Computing relative Betti diagrams using Koszul complexes
 Isaac Ren with W. Chachólski, A. Guidolin, M. Scolamiero, and F. Tombari January 5, 2024 - JMM 2024

Summary

- In multiparameter persistence, we do not have a simple decomposition theorem like barcode decompositions.
- Instead, we approximate persistence modules by simpler modules using relative projective resolutions.
- Under certain conditions, we explicitly compute the Betti diagrams of these resolutions using Koszul complexes.

Computing relative Betti diagrams using Koszul complexes $4-3$

Betti diagrams

Persistence modules as functors

- We consider functors $M: I \rightarrow$ vect $_{\mathrm{k}}$ where (I, \leq) is an arbitrary poset.
- We denote by Fun(I, vect ${ }_{\mathrm{k}}$) the category of functors indexed by $/$.

Persistence modules as functors

- We consider functors $M: I \rightarrow$ vect $_{k}$ where (I, \leq) is an arbitrary poset.
- We denote by Fun(I, vect ${ }_{\mathrm{k}}$) the category of functors indexed by $/$.
- For a in $/$, the free functor at a is the functor $k[a, \infty): I \rightarrow$ vect $_{k}$ such that

$$
\mathbf{k}[a, \infty)(b)= \begin{cases}\mathbf{k} & \text { if } b \geq a \\ 0 & \text { otherwise }\end{cases}
$$

with identity transition maps.

- For example, for $I=\mathbf{N}^{2}$, the free functor at $(3,2)$ is

Free resolutions

- A free resolution of a functor $M: I \rightarrow \operatorname{vect}_{k}$ is an exact sequence

$$
\cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

where, for all $d \geq 0, F_{d}=\bigoplus_{a \in I} \mathrm{k}[a, \infty)^{\beta^{d}(\alpha)}$.

Free resolutions

- A free resolution of a functor $M: I \rightarrow \operatorname{vect}_{k}$ is an exact sequence

$$
\cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

where, for all $d \geq 0, F_{d}=\bigoplus_{a \in I} \mathrm{k}[a, \infty)^{\beta^{d}(a)}$.

- Example:

Betti diagrams

- We are interested in the unique minimal free resolution:

$$
\cdots \longrightarrow \bigoplus_{b \in I} \mathbf{k}[b, \infty)^{\beta^{1}(b)} \longrightarrow \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^{0}(a)} \longrightarrow M \longrightarrow 0
$$

Betti diagrams

- We are interested in the unique minimal free resolution:

- For all $d \geq 0$, we collect these multiplicities in a function $\beta^{d} M: I \rightarrow \mathbb{N}$ called the $d^{\text {th }}$ Betti diagram of M.
- Problem: In general, Betti diagrams require computing the entire minimal resolution. In particular, the differential maps are hard to compute.

Koszul complexes

Koszul complexes

- Suppose that (I, \leq) is an upper semilattice (all joins exist).
- For $M: I \rightarrow$ vect $_{k}$ a functor and a in I, we define the Koszul complex of M at a as the chain complex $\mathcal{K}_{a} M$

Koszul complexes

- Suppose that (I, \leq) is an upper semilattice (all joins exist).
- For $M: I \rightarrow \operatorname{vect}_{k}$ a functor and a in I, we define the Koszul complex of M at a as the chain complex $\mathcal{K}_{a} M$

- More formally, for all $d \geq 0$,

$$
\left(\mathcal{K}_{a} M\right)_{d}:=\bigoplus_{\begin{array}{c}
S \text { subset of covers of } a \\
\text { S } \\
\text { S has lower bound }
\end{array}} M\left(\bigwedge_{(1 \leq a)} S\right),
$$

and the differential maps of $\mathcal{K}_{a} M$ are induced from the transition maps of M.

Theorem [Chachólski-Jin-Tombari 2021]

- Let (I, \leq) be a finite upper semilattice.
- For all functors $M: I \rightarrow \operatorname{vect}_{\mathrm{k}}$, elements a in I, and $d \geq 0$,

$$
\beta^{d} M(a)=\operatorname{dim} H_{d}\left(\mathcal{K}_{a} M\right) .
$$

Relative homological algebra

Relative resolutions

- Instead of resolving with free functors, we can try recreating bars.
- When $/=\mathbf{N}^{2}$, we can try:

rectangles

lower hooks [BOO2022]

single-source spread modules [BBH2O22]

Parameterization

- Let (J, \leqslant) be a poset.
- Let $\mathcal{T}: \mathrm{Jop}^{\circ p} \rightarrow$ Fun($/$, vect ${ }_{\mathrm{k}}$) be a parameterization functor associating to each element a of J a functor $\mathcal{T}(a): I \rightarrow \operatorname{vect}_{\mathrm{k}}$.
- The collection of functors of interest is $\mathcal{P}:=\{\mathcal{T}(a) \mid a \in J, \mathcal{T}(a) \neq 0\}$.
- \mathcal{T} is thin if, for all a, b in $J, \operatorname{dim} \operatorname{Nat}(\mathcal{T}(a), \mathcal{T}(b)) \leq 1$.

