

Computational examples of relative Betti diagrams

Isaac Ren with W. Chachólski, A. Guidolin, M. Scolamiero, and F. Tombari December 8, 2022 — Interactions between representation theory and TDA

The picture so far...

- \rangle We consider functors $M: I \rightarrow \text{vect}_k$ from a finite poset (I, \leq) to k-vector spaces.
- > We study their homological algebra relative to collections of functors and derive expressions for the **relative Betti diagrams** using **Koszul complexes**.

Betti diagrams from Koszul complexes

Poset terminology

Let *a* and *b* be elements of the poset (I, \leq) .

- > A **parent of** *a* is a maximal element smaller than *a*. We denote by $\mathcal{U}(a)$ the set of parents of *a*.
-) The join of a and b, if it exists, is the unique minimal upper bound $a \lor b \ge a$, b.
-) The **meet of** *a* **and** *b*, if it exists, is the unique maximal lower bound $a \wedge b \leq a$, *b*.

Koszul complexes

- Suppose that (I, \leq) is an **upper semilattice**: every two elements *a* and *b* have a join $a \lor b$.
- For a functor *M*: *I* → **vect**_k and *a* in *I*, we define the Koszul complex of *M* at *a* as the chain complex $\mathcal{K}_a M$ where, for all $d \ge 0$,

$$(\mathcal{K}_a M)_d := \bigoplus_{\substack{S \subseteq \mathcal{U}(a) \ |S| = d \\ S \text{ has lower bound}}} M(\bigwedge_{(I \leq a)} S),$$

and differential maps of $\mathcal{K}_a M$ are induced from the structure maps of M.

Theorem [Chachólski-Jin-Tombari 2021]

- \rangle Let (*I*, \leq) be an upper semilattice.
- \rangle For all functors $M: I \rightarrow \mathbf{vect_k}$, elements *a* in *I*, and $d \ge 0$,

 $\beta^d M(a) = \dim H_d(\mathcal{K}_a M).$

kth.se

Betti diagrams from Koszul complexes

KTH ROYAL INSTITUTE OF TECHNOLOGY

Example

Computation of relative Betti diagrams

Non-free functors

 \rangle Instead of resolving with free functors, we can try other shapes:

rectangles

lower hooks [BOO2021]

single-source spread modules [BBH2021]

Adjunction

- \rangle Let $\mathcal{P}: J^{op} \to Fun(I, \mathbf{vect_k})$ be a parametrization functor.
- angle This induces and adjoint pair

Flat and thin parametrizations

 $\rangle\,$ In particular, for all a in J, we have the morphism induced by the adjunction unit

$$\eta_a \colon \mathbf{k}_{[a,\infty)} o \mathcal{RL}\mathbf{k}_{[a,\infty)} = \mathsf{Nat}(\mathcal{P}(-), \mathcal{P}(a)).$$

- angle The parametrization ${\cal P}$ is
 - angle <code>flat</code> if η_a is an isomorphism for all a in J such that $\mathcal{P}(a)
 eq 0$,
 - \rangle **thin** if η_a is an epimorphism for all a in J.

Degeneracy locus

Let $\mathcal{P}: J^{op} \to Fun(I, \mathbf{vect}_k)$ be a thin parametrization.

> An element *a* in *J* is *P*-degenerate if

 $\mathcal{P}(a) = 0$, or

- $\mathcal{P}(a) \neq 0 \text{ and } \beta_{\mathcal{P}}^{d} M(\mathcal{P}(a)) \neq \beta^{d} \mathcal{R} M(a) \text{ for some } M \colon I \to \mathbf{vect_k} \text{ and } d \geq 0.$
- \rangle The set of \mathcal{P} -degenerate elements is the **degeneracy locus** of \mathcal{P} .

Theorem [CGRST 2022]

Suppose that (J, \preccurlyeq) is a finite upper semilattice.

