
Predicting Energy and Performance Overhead of
Real-Time Operating Systems

Sandro Penolazzi, Ingo Sander and Ahmed Hemani
Dept. of Electronic Systems, School of ICT, KTH, Stockholm, Sweden

{sandrop, ingo, hemani}@kth.se

Abstract—We present a high-level method for rapidly and
accurately estimating energy and performance overhead of Real-
Time Operating Systems. Unlike most other approaches, which
rely on Transaction-Level Modeling (TLM), we infer the informa-
tion we need directly from executing the algorithmic specification,
without needing to build any high-level architectural model.
We distinguish two main components in our approach: first,
an accurate one-time pre-characterization of the main RTOS
functionalities in terms of energy and cycles; second, the de-
velopment of an algorithm to rapidly predict the occurrences of
such RTOS functionalities. Finally, we demonstrate the feasibility
of our approach by comparing it against gate level for accuracy
and against TLM for speed. We obtain a worst-case energy error
of 12% against a mean speedup of 36X.

I. INTRODUCTION

Real-Time Operating Systems (RTOS) are critical infra-
structural components of embedded SoCs. They enable and
manage sharing of hardware resources: computational, stor-
age, interconnect and I/O. However, such services have an
overhead, both in latency and energy. This overhead needs
to be accounted for when doing design-space exploration and
energy/performance estimation at system level, early in the
design cycle. Without factoring in this overhead, the accuracy
of the estimates would be severely compromised.

Raising abstraction is fundamental to get improvement in
design productivity and this pattern has been consistent for
the last three decades [1]. Transaction Level Modeling is part
of this trend and raises the abstraction above the RTL. TLM
models an architecture by abstracting away the implementation
details, especially the cycle-accurate-level details, of the archi-
tectural resources; the modeling is done in terms of abstract
transactions between architectural resources. This allows to
cut down the modeling time and to increase the simulation
capacity, thus being a good candidate to perform early design-
space exploration.

While TLM is a progress, it still implies a substantial
additional engineering effort, because TLM is not the starting
point of automatic synthesis or system build and, as such,
the TLM step is not an essential step in implementing the
system. In addition, when TLM is used as the basis for esti-
mating the impact of RTOS, the actual RTOS and application
software are simulated in the SoC architectural model and
often an instruction-set simulator simulates the RTOS and the
application software at instruction-set level. This makes even
a TLM-based model slow.

Funtime is an early estimation methodology framework that
aims at overcoming these problems. It fundamentally differs
from TLM in that it does not simulate the architecture, but
it infers the architectural implications while executing only
the algorithmic model of the application on a common PC.
The abstraction level of the Funtime methodology is higher
than TLM. We have previously shown Funtime to be 30X
faster than TLM and within 15% accuracy of post-layout gate-
level simulation [2]. Unlike TLM, the Funtime methodology
relies on an engineering step that has always been part of the
SoC engineering cycle, i.e. the algorithmic level models of the
application.

The Funtime methodology that we published in the past [2]
ignored the impact of RTOS and assumed that each application
had the resources to itself. This paper extends the Funtime
methodology to factor in the impact of RTOS as well, both
for latency and energy, by introducing two additional steps:
• RTOS characterization: we characterize the main compo-

nents of a generic RTOS in terms of typical number of
execution cycles and power consumption. This character-
ization is a one-time activity that we propose to be done
by the RTOS provider. This is detailed in section IV.

• RTOS activity prediction: we propose a static analysis
strategy to predict how many occurrences of such OS
components we would count if we were actually execut-
ing the OS in a real use-case scenario. This prediction
method is invoked by the Funtime user for each use-case
scenario. A detailed description of this step is presented
in section V.

