

Designing statistical tests for topological significance

Isaac Ren January 9, 2025 — JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems

YOUNG TOPOLOGISTS MEETING 2025

Stockholm, Sweden June 23-27

FTENSKAR

Short talks Poster session Invited speakers Frédéric Chazal Manuel Krannich Maria Yakerson

Topological significance and statistical tests

Topological significance

- Given a point cloud, what is a topologically significant feature?
- We say that it is a homological cycle whose corresponding persistence point is abnormal: e.g. an unusually long bar or a distant persistence point:

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Method

- Let X be a filtered point cloud, D its persistence diagram, and (b, d) a point of D.
- Our hypothesis test is

 H_0 : (b, d) does not correspond to a significant topological feature, H_1 : (b, d) does correspond to a significant topological feature.

Definition

- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a measurable function.
- Let X be a random point process, D_a its persistence diagram for H_a .
- Consider a persistent homological cycle of X and (b₀, d₀) ∈ D_q the corresponding persistence point.
- The cycle is significant at level α if the *p*-value of $f(b_0, d_0)$ is less than α :

 $P(f(b,d) \ge f(b_0,d_0) \mid (b,d) \in D_q) \le \alpha.$

• In practice we correct for multiple tests: we use Bonferroni (divide α by the number of tested points).

Topological significance and statistical tests

Properties of topological significance

Desired properties

- Ideally, *f* should be **translation** and **scale invariant**.
- Persistence is already translation invariant, **death-birth ratios** are scale invariant.
- We also want to know the distribution of f(b, d).

Distribution of persistence points

Distribution of persistence points

Universal distributions of persistence points

Theorem [Bobrowski-Skraba 2024]

- Let X_n be a set of n i.i.d. points in R^m with a "good" probability density φ and consider its Vietoris-Rips or Čech complex.
 - Good densities include: those with closed support, bounded away from 0, and normal distributions.

 $\Pi_{q,n} \xrightarrow{\text{weak}} \Pi_{q}^*,$

- For $q \ge 1$, let $D_{q,n} = ((b_i, d_i))_i$ be the H_q persistence diagram.
- Define $\Pi_{q,n} = \{d_i/b_i\}_i$. Then

Distribution of persistence points

Universal distributions of persistence points

Conjecture [Bobrowski-Skraba 2023a]

• Up to recentering, $\{A \log \log(\pi_i) \mid \pi_i \in \Pi_{q,n}\}$, with A = 1 for Vietoris-Rips and $A = \frac{1}{2}$ for Čech, weakly converges to the left-skewed Gumbel distribution with PDF e^{x-e^x} and CDF $1 - e^{-e^x}$.

Distribution of persistence points Further conjecture

Conjecture

- Suppose that the support of the point process is locally an *r*-dimensional space (i.e. a topological *r*-manifold).
- Then $\{A \log(\pi_i 1) + \log(r + 2) \mid \pi_i \in \Pi_{q,n}\}$ weakly converges to the left-skewed Gumbel distribution.

Comments

- $\log(x 1)$ is similar to $\log \log x$ at $x \approx 1$ but has a more spread out tail distribution, useful for identifying outliers.
- We no longer need to recenter the π_i 's, which means we can use methods that only compute the most persistent features.

For H_0 , we cannot use the previous results, since $b_i = 0$.

Definition: cluster persistence

- [Bobrowski-Skraba 2023b] propose *k*-cluster persistence, where connected components are born only when they contain at least *k* points.
- The resulting persistence diagram can be computed using the dendrogram associated to the point cloud.
- See also mergegrams from [Elkin-Kurlin 2020].
- Upshot: we get positive birth times, allowing for the definition of $\Pi_{0,n,k}$.

Conjecture

- Let $r \in \{2, 3\}$ be the dimension of the support of φ .
- Let k = 3 if r = 2 and k = 2 if r = 3.
- The set $\{\log(\pi_i 1) \mid \pi_i \in \Pi_{0,n,k}\}$ weakly converges to the left-skewed Gumbel distribution.