-) If \mathcal{P} is flat, then the degeneracy locus is contained in $\{a \in J \mid \mathcal{P}(a) = 0\}$.
- \rangle If ${\cal P}$ is thin, then the degeneracy locus is contained in

 $\bigcup_{\substack{a\in J\\d\geq 0}} \operatorname{supp}(\beta^d \ker \eta_a).$

kth.se

Flat parametrizations

Isaac Ren — Interactions between representation theory and TDA

14/32

Upsets

angle Consider the collection of **upset functors of k** $_I$

 $\{\mathbf{k}_U \subseteq \mathbf{k}_I \mid U \in \mathsf{Up}(I)\}.$

 $\langle If I has a unique maximal element, then the parametrization <math>\mathbf{k}_{-} : (Up(I)^{op})^{op} \to Fun(I, \mathbf{vect}_{k})$ is flat.

\rangle The Koszul complex of a functor *M* at a nonempty upset $U \in Up(I)$ is

$$(\mathcal{K}_F \mathcal{R} M)_d = \bigoplus_{\substack{S \subseteq \operatorname{Max}(U^c) \ |S|=d}} \operatorname{Nat}(\mathbf{k}_{U \cup S}, M).$$

Example

\rangle The Koszul complex of a functor *M* at a nonempty upset $U \in \mathsf{Up}(I)$ is

$$(\mathcal{K}_F \mathcal{R} M)_d = \bigoplus_{\substack{S \subseteq \operatorname{Max}(U^c) \ |S| = d}} \operatorname{Nat}(\mathbf{k}_{U \cup S}, M).$$

Example

Translated functors

-) Let $I = \{0 < \cdots < n\}^r$ be a grid and fix U a nonempty upset of I.
- \rangle Let $v_0 := \max\{v \in I \mid v + \min(U) \subseteq I\}$ and consider the collection of **translated functors**

 $\{\mathbf{k}_{v+U} \mid v \in (I \leq v_0)\}.$

 \rangle The parametrization \mathbf{k}_{-+U} : $(I \leq v_0)^{\mathsf{op}} \to \mathsf{Fun}(I, \mathsf{vect}_k)$ is thin.

) The Koszul complex of a functor *M* at $v \in (I \leq v_0)$ is

$$(\mathcal{K}_{v}\mathcal{R}M)_{d} = \bigoplus_{\substack{S \subseteq \mathcal{U}_{(I \leq v_{0})}(v) \ |S| = d}} \operatorname{Nat}(\mathbf{k}_{\bigwedge(I \leq v_{0})} S+U, M).$$

Example

Isaac Ren — Interactions between representation theory and TDA

The Koszul complex of a functor *M* at $v \in (I \leq v_0)$ is

$$(\mathcal{K}_{v}\mathcal{R}M)_{d} = \bigoplus_{\substack{S \subseteq \mathcal{U}_{(I \leq v_{0})}(v) \ |S| = d}} \operatorname{Nat}(\mathbf{k}_{\bigwedge(I \leq v_{0})} S+U, M).$$

kth.se

Thin parametrizations

19/32

Corollary [CGRST 2022]

- Suppose that (J, \preccurlyeq) is a finite upper semilattice and \mathcal{P} is thin.
- P **Degeneracy condition:** suppose that, for all *a* in *J*, the induced sublattice ⟨supp(β⁰ ker η_a)⟩ is contained in {*b* ∈ *J* | $\mathcal{P}(b) = 0$ }.
- \rangle Then, for all functors $M: I \rightarrow \mathbf{vect_k}$, *a* in *J* such that $\mathcal{P}(a) \neq 0$, and $d \geq 0$,

 $\beta_{\mathcal{P}}^{d}M(a) = \dim H_{d}(\mathcal{K}_{a}\operatorname{Nat}(\mathcal{P}(-), M)).$

kth.se

Corollary [CGRST 2022]