II. RELATED WORK

Yi et al. [3][4] present an approach to RTOS modeling that
has some similarity to our work in that they also include a pre-
characterization phase of some key RTOS components like the
tick interrupt (triggered by the system timer) and the context
switch. However, this characterization is done only to factor
in the extra latency induced by the RTOS and ignores the
impact on energy. Besides, the authors rely on a trace-driven
cosimulation in SystemC to run their applications and thus
measure the task duration, in order to derive the actual number
of clock ticks. Our approach predicts instead the RTOS activity
by means of a static analysis, resulting in faster estimates.

In [5], Brandolese et al. also propose a method to pre-
characterize system calls of an OS for embedded applications.
To do that, they rely on measurements “based on executing

stubs”. This is also the approach that we use, as detailed
in section IV. However, unlike us, they only characterize
the impact on latency and neglect the impact on energy. In
contrast to [4], [5] and the method proposed by us, Hessel
et al. [6] do not pre-characterize the RTOS, but propose an
RTOS model in SystemC, by extending the built-in scheduler
that also does the power estimation. In [7], an extension of
the SystemC simulation engine is proposed to build an RTOS
model, where a new simulation library is added to implement
the so called T-THREADs. In a similar fashion, in [8] the
SystemC SC THREAD processes are also exploited to create
an OS model.

The key difference between the Funtime methodology for
estimating the impact of RTOS and the related research that
we have reviewed here is that in Funtime we do not simulate
the RTOS using an ISS or a SystemC transaction-level model
of a SoC architecture: we infer the impact of the RTOS by
running the application code at functional untimed level. This
difference gives the Funtime methodology three advantages:

1) we avoid the time-consuming process of building the
TLM of the architecture.

2) being more abstract, the functional untimed level has a
significant speed advantage over TLM.

3) we do not have to deal with synchronization issues
among multiple simulation models [4].

III. THE FUNTIME METHODOLOGY

Funtime operates at 3 different levels of abstraction, as sum-
marized in the present section and shown in Figure 1. We have
highlighted in red color the components of the Funtime flow
that concern accounting for the Operating System overhead,
which is also the contribution and novelty of this paper.

IP Energy & Performance
Models

Instrumentation
Instrumented

Algorithmic Models

A - IP Level

B - Algorithmic Level

C - Refinement Level
Refinements
- ALTs interdependency
- Hw/sw optimizations (caches, etc.)
- Operating System
- Bus arbitration

Primary ALTs (P-ALTs)

Secondary ALTs (S-ALTs)

x
Energy

Out

Exec. time

x

Refined
exec. time

Refined energy

Fig. 1. The Funtime methodology flow (A-IP Level, B-Algorithmic Level,
C-Refinement Level)

A. IP Level

At this level, we consider the availability of IP energy
and performance models. Such models, which are the result
of a one-time effort made by the IP provider, characterize
each IP Architectural-Level Transaction (ALT) in terms of
energy and number of cycles, where an architectural-level
transaction directly expresses one of the IP functionalities. For
instance, for a processor IP, each instruction represents one
such transaction. Energy and performance characterization is

done by the IP provider only once on a back-annotated gate-
level netlist, thus conferring high accuracy to the model. In
essence, for each IP in the library, the IP model expresses
energy and cycles properties for all the transactions of that IP.

In our approach, an OS is also considered an IP, whose
transactions correspond to very high-level functionalities such
as executing a context switch, serving a clock tick interrupt,
etc. The OS characterization process is detailed in section IV.

B. Algorithmic Level

Once each IP transaction has been characterized for energy
and number of cycles, energy and execution time e (see
Figure 1) for a full application can be calculated provided that
the total number and type of transactions triggered by such an
application are known.

Traditionally, this information can be collected from Instruc-
tion Set Simulation (ISS), transaction-level simulation or any
other architecture-based simulation. In our approach instead,
since the idea is to avoid architectural simulation, the inference
of architectural transactions is achieved by instrumenting the
application (algorithmic specification), itself devoid of any
architectural detail, to be architecture aware. The instrumented
application is then executed natively on a common PC. Trans-
actions inferred at this level are defined Primary transactions
(P-ALTs). The process flow is illustrated in Figure 1B. For
a thorough description of how instrumentation and inference
of P-ALTs are done in practice, the reader is referred to our
previous work [2].

