

Computing relative Betti diagrams using Koszul complexes

Isaac Ren with W. Chachólski, A. Guidolin, M. Scolamiero, and F. Tombari January 5, 2024 — JMM 2024

Summary

- In multiparameter persistence, we do not have a simple decomposition theorem like **barcode decompositions**.
- Instead, we approximate persistence modules by simpler modules using **relative projective resolutions**.
- Under certain conditions, we explicitly compute the **Betti diagrams** of these resolutions using **Koszul complexes**.

Computing relative Betti diagrams using Koszul complexes

Betti diagrams

Persistence modules as functors

- We consider functors $M: I \rightarrow \text{vect}_k$ where (I, \leq) is an arbitrary poset.
- We denote by Fun(*I*, vect_k) the category of functors indexed by *I*.

Persistence modules as functors

- We consider functors $M: I \rightarrow \text{vect}_k$ where (I, \leq) is an arbitrary poset.
- We denote by Fun(*I*, vect_k) the category of functors indexed by *I*.
- For a in I, the free functor at a is the functor $k[a, \infty)$: $I \rightarrow vect_k$ such that

$$\mathbf{k}[a,\infty)(b) = \begin{cases} \mathbf{k} & \text{if } b \ge a, \\ 0 & \text{otherwise,} \end{cases}$$

with identity transition maps.

• For example, for $I = N^2$, the free functor at (3, 2) is

Free resolutions

• A free resolution of a functor $M: I \rightarrow \text{vect}_k$ is an exact sequence

$$\dots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where, for all $d \ge 0$, $F_d = \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^d(a)}$.

Free resolutions

• A free resolution of a functor $M: I \rightarrow \text{vect}_k$ is an exact sequence

$$\dots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where, for all $d \ge 0$, $F_d = \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^d(a)}$.

• Example:

Betti diagrams

• We are interested in the unique **minimal free resolution**:

$$\cdots \longrightarrow \bigoplus_{b \in I} \mathbf{k}[b, \infty)^{\beta^{1}(b)} \longrightarrow \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^{0}(a)} \longrightarrow M \longrightarrow 0$$

Betti diagrams

• We are interested in the unique **minimal free resolution**:

$$\cdots \longrightarrow \bigoplus_{b \in I} \mathbf{k}[b, \infty)^{\beta^{1}(b)} \longrightarrow \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^{0}(a)} \longrightarrow M \longrightarrow C$$

- For all d ≥ 0, we collect these multiplicities in a function β^dM: I → N called the dth Betti diagram of M.
- **Problem:** In general, Betti diagrams require computing the entire minimal resolution. In particular, the differential maps are hard to compute.

Koszul complexes

Koszul complexes

- Suppose that (*I*, ≤) is an **upper semilattice** (all joins exist).
- For M: I → vect_k a functor and a in I, we define the Koszul complex of M at a as the chain complex K_aM

$$\cdots \longrightarrow \bigoplus M(b \land c) \longrightarrow \bigoplus M(b) \longrightarrow M(a).$$

b,c covers of a b∧c exists b cover of a

Koszul complexes

• Suppose that (*I*, ≤) is an **upper semilattice** (all joins exist).

b_Ac exists

 For M: I → vect_k a functor and a in I, we define the Koszul complex of M at a as the chain complex K_aM

$$\cdots \longrightarrow \bigoplus_{b,c \text{ covers of } a} M(b \wedge c) \longrightarrow \bigoplus_{b \text{ cover of } a} M(b) \longrightarrow M(a).$$

• More formally, for all $d \ge 0$,

 $(\mathcal{K}_{a}M)_{d} \coloneqq \bigoplus_{\substack{S \text{ subset of covers of } a \\ |S|=d \\ S \text{ has lower bound}}} M(\bigwedge_{(I \le a)} S),$

and the differential maps of $\mathcal{K}_a M$ are induced from the transition maps of M.

JMM 2024

Theorem [Chachólski-Jin-Tombari 2021]

- Let (l, \leq) be a finite upper semilattice.
- For all functors $M: I \rightarrow \text{vect}_k$, elements *a* in *I*, and $d \ge 0$,

 $\beta^d M(a) = \dim H_d(\mathcal{K}_a M).$

Relative homological algebra

Relative resolutions

- Instead of resolving with free functors, we can try recreating bars.
- When $I = \mathbb{N}^2$, we can try:

rectangles

lower hooks [BOO2022]

single-source spread modules [BBH2022]

Parameterization

- Let (*J*, ≤) be a poset.
- Let $\mathcal{T}: J^{\text{op}} \to \text{Fun}(I, \text{vect}_k)$ be a **parameterization** functor associating to each element *a* of *J* a functor $\mathcal{T}(a): I \to \text{vect}_k$.
- The collection of functors of interest is $\mathcal{P} \coloneqq \{\mathcal{T}(a) \mid a \in J, \mathcal{T}(a) \neq 0\}$.
- \mathcal{T} is **thin** if, for all a, b in J, dim $Nat(\mathcal{T}(a), \mathcal{T}(b)) \leq 1$.