Relative projective resolutions

- Suppose that $\mathcal{T}: J o p \rightarrow \operatorname{Fun}\left(I, v e c t_{k}\right)$ is thin.
- \mathcal{P}-projective resolutions are \mathcal{P}-exact sequences of direct sums of elements of \mathcal{P} :

$$
\cdots \longrightarrow \bigoplus_{b \in J} \mathcal{T}(b)^{\beta_{p}^{1}(b)} \longrightarrow \bigoplus_{a \in J} \mathcal{T}(a)^{\beta_{p}^{0}(a)} \longrightarrow M \longrightarrow 0 .
$$

- Example: with $J=/$ and $\mathcal{T}(a)=k[a, \infty)$, we recover standard free resolutions.

Examples

Relative Betti diagrams and Koszul complexes

- Similarly to the standard case, we collect the multiplicities of elements of \mathcal{P} in the minimal \mathcal{P}-projective resolution in \mathcal{P}-Betti diagrams $\beta_{\mathcal{P}}^{d} M: J \rightarrow N$.
- Problem: we want to compute the \mathcal{P}-Betti diagrams of a functor $M: I \rightarrow \operatorname{vect}_{\mathrm{k}}$.
- Solution: we compute the standard Betti diagrams of the functor

$$
\operatorname{Nat}(\mathcal{T}(-), M):\left\{\begin{array}{llc}
J & \rightarrow & \operatorname{vect}_{\mathbf{k}} \\
a & \mapsto & \operatorname{Nat}(\mathcal{T}(a), M)
\end{array}\right.
$$

using Koszul complexes, and then transfer the diagrams to the relative side.

Theorem [Chachólski, Guidolin, R., Scolamiero, Tombari]

- Let (J, \leqslant) be a finite upper semilattice and \mathcal{T} a thin parameterization.
- Assume some other technical but realizable conditions.
- Then, for all functors $M: I \rightarrow$ vect $_{k}$, all a in J such that $\mathcal{T}(a) \neq 0$, and all $d \geq 0$,

$$
\beta_{\rho}^{d} M(a)=\operatorname{dim} H_{d}\left(\mathcal{K}_{a} \operatorname{Nat}(\mathcal{T}(-), M)\right) .
$$

Computing an example

Lower hooks

- We use the poset $J:=\{(u, v) \mid u \leq v \in I\}$ with the product order, and the parameterization $\mathcal{T}:(u, v) \mapsto \operatorname{coker}(k[v, \infty) \rightarrow k[u, \infty))$:

- Fact: For all (u, v), we have $\operatorname{Nat}(\mathcal{T}(u, v), M)=\operatorname{ker}(M(u) \rightarrow M(v))$.

Implementation

- We take as input a free presentation of a persistence module in the field of two elements F_{2}.

Complexity

- Time complexity is $O\left(2^{6 r} n^{2 r+3}\right)$, where r is the dimension of the grid and n is the number of generators and relations in the input presentation.
- Space complexity is $O\left(r n^{2 r+2}\right)$.
- To compare, naively computing the free minimal resolution of $\operatorname{Nat}(\mathcal{T}(-), M)$ is $O\left(r^{2} 2^{2 r} n^{8 r}\right)$ and computing the signed barcode [BOO2022] is $O\left(r^{3} n^{2 r+1}\right)$.

Cokernels vs. kernels

Proposition (Guidolin, R.)

- Let $M: I \rightarrow v e c t_{k}$ be a functor.
- Consider the induced functors $\operatorname{ker} M:=(\operatorname{ker}(M(u) \rightarrow(v)))_{(u, v) \in J}$ and coker M := $(\operatorname{coker}(M(u) \rightarrow(v)))_{(u, v) \in J}$ on J.
- Then, for all (u, v) in J,

$$
H_{*}\left(\mathcal{K}_{u, v}(\operatorname{ker} M)\right) \cong H_{*+2}\left(\mathcal{K}_{u, v}(\operatorname{coker} M)\right) .
$$

Cokernels vs. kernels

Proposition (Guidolin, R.)

- Let $M: I \rightarrow$ vect $_{\mathrm{k}}$ be a functor.
- Consider the induced functors $\operatorname{ker} M:=(\operatorname{ker}(M(u) \rightarrow(v)))_{(u, v) \in J}$ and coker M := $(\operatorname{coker}(M(u) \rightarrow(v)))_{(u, v) \in J}$ on J.
- Then, for all (u, v) in J,

$$
H_{*}\left(\mathcal{K}_{u, v}(\operatorname{ker} M)\right) \cong H_{*+2}\left(\mathcal{K}_{u, v}(\operatorname{coker} M)\right) .
$$

- Time complexity stays the same but space complexity goes down to $O\left(n^{2 r+1}\right)$.

Conclusions

Future work

- Stability and hierarchical stabilization of relative Betti diagrams.
- Construction of new computable metrics for functors.
- Relative resolutions over continuous posets.
- Comparing with relative injective resolutions

References

- H. Asashiba, E. G. Escolar, K. Nakashima, and M. Yoshiwaki. Approximation by interval-decomposables and interval resolutions of persistence modules, 2023.
- B. Blanchette, T. Brüstle, and E. Hanson. Homological approximations in persistence theory, 2022.
- M. Botnan, S. Oppermann, and S. Oudot. Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions, 2022.
- Preprint: Koszul complexes and relative homological algebra of functors over posets, arXiv:2209.05923.
- Implementation: https://github.com/th-rtyf-re/lowerhooks