C. Refinement Level

From Subsections III-A and III-B, once each IP transaction
has been characterized for energy and number of cycles, and
the total occurrence of such transactions for the execution of
an application has been determined, energy and execution time
e (see Figure 1) for that application can finally be estimated.

This estimate, while it accurately reflects the contribution
of all the Primary transactions, it ignores the impact of other
transactions – which we call Secondary transactions (S-ALTs)
– induced by the following three main reasons:

1) The interdependency of Primary ALTs, especially pro-
cessor instructions.

2) Architectural optimization measures like caches, power
management, etc.

3) Sharing of resources due to Operating System (OS) and
bus arbitration.

Refining the estimate from Level B is done at Level C,
which is naturally called Refinement Level. In essence the
Level C refines the trace of Primary ALTs from Level B by
adding the induced Secondary ALTs. Of the three reasons
listed above, we have previously addressed the first and in
part the second one in [2]. In this paper, we tackle partially
the reason 3 by factoring in the OS-related Secondary ALTs
that are induced when multiple applications share a processor.
This is symbolically shown in Figure 1 and elaborated in the
next two sections.

IV. RTOS CHARACTERIZATION

In this section, we propose a general approach to character-
ize the S-ALTs due to the RTOS overhead in terms of latency
and energy. RTOS overheads are implied by its components
that are called to implement the RTOS functionality. Charac-
terization is a one-time activity done by the RTOS provider.
The process consists in simulating the RTOS in a post-layout,
back-annotated gate-level netlist of the representative SoC
architecture. Although time consuming, this characterization
process is justified because it is done only once and the preci-
sion gained is important for the accuracy of estimates at high-
level. Although in this paper we present the characterization of
the RTEMS RTOS [9] for a Leon-based SoC [10], the methods
themselves are generic and do not depend on a specific RTOS
implementation or SoC architecture.

The characterization process not only considers atomic
RTOS calls, as it is done in [5], but also considers coarse-
grained RTOS calls like clock tick interrupts and scheduler
invocation. The number and type of atomic RTOS calls in-
volved both in the clock tick interrupt and in the scheduler are
OS-dependent. However, thanks to the general approach that
we have adopted, it is easy to specify the sequence of atomic
OS routines that have to be included in the performance and
energy characterization.

A. Characterizing a group of RTOS routines

We explain in 5 steps the characterization process using
RTEMS for the Leon3-based SoC shown in Figure 2.

Leon3

AHB Ctrl

Timer Irq Ctrl

AHB/APB
Bridge

APB Ctrl

SRAM

Fig. 2. Leon3-based platform

1 – A representative SoC, with essential hardware for
hosting an RTOS, is composed. An example is given in
Figure 2. The platform is then synthesized and all the wire
delays and parasitics are back-annotated to the gate-level
netlist. Synthesis has been carried out in our case for the
TSMC-90nm technology.

2 – The RTOS and its tasks are compiled and loaded into the
system. From the object file, a memory dump of the RTOS and
the tasks is also taken. A fragment of such a dump is shown
in Figure 3. In the RTEMS case, this can be done using the
sparc-rtems-objdump command. The dump allows us
to associate any routine name to its memory addresses.

40006944 <rtems_clock_tick>:
40006944: 9d e3 bf 98 save %sp, -104, %sp
40006948: 40 00 08 09 call 4000896c <_TOD_Tickle_ticks>
4000694c: 01 00 00 00 nop
40006950: 11 10 00 71 sethi %hi(0x4001c400), %o0
40006954: 40 00 16 77 call 4000c330 <_Watchdog_Tickle>

Fig. 3. Example of an objdump output

3 – The system is executed at gate level, with the user-
defined tasks, and the RTOS calls are activated a sufficient
number of times — around 1000 — to make the characteri-
zation statistically relevant.

