KTH ROYAL INSTITUTE OF TECHNOLOGY

Relative homological algebra and Koszul complexes for multiparameter persistence

Isaac Ren with F. Tombari, A. Guidolin, M. Scolamiero, and W. Chachólski July 7, 2022 — The 2nd Young Topologist Seminar, BIMSA

Motivation

- \rangle Consider a topological space *X* and *n* continuous real-valued functions *f_i*: *X* → **R**, *i* ∈ {1, ..., *n*}.
- > For all *a* in \mathbb{R}^n , define $X_a := \{x \in X \mid \forall i \in \{1, ..., n\}, f_i(x) \le a_i\}$.
- \rangle For all $d \ge 0$, we can study the d^{th} homology of the X_a 's.
 - \rangle Moreover, if *a* ≤ *b* in **R**^{*n*} for the product order, then the containment $X_a \subseteq X_b$ induces a linear map $H_d(X_a) \rightarrow H_d(X_b)$.
- **Question:** What simple invariants can we compute from $H_d(X_{\bullet})$: $\mathbb{R}^n \to \operatorname{vect}_k$?

Today's talk

- We can approximate persistence modules by simpler modules using relative projective resolutions.
- Vinder certain conditions, we can explicitly compute the **Betti diagrams** of these resolutions using **Koszul complexes**.

Single-parameter persistence

Persistence modules as functors

- \rangle Consider the poset (**N**, \leq).
- \rangle We study persistence modules as **functors** $M: \mathbb{N} \to \mathbf{vect_k}$:
 - > For each natural number *a* in **N**, we associate a **k**-vector space M(a).
 - For each pair a ≤ b in N, we associate a linear map M(a ≤ b): M(a) → M(b) called a transition map.
 - \rangle For each triple *a* ≤ *b* ≤ *c* in **N**, *M*(*a* ≤ *c*) = *M*(*b* ≤ *c*)*M*(*a* ≤ *b*).

Natural transformations between functors

- A **natural transformation** $f: M \to N$ between two functors M and N is
 - \rangle the data, for each *a* in **N**, of a linear map $f(a) \colon M(a) \to N(a)$,
 - \rangle such that, for each pair $a \leq b$ in **N**, $f(b)M(a \leq b) = N(a \leq b)f(a)$:

$$egin{array}{ccc} M(a) & \stackrel{M(a \leq b)}{\longrightarrow} & M(b) \ _{f(a) \downarrow} & & \downarrow^{f(b)} \ N(a) & \stackrel{N(a \leq b)}{\longrightarrow} & N(b) \end{array}$$

We denote by Nat(M, N) the space of natural transformations from M to N.

Free functors

 \rangle For *a* in **N**, the **free functor at** *a* is the functor $k[a, \infty)$: **N** \rightarrow **vect**_k such that

$${f k}[a,\infty)(b)=egin{cases} {f k} & ext{if } b\geq a,\ 0 & ext{otherwise}, \end{cases}$$

with identity transition maps:

$$0 \to 0 \to \cdots \to \underset{a-1}{0} \to \underset{a}{\mathbf{k}} \xrightarrow{\mathrm{id}} \underset{a+1}{\mathbf{k}} \xrightarrow{\mathrm{id}} \cdots \xrightarrow{\mathrm{id}} {\mathbf{k}} \xrightarrow{\mathrm{id}} \cdots$$

Free presentations

 \rangle Every functor *M* can be presented as the quotient of two free functors:

$$0 \longrightarrow \bigoplus_{b \in \mathbb{N}} \mathbf{k}[b, \infty)^{\beta^{1}(b)} \longrightarrow \bigoplus_{a \in \mathbb{N}} \mathbf{k}[a, \infty)^{\beta^{0}(a)} \longrightarrow M \longrightarrow 0.$$

- \rangle This sequence is **minimal** if all of its endomorphisms are isomorphisms.
 - **Fact:** the minimal presentation is unique.

Barcodes

We can do better than free presentations:

 \rangle For a < b in N, the **bar from** a **to** b is the functor $k[a, b) : \mathbb{N} \to \mathbf{vect}_k$ such that

$$\mathbf{k}[a, b)(c) = egin{cases} \mathbf{k} & ext{if } a \leq c < b, \ 0 & ext{otherwise}, \end{cases}$$

with identity transition maps:

$$0 \to 0 \to \cdots \to \underset{a-1}{0} \to \underset{a}{\mathsf{k}} \xrightarrow{\mathsf{id}} \underset{a+1}{\mathsf{k}} \xrightarrow{\mathsf{id}} \cdots \xrightarrow{\mathsf{id}} \underset{b-1}{\mathsf{k}} \to \underset{b}{0} \to \cdots$$

Theorem [Zomorodian-Carlsson 2005]

 \rangle Every functor in Fun(N, vect_k) is isomorphic to a unique direct sum of bars.