Experiments and results

Experiments and results

Quantifying the significance of weather regimes

Motivation

- In [Strommen-Chantry-Dorrington-Otter 2022] the goal is to topologically describe weather regimes; our goal is to quantify this description using statistical significance.
- We look at the point clouds of that paper, filtered at various density levels.
- We assume that the point clouds are samples from compact manifolds plus Gaussian noise.
- Restricting to the densest points then gives a distribution with compact support, bounded away from 0.

Assumptions

- Let X be a set of i.i.d. points with a good distribution.
- For $q \ge 1$ with the Čech filtration, we assume that the right tail of $\{\frac{1}{2}\log(\pi_i 1) + \log(r + 2) \mid \pi_i \in \Pi_{q,n}\}$ is upper bounded by left-skewed Gumbel.
- For $k \ge 2$, we assume that the right tail of $\{\log(\pi_i 1) \mid \pi_i \in \Pi_{0,n,k}\}$ is upper bounded by left-skewed Gumbel.

Experiments and results

Checking Gumbelness

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Point cloud: Gaussian

- 10,000 standard normally distributed points in \mathbb{R}^3 .
- Ignoring the infinite bar in H_0 , we expect no significant topological features.

Point clouds: Lorenz '63, Lorenz '96, Charney-de Vore

- These point clouds model atmospheric dynamics, showcasing their chaotic structure.
- Lorenz '63 is the classic butterfly wing model. 100,000 points in \mathbb{R}^3 .
- Lorenz '96 is a more complex model, in R⁴⁰. We consider 20,000 points projected onto the first 4 principal components (empirical orthogonal functions).
- Charney-de Vore models large-scale midlatitude blocking dynamics in R⁶. We consider 40,000 points projected onto the first 3 principal components.
- Representative 1-cycles are computed with Persloop.

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Point clouds: North Atlantic jet

- Data based on observed atmospheric data.
- JetLat consists of the observation's latitude and the first 2 principal components.
- The latitude is discretized, so JetLatNoised adds uniform noise in [-¹/₂, ¹/₂] to the latitude.
- **JetPC** consists of the first 3 principal components.
- We are expecting to identify two or three weather regimes.

JetLat at density 60%

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Experiments and results

North Atlantic jet (noised)

JetLatNoised at density 100%

North Atlantic jet (PCs)

Isaac Ren JMM AMS Special Session: MRC Climate Science between TDA and Dynamical Systems Theory

Observations

- The assumptions for H_0 do not really hold, and also need to be extended to higher dimensional spaces.
- The method works better for H_1 , although it also works best for lower dimensions.
- Still hard to conclude for the observational data.

Thank you for your attention :)

Summary

- Following Bobrowski and Skraba, we run hypothesis tests for topological significance in all degrees, using known and conjectured results about scale-invariant functionals.
- We test this on various toy models and observational data, filtering the point clouds by density.

Thank you for your attention :)

Outlook

- This is exploratory work: future work includes looking at larger, **higher-dimensional datasets**, and developing the theory behind this analysis.
- We will also study the 2-parameter nature of the data: faster computation of persistence, statistics on the decomposition or presentation of 2-parameter persistence modules, etc.
 - Ongoing project with Kristian Strommen, Tung Lam, and Fabian Lenzen.

Thank you for your attention :)

References

- K. Strommen, M. Chantry, J. Dorrington, N. Otter. A topological perspective on weather regimes, 2022.
- O. Bobrowski and P. Skraba. A universal null-distribution for topological data analysis, 2023.
- —. Cluster-persistence for weighted graphs, arXiv 2023.
- —. Universality in random persistent homology and scale-invariant functionals, arXiv 2024.
- Y. Elkin, V. Kurlin. The mergegram of a dendrogram and its stability, arXiv 2020.