4 – As an output of step 3, an execution trace file and a VCD
(Value Change Dump) file are produced from the gate-level
simulation. We require that the execution trace file contains
both the address of each instruction that has been executed,
as well as its time stamp. The VCD file contains instead the
switching activity figures, used by the EDA tools to do power
estimation.

5 – By using the information in the dump, execution trace,
VCD and by providing the sequence of atomic RTOS routines
to be characterized, it is possible to extract the average number
of cycles and also the power for the routines under character-
ization. We have automated this last step by implementing
and using a C-based script, which we call RTOS Modeler
and whose overall functionality is summarized in Figure 4.
The advantage of having such a script is that it allows to
characterize any atomic routine or sequence of routines present
in the object dump file, without needing any intervention from
the user. As a consequence, the whole characterization process
gets a significant speedup. In addition, this script is completely
OS-independent, thus it can be easily reused.

RTOS
Modeler

- objdump file
- exec. trace + VCD
- routines sequence

- avg. number of cycles
- power figures

IN
OUT

Fig. 4. RTOS Modeler

A summary of the coarse-grained RTOS calls that we have
characterized for RTEMS is shown in Table I. For each of
them, we show the corresponding number of CPU instructions
(S-ALTs), cycles and energy with the associated standard
deviation σ. Note that the small value of σ is an index of
the characterization reliability. The energy values in the table
only refer to the Leon3, configured without cache.

TABLE I
ENERGY AND PERFORMANCE CHARACTERIZATION FOR RTEMS ON

LEON3 (NO CACHE)

RTOS calls # Leon3 # Cycles σC Energy σE
S-ALTs [nJ]

clock tick interrupt 272 2241 24.00 80.14 0.96
scheduler with 880 8434 30.01 263.58 0.96context switch
scheduler without 327 2545 3.53 89.94 0.20context switch
idle task 3 22 0.04 0.76 0.00

Table I only lists a subset of all the possible coarse-
grained functionalities associated to an RTOS. This subset
is sufficient to represent the case studies described in the
next sections of this paper. Characterizing and including more
RTOS functionalities is however part of our future work,
together with the discussion of other case studies.

V. RTOS ACTIVITY PREDICTION

Once the one-time RTOS characterization activity is done,
it is still necessary to predict how many times the OS calls get
triggered during the OS execution in order to estimate the total
OS overhead. How Funtime allows this is elaborated next.

Some new quantities are here introduced and categorized,
where possible, according to the Funtime abstraction level
where their value is assigned. We also assume independent
tasks, i.e. not having to contend for shared resources, sched-
uled using Round Robin (RR).

User-defined parameters: when using RR, all tasks run in
turn for the same amount of time tslice, which is a multiple
of the clock tick period ttick. We further define trel,i as a task
release time, i.e. the time when a task becomes available for
execution. tslice, ttick and trel,i are user-defined parameters.

From Level A: we define esc and ect as the execution time
of a scheduler call and of a clock tick interrupt respectively.
They are determined during the OS characterization phase.

From Level A and B: given a generic task Ti, its execution
time ei is defined as the ideal execution time required to
complete Ti when Ti has all the resources available to itself.
This quantity was already introduced in section III and shown
in Figure 1. The actual number of tasks Ti and all the required
runtime information are also provided at these two levels.

From Level C: we define SCslice as the number of scheduler
calls during tslice. We assume that such invocations always
result in a context switch. We also define CTslice as the num-
ber of clock tick interrupts occurring during tslice, excluding
the clock tick interrupt that invokes the scheduler. Thus, we
have SCslice = 1 and CTslice = (tslice/ttick − 1). Figure 6
illustrates this for the time range 30 ≤ t < 60, where we can
identify one scheduler invocation in the red bar and two clock
tick interrupts in the thinner blue bars.

We also define eslice as the slice time that is actually
dedicated to executing a generic task Ti and not spent in
executing OS calls. This leads to eslice = tslice − (SCslice ·
esc + CTslice · ect). In Figure 6, the calculation of the eslice
value is shown for the time slice in time range 120 ≤ t < 150.