- Suppose that (J, \preccurlyeq) is a finite upper semilattice and \mathcal{P} is thin.
- P **Degeneracy condition:** suppose that, for all *a* in *J*, the induced sublattice ⟨supp(β⁰ ker η_a)⟩ is contained in {*b* ∈ *J* | $\mathcal{P}(b) = 0$ }.
- \rangle Then, for all functors $M: I \rightarrow \mathbf{vect_k}$, *a* in *J* such that $\mathcal{P}(a) \neq 0$, and $d \geq 0$,

 $\beta_{\mathcal{P}}^{d}M(a) = \dim H_{d}(\mathcal{K}_{a}\operatorname{Nat}(\mathcal{P}(-), M)).$

Assumption: in all of the following examples, *I* is an upper semilattice.

Spread modules [Blanchette-Brüstle-Hanson 2021]

- > Let *S* and *T* be subsets of pairwise incomparable elements of *I* such that
 - \rangle every element *s* in *S* is bounded above by an element $t \ge s$ of *T*,
 - every element t in T is bounded below by an element $s \leq t$ of S.
- > The **spread** with **sources** *S* and **sinks** *T* is the subset of *I*

 $[S,T] := \{ v \in I \mid \exists s \in S, \exists t \in T, s \leq v \leq t \}.$

We then consider the collection of **spread** (or **general interval**) **modules**

 $\{\mathbf{k}_{[S,T]} \mid S, T \text{ as above}\}.$

kth.se

٠

$\rangle\,$ Spread modules are parametrized by the functor

$$\mathcal{Q} \colon \left\{ \begin{array}{ll} \{U, V \in \mathsf{Up}(I)^{\mathsf{op}} \mid V \supseteq U\}^{\mathsf{op}} \to & \mathsf{Fun}(I, \mathsf{vect}_{\mathsf{k}}) \\ (U, V) & \mapsto & \mathsf{k}_{V \setminus U} = \mathsf{coker}(\mathsf{k}_U \to \mathsf{k}_V) \end{array} \right.$$

However, if *I* is not a total order, then no parametrization of spread modules can be thin.

Single-source spread modules [Blanchette-Brüstle-Hanson 2021]

> Instead, consider the subcollection of **single-source spread modules**

 $\{\mathbf{k}_{[\{s\},T]} \mid \{s\}, T \text{ as before}\}.$

- \rangle The restricted (re)parametrization Q: {(v, U) ∈ $I \times Up(I)^{op} | v \le U$ }^{op} → Fun(I, **vect**_k) is thin.
- \rangle The poset {(v, U) $\in I \times Up(I)^{op} | v \leq U$ } is an upper semilattice.
- \rangle The degeneracy condition is satisfied: in particular, $\langle \text{supp}(\beta^0 \ker \eta_{v,U}) \rangle$ is generated by (u, [u, ∞)) for $u \in \text{Min}(U)$.

\rangle The Koszul complex of a functor *M* at (*v*, *U*) is

$$(\mathcal{K}_{(v,U)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), T \subseteq (v \leq \operatorname{Max}(U^c)) \\ |S|+|T|=d \\ S \text{ has lower bound}}} \bigcap_{u \in \operatorname{Min}(U \cup T)} \ker M(\bigwedge_{(I \leq v)} S \leq u).$$

Example

\rangle The Koszul complex of a functor *M* at (*v*, *U*) is

$$(\mathcal{K}_{(v,U)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), T \subseteq (v \leq \operatorname{Max}(U^c)) \ u \in \operatorname{Min}(U \cup T) \\ |S|+|T|=d \\ S \text{ has lower bound}}} \operatorname{ker} M(\bigwedge_{(I \leq v)} S \leq u).$$

Lower hooks [Botnan-Oppermann-Oudot 2021]

Consider the collection of **lower hooks**

$$\{\operatorname{\mathsf{coker}}(\mathsf{k}_{[w,\infty)}\subseteq\mathsf{k}_{[v,\infty)})\mid w\leq v\in I\}$$
,

parametrized by the poset $(J, \preccurlyeq) = \{(v, w) \in I^2 \mid v \leq w\}$ equipped with the product order.

