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Summary

e We (re)develop Morse theory for distance functions between subsets of R".

e We establish that the nondegeneracy of distance functions between algebraic
hypersurfaces is generic.

e We also compute bounds for the number of critical points of such functions.
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Subdifferential

e Let X < R" be asmooth submanifold, f: X — R alocally Lipschitz function, and

x € X.

e Denote by Q)(f) the set of differentiable points of f, of full measure by
Rademacher’s theorem.

e The subdifferential of / at x is the convex body

d, f = conv )}I}glx D, f | the limit exists

x, . €Q(f)

® The point x is critical if 0 € 0_f.
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Proposition

e Let X < R" be asubmanifoldand ¥ < R" a closed semialgebraic set such that X
is transverse to ¥ (and the closure of its medial axis).

e Then the subdifferential of f = dist, |, at a point x € X is
X —

d,f = proj; 5 conv { |—y

Y € B(x,disty(x)) N Y} .
[ x = |
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Continuous selections

® Let/,,...., [, X — R be continuous functions.

* A continuous selectionof f, ..., f isafunction f: X — Rif f is continuous and,
for all x € X, there exists i € {0, ..., m} such that f(x) = /. (x).
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Continuous selections

® Let/,,...., [, X — R be continuous functions.

* A continuous selectionof f,..., / isafunction f: X — RIf f is continuous and,
for all x € X, there exists i € {0, ..., m} such that f(x) = /. (x).
e Forall x € X, we define its effective index set as

I(x)={i€{0,...,m} | x eclosint{y € X | f(y) = £.())}}.

* Fact: the subdifferential of f at xisconv{D_f | i€ I(x)}.
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e A critical point x of f is nondegenerate if:

1. forevery i € I(x), the set of differentials {D, /. | e I(x)~{i}}islinearly
independent; and

2. writing ), ;. A;D_f; = 0 for the convex combination showing criticalness,
the second differential of )., ., A,/ is nondegenerate on (), kerD_f.
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e A critical point x of f is nondegenerate if:

1. forevery i € I(x), the set of differentials {ijj. | e I(x)~{i}}islinearly
independent; and

2. writing ), ;. A;D_f; = 0 for the convex combination showing criticalness,
the second differential of )., ., A,/ is nondegenerate on (), kerD_f.

e We denote by k(x) := #I(x) — 1 the piecewise linear index of x and by ((x) the
negative inertia index of the above restricted second differential, which we call
the quadratic index of x.

e We denote by C, (X, Y) the set of nondegenerate critical points with
piecewise linear index k and quadratic index .

Isaac Ren Metric Algebraic Geometry Workshop 9/33



by

Fxras Differential theory for locally Lipschitz

g functions

St
Example: ; Yo
2
¥ Y3 Y1
Y3 Y4
nondegenerate critical point degenerate critical point

Isaac Ren Metric Algebraic Geometry Workshop

10/33



by

Fxras Differential theory for locally Lipschitz

g functions

St
Example: ; Yo
2
0 Y1 Y3 o f Y1
Y3 Y4
nondegenerate critical point degenerate critical point

Isaac Ren Metric Algebraic Geometry Workshop

10/33



Fxras Differential theory for locally Lipschitz

i%&fsijjﬁﬁ functions
Example: X X
Ve
yl ° X ° y2 X
index (1,0) index (0, 0)

Isaac Ren Metric Algebraic Geometry Workshop 11/33



EEEEEEEEE

Normal forms

Proposition [Jongen-Pallaschke 1988]

e For a continuous selection and a nondegenerate critical point
with piecewise linear index k and quadratic index (, there exists a neighborhood
of x and a locally Lipschitz homeomorphism such that

where 7 is a continuous selection of
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e Let V < R" be a smooth submanifold, : NV — R" the exponential map, sending
(v,v)toy +v,and x € R" aregular value of ¢.

* Then:
1. B(x,dist,(x)) NYis afinite set {y,, ..., y,}; and
2. dist, |5, 5 is @ continuous selection of the functions dist, |, .,y |z, 5)-
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Between critical values

Proposition [Agrachev-Pallaschke-Scholtes 1997] actually it's Clarke

o Let and an interval containing no critical values.
e Then the space deformation retracts to the space
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Passing a critical value

Proposition, follows from [Agrachev-Pallaschke-Scholtes 1997]

o |et be a smooth manifold and a closed semialgebraic set.