Finally, we define SC and CT as the number of total calls
to the scheduler and of clock tick interrupts happening when
running an arbitrary number N of concurrent tasks.

Using such definitions, we show how ei can be used at
Level C to predict SC and CT . To ease the explanation, we
use 3 successively more realistic examples. First, we assume
that all tasks are released simultaneously and have the same ei.
Second, we allow tasks with different ei, but we still assume
that they are released simultaneously. Finally, we allow tasks
released at different times, as well as the possibility that RTOS
overheads may be a function of the number of ready tasks.

Example 1: in this ideal case, all the N tasks have the same
release time trel,i = 0 and the same execution time ei = E
with E = n ·eslice, n ∈ N. The values for SC and CT can be
calculated by Eq. 1. This scenario is exemplified in Figure 6,
where we also extract numerical values for SC and CT .

SC = SCslice ·N ·
E

eslice
; CT = CTslice ·N ·

E

eslice
(1)

0 30 60 90 120 150 180
t

8 9 9

+

Fig. 6. RR scheduling: ∀Ti, trel,i = 0 and ei = E

Example 2: we consider a more general case where all N
tasks have different execution times ei and ei is not an exact
multiple of tslice. In this case, each task Ti is completed before
the end of its slice time. This scenario, shown in Figure 5
for N=4, is highlighted in grey boxes. When this condition
occurs, the scheduler is called at the next clock tick interrupt
and, unless the ready task queue is empty, a context switch
occurs, even if the slice time has not yet expired. This is
done to minimize the performance loss. Note that the behavior
described is valid for RTEMS. In this case, we need a more
general formula to determine SC and CT .

We define Qi and Ri as the quotient and the remainder of
the division ei/eslice for a generic task Ti. Ri is the portion
of Ti for which the execution time is smaller than a slice
time, that is 0 ≤ Ri < eslice. The value of Ri is shown in
Figure 5 for each of the 4 tasks considered in this example.
Let then SCrem,i and CTrem,i be the number of calls to the
scheduler and of clock ticks occurring during the time Ri.
As we assumed that a time slice always starts with a call
to the scheduler, the values of SCrem,i and CTrem,i can be
expressed as in Eq. 2 and 3 respectively.

SCrem,i =
{

0 if Ri = 0
1 if Ri > 0 (2)

CTrem,i =

 0 if Ri ≤ (ttick − esc)⌈
Ri − (ttick − esc)

ttick − ect

⌉
if Ri > (ttick − esc)

(3)
The total number of calls to the scheduler SC and clock tick

interrupts CT is calculated now through an iterative process,
where the number of iterations corresponds to the number of
tasks N. During each iteration, the value of SC and CT is
incremented. The main steps are shown in Algorithm 1 below.

Algorithm 1 Assumptions: trel,i = 0, ei 6= ej
SC,CT ← 0;
for i = 1 to N do
SC ← SC + SCslice ·Qi + SCrem,i;
CT ← CT + CTslice ·Qi + CTrem,i;

end for

Example 3: we consider a more real case where N tasks
have arbitrary release times trel,i and execution times ei, as
shown in Figure 7. In addition, we assume that the execution
time of some OS functionalities is related to the number of
ready tasks rdy(t) at the time t when such functionalities get

0 40 80 160120 200 240
t

260 300 330 370

+

8 4 8 9 5 8 9 9 5 8 9 7

+ + +

Fig. 5. Round Robin scheduling: ∀Ti, trel,i = 0, ei 6= E and ei 6= ej

0 40 80 160120 200 240
t

280 320 350

Fig. 7. Round Robin scheduling: ∀Ti, trel,i 6= 0, ei 6= E, ei 6= ej, esc(rdy(t)) and ect(rdy(t))

triggered. Thus, in this case esc and ect are not constant figures
any more, but they depend on rdy(t) and can be denoted as
esc(rdy(t)) and ect(rdy(t)) respectively.