Relative projective resolutions

- Suppose that $\mathcal{T}: J^{\text{op}} \to \text{Fun}(I, \text{vect}_k)$ is thin.
- *P*-projective resolutions are *P*-exact sequences of direct sums of elements of *P*:

$$\cdots \longrightarrow \bigoplus_{b \in J} \mathcal{T}(b)^{\beta_{\mathcal{P}}^{1}(b)} \longrightarrow \bigoplus_{a \in J} \mathcal{T}(a)^{\beta_{\mathcal{P}}^{0}(a)} \longrightarrow M \longrightarrow 0.$$

• **Example:** with J = I and $\mathcal{T}(a) = \mathbf{k}[a, \infty)$, we recover standard free resolutions.

Relative homological algebra

Examples

Relative Betti diagrams and Koszul complexes

- Similarly to the standard case, we collect the multiplicities of elements of \mathcal{P} in the minimal \mathcal{P} -projective resolution in \mathcal{P} -**Betti diagrams** $\beta_{\mathcal{P}}^{d}M: J \to \mathbb{N}$.
- **Problem:** we want to compute the \mathcal{P} -Betti diagrams of a functor $M: I \rightarrow \text{vect}_k$.
- Solution: we compute the standard Betti diagrams of the functor

$$\operatorname{Nat}(\mathcal{T}(-), M) \colon \begin{cases} J \to \operatorname{vect}_{\mathbf{k}} \\ a \mapsto \operatorname{Nat}(\mathcal{T}(a), M) \end{cases}$$

using Koszul complexes, and then transfer the diagrams to the relative side.

Relative homological algebra

Theorem [Chachólski, Guidolin, R., Scolamiero, Tombari]

- Let (J, \leq) be a finite upper semilattice and \mathcal{T} a thin parameterization.
- Assume some other technical but realizable conditions.
- Then, for all functors $M: I \rightarrow \text{vect}_k$, all a in J such that $\mathcal{T}(a) \neq 0$, and all $d \ge 0$,

 $\beta_{\mathcal{P}}^{d} M(a) = \dim H_{d}(\mathcal{K}_{a} \operatorname{Nat}(\mathcal{T}(-), M)).$

Computing an example

Lower hooks

• We use the poset $J \coloneqq \{(u, v) \mid u \le v \in I\}$ with the product order, and the parameterization $\mathcal{T} \colon (u, v) \mapsto \operatorname{coker}(\mathbf{k}[v, \infty) \to \mathbf{k}[u, \infty))$:

• Fact: For all (u, v), we have $Nat(\mathcal{T}(u, v), M) = ker(M(u) \rightarrow M(v))$.

Implementation

- We take as input a free presentation of a persistence module in the field of two elements F_2 .

JMM 2024

Complexity

- Time complexity is $O(2^{6r}n^{2r+3})$, where *r* is the dimension of the grid and *n* is the number of generators and relations in the input presentation.
- Space complexity is O(rn^{2r+2}).
- To compare, naively computing the free minimal resolution of $Nat(\mathcal{T}(-), M)$ is $O(r^2 2^{2r} n^{8r})$ and computing the signed barcode [BOO2022] is $O(r^3 n^{2r+1})$.

Cokernels vs. kernels

Proposition (Guidolin, R.)

- Let $M: I \rightarrow \text{vect}_k$ be a functor.
- Consider the induced functors ker M ≔ (ker(M(u) → (v)))_{(u,v)∈J} and coker M ≔ (coker(M(u) → (v)))_{(u,v)∈J} on J.
- Then, for all (u, v) in J,

 $H_*(\mathcal{K}_{u,v}(\ker M))\cong H_{*+2}(\mathcal{K}_{u,v}(\operatorname{coker} M)).$

Cokernels vs. kernels

Proposition (Guidolin, R.)

- Let $M: I \rightarrow \text{vect}_k$ be a functor.
- Consider the induced functors ker M ≔ (ker(M(u) → (v)))_{(u,v)∈J} and coker M ≔ (coker(M(u) → (v)))_{(u,v)∈J} on J.
- Then, for all (u, v) in J,

$H_*(\mathcal{K}_{u,v}(\ker M))\cong H_{*+2}(\mathcal{K}_{u,v}(\operatorname{coker} M)).$

• Time complexity stays the same but space complexity goes down to $O(n^{2r+1})$.

Conclusions

Future work

- Stability and hierarchical stabilization of relative Betti diagrams.
- Construction of new computable metrics for functors.
- Relative resolutions over **continuous** posets.
- Comparing with relative **injective** resolutions

References

- H. Asashiba, E. G. Escolar, K. Nakashima, and M. Yoshiwaki. Approximation by interval-decomposables and interval resolutions of persistence modules, 2023.
- B. Blanchette, T. Brüstle, and E. Hanson. *Homological approximations in persistence theory*, 2022.
- M. Botnan, S. Oppermann, and S. Oudot. Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2022.
- **Preprint:** Koszul complexes and relative homological algebra of functors over posets, arXiv:2209.05923.
- Implementation: https://github.com/th-rtyf-re/lowerhooks