® et be a critical value of such that the associated critical points
are all nondegenerate. Then
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Morse inequalities

Proposition

e Let X < R" be a smooth, compact, semialgebraic manifold and ¥ < R" a closed
semialgebraic set such that all critical points of dist, | ,, are nondegenerate.

e Then, for every integer 4 = 0,

A A
Y (=Dp(X) = ) (-1 (bi(X nNY)+ ) #Ck’l(X,Y)) ,
i=0 i=0

k+(=i

where the b. are cohomology dimensions.
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e Moreover,

XX NY)+ ) (-D*#C (X, Y) = x(X).
k,.=0

e |f Vis also smooth and compact, and dist, |, has only nondegenerate critical
points, then

x(Y)+ ) (CDM#C (X, Y) = x(X) + ) (-D*"'#C, (Y, X).
k,i=0 k,i=0
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Setup

e Let p and g be two real n-variable polynomials, X ‘= Z(p),and YV = Z(q), and
consider dist, | .
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Setup
e Let p and g be two real n-variable polynomials, , and , and
consider

e We recover previously studied notions:

e When (and so ), a critical point of piecewise linear index k is a
real geometric -bottleneck [Di Rocco et al. 2023].

® The real bottleneck degree is the number of such geometric 2-bottlenecks.
e When is a generic point, the number of critical points is (related to)

the Euclidean distance degree.

e Our bounds on the number of critical points complement and generalize the
known bounds on these values.
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Theorem (Parametric transversality, Hirsch 1976)

e et M, N, P be smooth manifolds, a submanifold of N, and
a smooth map.

e Forall pin P, we denote by F_ the map
e |f I is transverse to IV, then the set is residual in

® |n other words, for generic ,the map F  is transverse to
e |f M and IV have small enough dimensions, then /' misses IV entirely.
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Theorem (Multijet parametric transversality)

* Now consider P = 27, the space of polynomials of degree at most d,
M = ((RM)* < A) the space of k distinct points in R, N = J"(R",R) the space of
k-multijets of order r, and

2, x (RH*\A) - JRYLR)

: ol“lp
= (p:yl)"'ayk) — ( (J’l)

Ox« aeN" |a|=r,

e Then there exists a function d(k, r) such that, forall d = d(k,r),the map Fis a
submersion (and so is transverse to every submanifold of V).
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Proposition

e For g generic of degree = 2, for all x € R", the set B(x, dist,(x)) NYisa
nondegenerate simplex.
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Proposition
e For g generic of degree , for all , the set

nondegenerate simplex.

Idea of proof:
e We follow the strategy of [Yomdin 1981].
e |n particular, we use the original parametric transversality theorem.

IS a
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e Forallk € {O,...,n+ 1}, define

g | PaxRX (RYHD (A) — 1 JP(R", R?)
. (q,%,¥) = (s Qs s e = yill%, )

. Vi€ {0,...,k}, s, = 0
W, ::{(z,s,t)€k+1J0(R”,R2) LED,.., K 5 }

Vie{l,...,k}, t;=t,
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e Forallk e {0,...,n+ 1}, define

p o | PaxRIX R (A) — i1 JP(R™, R?)
© (q,x,) = (Vs @), - lx = 417 -2,

R vie{0,...,k}, s. =0,
W, :={(z,s,t)€k+1J0(R”,R2) Vie{l . k) t =t }
9 °ee 9 9 l‘_ O

e We show F, m W,, so F,.(q,—) m W, for generic g by parametric transversality.
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e Forallk e {0,...,n+ 1}, define
p o | PaxRIX R (A) — i1 JP(R™, R?)
K (q,x,Y) = s @), s X = X415, -0,

- vVie {0,...,k}, s, =0
Wk::{(z,s,t)ek+1JO(R”,R2) LED, .ok, 5 }

Vie{l,...,k}, t;=t,

e We show F, m W,, so F,.(q,—) m W, for generic g by parametric transversality.
e Thisimpliesthat y,, ..., y, € B(x,dist,(x)) NY the {y, — yo}f:1 are linearly
independent.
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e Forallk e {0,...,n+ 1}, define

p o | PaxRIX R (A) — w1 JP(R™,R?)
© (g, x,¥) = (Vs @), - lx = 417 -2,

- Vie {0,...,k}, s, =0
Wk2={(Z,S,t)€k+1J0(Rn,R2) LED }

Vie{l,...,k}, t;=t,

e We show F, m W,, so F,.(q,—) m W, for generic g by parametric transversality.

e Thisimplies that v, ..., y, € B(x,dist,(x)) NY the {y, — y,}"_, are linearly
independent.