When calculating the value of SC and CT , it is therefore
also necessary to determine the value of rdy(t). This process
can be eased by restricting the evaluation of rdy(t) to specific
time points, which correspond either to a task release time
trel,i or completion time tend,i. The reason is that the value
of rdy(t) remains unchanged for all the other values of t.
The result is a static decomposition of the whole scheduling
into multiple time windows wi. This is shown in Figure 7,
where 5 time windows [w1, w5] are identified for 3 tasks and
highlighted by different-color areas. In detail, whenever a new
time window starts and rdy(t) is calculated, the ending time
of the same time window is identified as the minimum time
between the tend,i for each ready task and the next closest
release time trel. Once the time window has been defined,
the values of SC and CT for that time window are calculated
and added to the old ones calculated in the previous window.
This process is iterated until all tasks are completed. Note
that, even in this more elaborated implementation, our OS
prediction algorithm has still an execution time proportional
to the number of tasks involved, not to their execution time ei.
Thus, it is still extremely fast. The pseudo-code for the main
steps described above is reported in Algorithm 2.

Algorithm 2 trel,i 6= 0, ei 6= ej , esc(rdy(t)), ect(rdy(t))
SC(rdy(t)) = CT (rdy(t)) = 0;
total execution time left e tot left←

PN
i=1 ei;

time t← 0;
while e tot left > 0 do

for i = 1 to N do
rdy(t)← number of ready tasks at time t;
Trdy [i]← which tasks are ready at time t;

end for
for each Trdy [i] at time t do

calculate its ending time tend,i;
end for
tend min ← min between each tend,i and next closest trel;
update SC(tend min − t, rdy(t));
update CT (tend min − t, rdy(t));
update e tot left;
t← tend min

end while

VI. VALIDATION

A. Accuracy: Funtime vs. gate level

Energy and timing figures from back-annotated gate-level
simulation were taken as a reference for Funtime accuracy
validation. The reason is two-fold: first, gate level is very ac-
curate; second, IP-level energy models and the OS refinements
were achieved based on gate-level characterization.

The SoC platform used for validation is the same used for
the OS characterization and shown in Figure 2. The goal is
to verify the accuracy of Funtime in predicting energy and
execution time for a software environment where two tasks
T1 and T2 run on top of the RTEMS OS and are scheduled
using Round Robin. The values of the clock tick period ttick
and of the time slice period tslice have been set to 1ms and
3ms respectively.
T1 and T2 are synthetic applications that have been chosen

on purpose with different execution times e1 6= e2, but with
the same release times trel,1 = trel,2 = 0. Such applications
are different from those used during the OS characterization.

We have collected the results in Table II, which is itself split
into 3 horizontal subtables considering an increasing number
of sources of inaccuracy. Subtable 1 only considers the error
deriving from the OS characterization described in section IV,
while e1 and e2, as well as the OS activity are measured from
gate level. Subtable 2 has two sources of inaccuracy: the OS
characterization and the OS activity prediction, described in
section IV and V respectively, while e1 and e2 are measured;
finally, Subtable 3 considers three sources of inaccuracy: the
first two are the same as for Subtable 2, while the third comes
from using Funtime (Level A and B) to derive also e1 and e2.
Table II is further split vertically into a left and a right side:
the left side reports figures related to the two tasks T1 and
T2, independently of the OS; the right side is instead meant
to show the OS overhead. The energy values shown refer to
the Leon3 processor.

