its critical points.

Idea of proof:

• We show that each critical point is a regular value of the exponential map.
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Genericity for algebraic hypersurfaces

• We define

𝐹2 ∶
⎧⎪

⎨⎪
⎩

𝒫𝑑1
×𝒫𝑑2

×𝐑𝑛 × (𝐑𝑛(𝑘+1) ∖ Δ) × 𝐑𝑘+3 → 𝐽1(𝐑𝑛, 𝐑) × 𝑘+1𝐽
2(𝐑𝑛, 𝐑) × 𝐑𝑘+3

(𝑝, 𝑞, 𝑥, 𝑦, 𝜆, 𝜇, 𝑟) ↦
(𝑥, 𝑝(𝑥), ∇𝑝(𝑥), 𝑦, 𝑞(𝑦),
∇𝑞(𝑦), 𝐻(𝑞)(𝑦), 𝜆, 𝜇, 𝑟)

,

𝑊2 ≔

⎧⎪⎪⎪

⎨⎪⎪⎪
⎩

(𝑥, 𝑠, 𝑢) ∈ 𝐽1(𝐑𝑛, 𝐑),
(𝑦, 𝑡, 𝑣, 𝐻) ∈ 𝑘+1𝐽

2(𝐑𝑛, 𝐑),
𝜆 ∈ 𝐑𝑘+1,

𝜇, 𝑟 ∈ 𝐑

|||||||

|

(𝑥, 𝑠, 𝑢, 𝑦, 𝑡, 𝑣, 𝜆, 𝜇, 𝑟) ∈ 𝑊1,
∀𝑖 ∈ {0,… , 𝑘},

rk[(𝐼𝑛 + 𝑟𝐻𝑖)(𝐼𝑛 − 𝑣𝑖𝑣
⊤
𝑖 ), 𝑣𝑖] < 𝑛

⎫⎪⎪⎪

⎬⎪⎪⎪
⎭

.

• The extra condition on𝑊2 translates to being a regular value for the exponential

map.
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Genericity for algebraic hypersurfaces

Theorem

• For 𝑝 and 𝑞 generic of degrees ≥ 4, the critical points of dist𝑌|𝑋 are all

nondegenerate.

Idea of proof:

• We define necessary algebraic equations for degenerateness.

• Fact: Degenerate critical points satisfy certain algebraic equations related to the

second fundamental form of 𝑌, which, at a point 𝑦 ∈ 𝑌, can be expressed as

II𝑦 ∶ {
𝑇𝑦𝑌 × 𝑇𝑦𝑌 → 𝑁𝑦𝑌 = 𝐑∇𝑞(𝑦)

(𝑣,𝑤) ↦ − ∇𝑞(𝑦)
‖∇𝑞(𝑦)‖𝑣

⊤𝐻(𝑞)(𝑦)𝑤.
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Genericity for algebraic hypersurfaces

• We define

𝐹3 ∶
⎧⎪

⎨⎪
⎩

𝒫𝑑1
×𝒫𝑑2

×𝐑𝑛 × (𝐑𝑛(𝑘+1) ∖ Δ) × 𝐑𝑘+3 → 𝐽2(𝐑𝑛, 𝐑) × 𝑘+1𝐽
2(𝐑𝑛, 𝐑) × 𝐑𝑘+3

(𝑝, 𝑞, 𝑥, 𝑦, 𝜆, 𝜇, 𝑟) ↦
(𝑥, 𝑝(𝑥), ∇𝑝(𝑥), 𝐻(𝑝)(𝑥), 𝑦,
𝑞(𝑦), ∇𝑞(𝑦), 𝐻(𝑞)(𝑦), 𝜆, 𝜇, 𝑟)

,

𝑊3 ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(𝑥, 𝑠, 𝑢, 𝐺) ∈ 𝐽2(𝐑𝑛, 𝐑),
(𝑦, 𝑡, 𝑣, 𝐻) ∈ 𝑘+1𝐽

2(𝐑𝑛, 𝐑),
𝜆 ∈ 𝐑𝑘+1,

𝜇, 𝑟 ∈ 𝐑

||||||||||||||||||||||||||

|

(𝑥, 𝑠, 𝑢, 𝑦, 𝑡, 𝑣, 𝜆, 𝜇, 𝑟) ∈ 𝑊1,
∀𝑖 ∈ {0,… , 𝑘}, 𝜈𝑖 ≔

𝑣𝑖
‖𝑣𝑖‖

∈ 𝐑𝑛,
∀𝑖, 𝑄𝑖 ≔ (𝐼𝑛 − 𝜈𝑖𝜈

⊤
𝑖 )

𝐻𝑖
‖𝑣𝑖‖

(𝐼𝑛 − 𝜈𝑖𝜈
⊤
𝑖 ) ∈ 𝐑𝑛×𝑛,

∀𝑖, �̃�𝑖 ≔
−𝑄𝑖

1−𝑟𝑄𝑖
∈ 𝐑𝑛×𝑛,

𝑉 ≔ [ 𝑢
‖𝑢‖, 𝑣0,… , 𝑣𝑘] ∈ 𝐑𝑛×(𝑘+2),

𝐿 ≔ 𝐼𝑛 − 𝑉(𝑉⊤𝑉)−1𝑉⊤ ∈ 𝐑𝑛×𝑛,
rk(𝜇𝐿⊤𝐺𝐿 + 𝑟 ∑𝑘

𝑖=0 𝜆𝑖𝐿
⊤�̃�𝑖𝐿) ≤ 𝑛 − 𝑘 − 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

.
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Thank you for your attention :)

Summary

• We (re)develop Morse theory for distance functions between subsets of 𝐑𝑛

using the notion of continuous selections.

• We establish that the nondegeneracy of distance functions between algebraic

hypersurfaces is generic using amultijet parametric transversality theorem.

• We also compute bounds for the number of critical points of such functions,

which generalize bounds on the bottleneck degree and the Euclidean distance

degree.

• Our results should hold in the complex case as well.
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