® The case k = n + 1 implies that B(x, dist, (x)) N Y has at most n + 1 elements,
and these elements thus form a nondegenerate simplex.
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Theorem

e For p and g generic of degree = 3, there are a finite number of critical points.

e The number of critical points with piecewise linear index k is bounded above by
c(k,n) deg(p)" deg(q)"**+".
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Theorem
e For p and g generic of degree , there are a finite number of critical points.

e The number of critical points with piecewise linear index k is bounded above by

Idea of proof:
e We follow a similar approach to [Di Rocco et al. 2023], defining necessary
algebraic equations for critical points.
e The set of polynomials and points satisfying these equations is our I/, and we
apply parametric transversality.

e The upper bound follows from a bound on the Betti numbers of an algebraic set
[Basu-Rizzie 2018].
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e Specifically, we define

Py X Py X RTx RUTD S A) xR — JIR™R) X, J (R, R) X R

- (. 4%, 7,2 1,7) PP 40,
5 J b b J J vq(y)’A’ p, r)
( X = pu+ o A, |

(x,s5,u) € J'RLR), |xk A =1,

1

wie | LW € w1 ' (RLR), |5 =0, :
' A € R Vie{0,...,k}, t; =0, '
u,r € R Vie{O0,...,k}, ||x—yl.||2 =r?,
\ Vie{0,...,k}, tk(x —y,v,)) <1 )

e The intersectionim F'(p, g, —) N W' defines algebraic k-critical points.
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Proposition

e For p and g generic of degrees = 3 and = 4, respectively, the distance function
dist, | , is a continuous selection around each of its critical points.
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Proposition
e For p and g generic of degrees and , respectively, the distance function

Is a continuous selection around each of its critical points.

Idea of proof:
e We show that each critical point is a regular value of the exponential map.
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e We define
Py X Py X RU X RV S A) x R — JHRY,R) X, J2(R,R) X R
F2: (p q X y I IJ T') . (x)p(x)a VP(X),)_’_:(](y),
R Va(¥),H(Q) (), A, p, 1)’
i (x)'s)u) E Jl(RnaR)J —_ = = 4 1 }
N (y,av’ﬁ) = k+1J2(Rn,R), (3(::53 u,y, t,V,A:P; 1”) eW >
w —{ Xe Rk+1 VlE{O,...,k}, > .
s T
\ Lr e R rk[(I, +rH)U, —v;v;),v;] <n J
e The extra condition on W~ translates to being a regular value for the exponential
map.
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Theorem

e For p and g generic of degrees = 4, the critical points of dist, |, are all
nondegenerate.
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Theorem
e For p and g generic of degrees , the critical points of are all
nondegenerate.

Idea of proof:
e \We define necessary algebraic equations for degenerateness.

e Fact: Degenerate critical points satisfy certain algebraic equations related to the
second fundamental form of ¥, which, at a point , can be expressed as
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¢ \We define
F3: -
(p,q,x,y,4,1,1)
(x,s,u,G) € J2(R",R),
2
- (v,t,v,H) € re1d (R, R),
o A Rk+1
ur € R
Isaac Ren

(x, p(x), Vp(x), H(p) (), ¥,

(), Vq(), H(Q (N, A, i, 1)’

(x,s,U,,5,7,A, p,r) e W1

Vi€ {0,...,k}, v, ”v 7€ R",
Vi, Q== (I, — )”v (L, —vw;) €RY,
Vi, H, == — S(lz = R”X"

V = [||u||’v0’ B Vk] c Rnx(k+2)’
L=1 —-VyV'V)'VT e R,
rk (pLTGL +r Y, AiLTﬁiL) <n-k-3
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Summary

e We (re)develop Morse theory for distance functions between subsets of
using the notion of continuous selections.

e We establish that the nondegeneracy of distance functions between algebraic
hypersurfaces is generic using a multijet parametric transversality theorem.

e We also compute bounds for the number of critical points of such functions,
which generalize bounds on the bottleneck degree and the Euclidean distance
degree.

® Our results should hold in the complex case as well.
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