Standard homological algebra for multiparameter persistence

Multiparameter functors

- \rangle Instead of functors $\mathbb{N} \to \mathbf{vect}_k$, we can consider functors $\mathbb{N}^n \to \mathbf{vect}_k$.
 - \rangle The poset (**N**^{*n*}, \leq) is equipped with the product order.

Functors over arbitrary posets

- \rangle We now consider functors $M: I \rightarrow \mathbf{vect_k}$ where (I, \leq) is an arbitrary poset.
- \rangle We denote by Fun(*I*, **vect**_k) the category of **functors indexed by** *I*.

Free functors over posets

 \rangle For *a* in *I*, the **free functor at** *a* is the functor $k[a, \infty)$: $\mathbb{N} \to \mathbf{vect}_k$ such that

$$\mathbf{k}[a,\infty)(b) = \begin{cases} \mathbf{k} & \text{if } b \geq a, \\ 0 & \text{otherwise,} \end{cases}$$

with identity transition maps.

For example, if $I = \mathbb{N}^2$, then the free functor at (3, 2) is

Free resolutions

 \rangle A **free resolution** of a functor $M: I \rightarrow \mathbf{vect}_k$ is an exact sequence

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where, for all $d \ge 0$, $F_d = \bigoplus_{a \in I} \mathbf{k}[a, \infty)^{\beta^d(a)}$.

 \rangle We also have the notion of a unique **minimal free resolution**.

Standard homological algebra for multiparameter persistence

KTH ROYAL INSTITUTE OF TECHNOLOGY

Example

Betti diagrams

- > For a functor *M*, the multiplicities $\beta^d(a)$ of the unique minimal free resolution are of interest.
 - \rangle For all $d \ge 0$, we collect these multiplicities in a function $\beta^d M : I \to \mathbb{N}$ called the d^{th} Betti diagram of M.
 - Problem: In general, Betti diagrams require computing the entire minimal resolution. In particular, the differential maps are hard to compute.

Poset terminology

Let *a* and *b* be elements of the poset (I, \leq) .

- > A **cover of** *a* is a maximal element smaller than *a*.
-) The join of a and b, if it exists, is the unique minimal upper bound $a \lor b \ge a$, b.
-) The **meet of** *a* **and** *b*, if it exists, is the unique maximal lower bound $a \wedge b \leq a$, *b*.

Upper semilattices

- > The poset (I, \leq) is an **upper semilattice** if every pair of elements a, b has a join $a \lor b$.
- If I is an upper semilattice, then we can individually compute values of Betti diagrams.

Koszul complexes for Betti diagrams

- \rangle Suppose that (*I*, \leq) is an upper semilattice.
- For *M*: *I* → **vect**_k a functor and *a* in *I*, we define the Koszul complex of *M* at *a* as the chain complex $\mathcal{K}_a M$

$$\cdots \longrightarrow \bigoplus_{\substack{b,c \text{ covers of } a \\ b \land c \text{ exists}}} M(b \land c) \longrightarrow \bigoplus_{b \text{ cover of } a} M(b) \longrightarrow M(a).$$

 \rangle More formally, for all $d \ge 0$,

 \rangle The differential maps of $\mathcal{K}_a M$ are induced from the transition maps of M.

Theorem [Chachólski-Jin-Tombari 2021]

- \rangle Let (*I*, \leq) be an upper semilattice.
- \rangle For all functors $M: I \rightarrow \mathbf{vect}_k$, elements *a* in *I*, and $d \ge 0$,

 $\beta^d M(a) = \dim H_d(\mathcal{K}_a M).$

Relative homological algebra for multiparameter persistence

Non-free functors

- \rangle Instead of resolving with free functors, we can try recreating bars.
 - \rangle When $I = N^2$, we can try:

Relative projectives

- \rangle We fix a collection C of functors in Fun(I, **vect**_k).
- \rangle A natural transformation *f* : *M* → *N* is a *C*-epimorphism if, for all *A* in *C*, the linear map Nat(*A*, *f*): Nat(*A*, *M*) → Nat(*A*, *N*) is surjective.
- \rangle A functor *A*: *I* → **vect**_k is *C*-**projective** if, for every *C*-epimorphism *f* : *M* → *N*, the linear map Nat(*A*, *f*): Nat(*A*, *M*) → Nat(*A*, *N*) is surjective.
- \rangle A short sequence *L* → *M* → *N* is *C*-exact if, for all *A* in *C*, the short sequence Nat(*A*, *L*) → Nat(*A*, *M*) → Nat(*A*, *N*) is exact.