- \rangle The restricted (re)parametrization $\mathcal{Q}: J^{op} \to Fun(I, \mathbf{vect_k})$ is thin.
- $\langle J \rangle$ is an upper semilattice, and the degeneracy condition is satisfied: in particular, $\langle \sup (\beta^0 \ker \eta_{v,w}) \rangle$ is just $\{(w, w)\}$.

\rangle The Koszul complex of a functor *M* at (*v*, *w*) is

$$(\mathcal{K}_{(v,w)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), \ T \subseteq (v \leq \mathcal{U}_I(w)) \\ |S|+|T|=d \\ S \text{ has lower bound}}} \ker M(\bigwedge_{(I \leq v)} S \leq \bigwedge_{(I \leq w)} T).$$

Example

kth.se

\rangle The Koszul complex of a functor *M* at (*v*, *w*) is

$$(\mathcal{K}_{(v,w)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), \ T \subseteq (v \leq \mathcal{U}_I(w)) \\ |S|+|T|=d \\ S \text{ has lower bound}}} \ker M(\bigwedge_{(I \leq v)} S \leq \bigwedge_{(I \leq w)} T).$$

Non-example and partial solution: simple intervals

Simple intervals

> Consider the collection of **simple intervals**

 $\{\mathbf{k}_{[v,w]} \mid (v,w) \in J\}.$

- \rangle The parametrization $\mathbf{k}_{[-,-]}: J^{op} \to Fun(I, \mathbf{vect}_k)$ is thin and the poset J is an upper semilattice whenever I is.
- > However, the degeneracy locus is not well-behaved.
 - > In particular, $k_{[v,w]}$ is never the zero functor, but sometimes ker $\eta_{v,w}$ is nonzero.

Rectangles on a grid

-) Let $I = \{0 < \cdots < n\}^r$ be a grid and consider the same collection as before.
- \rangle Now identify **J** with the subposet

$$\Big\{\Big(v, igcup_{i=1}^r (v+(w_i-v_i)e_i\leq I)\Big) \ \Big| \ v,w\in I,v\leq w\Big\}$$

of the poset parametrizing single-source spread modules.

 \rangle The parametrization $(v, w) \mapsto \operatorname{coker} \left(\bigoplus_{i=1}^{r} \mathbf{k}_{[v+(w_i-v_i)e_i,\infty)} \to \mathbf{k}_{[v,\infty)} \right)$ is thin, J is an upper semilattice, and the degeneracy condition is satisfied.

 \rangle The Koszul complex of a functor *M* at (*v*, *w*) is

$$(\mathcal{K}_{(v,w)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), T \subseteq (v \leq \mathcal{U}_I(w)) \ |S|+|T|=d}} \bigcap_{i=1}^r \ker M(v_S \leq v_S + (w_T - v_S)_i).$$

Example

 \rangle The Koszul complex of a functor *M* at (*v*, *w*) is

$$\mathcal{K}_{(v,w)}\mathcal{R}M)_d = \bigoplus_{\substack{S \subseteq \mathcal{U}_I(v), T \subseteq (v \leq \mathcal{U}_I(w)) \\ |S|+|T|=d}} \bigcap_{i=1}^r \ker M(v_S \leq v_S + (w_T - v_S)_i).$$

Example

Outlook

- Software implementation of the computation of Betti diagrams relative to lower hooks.
- **Stability** and **hierarchical stabilization** of relative Betti diagrams.
- > Construction of new **computable metrics** for functors.

References

- B. Blanchette, T. Brüstle, and E. Hanson. *Homological approximations in persis*tence theory, 2021.
- > M. Botnan, S. Oppermann, and S. Oudot. *Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions*, 2021.
- \rangle W. Chachólski, A. Jin, and F. Tombari. *Realisations of posets and tameness*, 2021.
- Preprint on arXiv: Effective computation of relative homological invariants for functors over posets, 2209.05923.