Relative projective resolutions

 \rangle A *C*-projective resolution of a functor $M : I \rightarrow \text{vect}_k$ is a *C*-exact sequence of functors

$$\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where the F_d are C-projective.

 \rangle We also have the notion of a unique **minimal** C-projective resolution.

Example

> A lower hook resolution can look like

Parameterization by a poset

- \rangle Let (*J*, \preccurlyeq) be a poset.
- Let \mathcal{P} : J^{op} → Fun(I, vect_k) be a functor associating to each element a of J a functor $\mathcal{P}(a)$: I → vect_k.
 - \rangle The collection of functors is now $\mathcal{C} := \{\mathcal{P}(a) \mid a \in J, \ \mathcal{P}(a) \neq 0\}.$
 - \mathcal{P} is **thin** if, for all *a*, *b* in *J*, dim Nat($\mathcal{P}(a), \mathcal{P}(b)$) ≤ 1 .

Fact: in this case, all *C*-projectives are direct sums of elements of *C*.

Relative Betti diagrams

- \rangle Suppose that $\mathcal{P} \colon J^{\mathrm{op}} \to \mathsf{Fun}(I, \mathbf{vect_k})$ is thin.
- \rangle Relative projective resolutions are then sequences of direct sums of elements of C:

$$\cdots \longrightarrow \bigoplus_{b \in J} \mathcal{P}(b)^{\beta^1(b)} \longrightarrow \bigoplus_{a \in J} \mathcal{P}(a)^{\beta^0(a)} \longrightarrow M \longrightarrow 0.$$

Similarly to the standard case, we collect the multiplicities of elements of C in the minimal C-projective resolution in \mathcal{P} -Betti diagrams $\beta_{\mathcal{P}}^d M : J \to \mathbb{N}$.

Relative Koszul complexes

- Problem: we want to compute the P-Betti diagrams of a functor *M*: *I* → vect_k.
- > **Solution:** we compute the standard Betti diagrams of the functor

$$\operatorname{Nat}(\mathcal{P}(-), M) \colon \begin{cases} J \to \operatorname{vect}_{\mathsf{k}} \\ a \mapsto \operatorname{Nat}(\mathcal{P}(a), M) \end{cases}$$

using Koszul complexes, and then transfer the diagrams to the relative side.

Theorem

- \rangle Let $M: I \rightarrow \mathbf{vect_k}$ be a functor and suppose that
 - (J, \preccurlyeq) is an upper semilattice and \mathcal{P} is thin,
 - { $a \in J \mid \mathcal{P}(a) = 0$ } is closed under joins,
 - \rangle for all *a*, *b* in *J*, if *a* is minimal $\succ b$ such that $Nat(\mathcal{P}(a), \mathcal{P}(b)) = 0$, then $\mathcal{P}(a) = 0$.
- \rangle Then, for all *a* in *J* such that $\mathcal{P}(a) \neq 0$ and $d \geq 0$,

 $\beta_{\mathcal{P}}^{d}M(a) = \dim H_{d}(\mathcal{K}_{a}\operatorname{Nat}(\mathcal{P}(-), M)).$

Conclusions

Summary

Given a finite upper semilattice (J, \preccurlyeq) and a thin functor $\mathcal{P} \colon J^{\text{op}} \to \text{Fun}(I, \text{vect}_k)$:

absolute poset	relative poset
(I,\leq)	(J,\preccurlyeq)
$M\colon I o {f vect_k}$	$Nat(\mathcal{P}(-), M) \colon J o \mathbf{vect_k}$
copy of $\mathcal{P}(a)$ in the minimal \mathcal{C} -projective resolution	copy of k [<i>a</i> , –) in the minimal free resolution
Koszul complexes of $Nat(\mathcal{P}(-), M)$ to compute multiplicities in the minimal resolution	

Outlook

- Software implementation of the computation of Betti diagrams relative to lower hooks.
- **Stability** and **hierarchical stabilization** of relative Betti diagrams.
- > Construction of new **computable metrics** for functors.

References

- > H. Asashiba, E. Escolar, K. Nakashima, and M. Yoshiwaki. *On approximation of 2d persistence modules by interval-decomposables*, 2019.
- > B. Blanchette, T. Brüstle, and E. Hanson. *Homological approximations in persistence theory*, 2021.
- > M. Botnan, S. Oppermann, and S. Oudot. *Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions*, 2021.
- \rangle W. Chachólski, A. Jin, and F. Tombari. *Realisations of posets and tameness*, 2021.

> Preprint soon!