The RTEMS functionalities that we account for in Table II
are, from left to right, the clock tick interrupt, the invocation to
the scheduler resulting in a context switch and the invocation
to the scheduler not resulting in a context switch. For each such
a functionality, we compare energy and time values extracted

TABLE II
VALIDATING FUNTIME VS. GATE LEVEL FOR ENERGY ESTIMATION: 2 RR-SCHEDULED TASKS OF DIFFERENT LENGTH

Applications RTEMS OS
T1 T2 clock ticks sched. + c.s. scheduler

Subtable 1 (1 source of inaccuracy: OS characterization)
Real ei [ms] 37.60 59.35 Real #OS macro-func. 71 28 8
Real energy [µJ] 53.24 84.73 Real energy [µJ], time [ms] 5.67 3.98 7.47 5.27 0.77 0.53

Inferred energy [µJ], time [ms] 5.69 3.98 7.38 5.20 0.72 0.51
Error [%] +0.35 -0.14 -1.27 -1.33 -6.83 -4.48

Subtable 2 (2 sources of inaccuracy: OS characterization + OS activity prediction)
Real ei [ms] 37.60 59.35 Real #OS macro-func. 71 28 8

Inferred #OS macro-func. 72 29 7
Error [%] +1 +1 -1

Real energy [µJ] 53.24 84.73 Real energy [µJ], time [ms] 5.67 3.98 7.47 5.27 0.77 0.53
Inferred energy [µJ], time [ms] 5.77 4.03 7.64 5.39 0.63 0.44
Error [%] +1.76 +1.27 +2.26 +2.19 -18.48 -16.41

Subtable 3 (3 sources of inaccuracy: OS characterization + OS activity prediction + ei value)
Real ei [ms] 37.60 59.35 Real #OS macro-func. 71 28 8
Inferred ei [ms] 36.25 58.00 Inferred #OS macro-func. 70 28 8
Error [%] -3.59 -2.28 Error [%] -1 0 0
Real energy [µJ] 53.24 84.73 Real energy [µJ], time [ms] 5.67 3.98 7.47 5.27 0.77 0.53
Inferred energy [µJ] 46.73 74.77 Inferred energy [µJ], time [ms] 5.61 3.92 7.38 5.20 0.72 0.51
Error [%] -12.23 -11.76 Error [%] -1.06 -1.55 -1.27 -1.33 -6.83 -4.48

from a gate-level simulation versus those inferred by Funtime.
In any of the three subtables, the results show that the Funtime
accuracy increases with the number of OS system calls. For
example, the accuracy achieved for the clock tick interrupt,
which occurs 71 times, is much higher than the one achieved
for the scheduler invocation without context switch, that occurs
only 8 times. From the OS activity prediction perspective, it
is straightforward that a 1-unit error weighs more on a total
of 8 units rather than 71. However, we recall that the Funtime
methodology is meant for being used on extensive use-case
scenarios, where billions of transactions take place. Under
these assumptions, the 18% energy error and the 16% time
error obtained with respect to the scheduler invocation without
context switch become insignificant.

B. Speed: Funtime vs. TLM-PV
For speed comparison, TLM-PV has been chosen as a

reference. The reason is that this is the fastest high-level
methodology for system-level estimation commonly used at
present. For this purpose, we built our own TLM-PV in Sys-
temC for the reference SoC architecture. The implementation
has been as abstract as possible, since it exclusively represents
the transactions occurring across the platform among the
different IPs. A set of applications has been chosen with a
very high number of executed instructions, ranging between
80M - 1.6B. The applications chosen are the image com-
pression codec JPEG2000 and the video compression codec
H264. Applications and data have been combined in different
ways to show some possible use-case scenarios, where two
applications always run concurrently on top of the RTEMS
OS. The results are reported in Table III and show a mean
speed improvement of 36X for Funtime compared to TLM-PV.
This confirms the capacity of Funtime to be used for complex
and real use-case scenarios.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a high-level method for rapidly and
accurately estimating energy and performance overhead of

TABLE III
SPEED COMPARISON: FUNTIME VS. TLM-PV

Tasks TLM[s] Funtime[s] Speedup
T1 → Jpeg2k 128x128 46.66 1.86 25
T2 → Jpeg2k 512x512
T1 → H264 176x144 147.52 3.19 46
T2 → H264 352x288
T1 → Jpeg2k 128x128 93.56 2.40 39
T2 → H264 352x288

Real-Time Operating Systems. We have distinguished two
main components in our approach: first, a one-time pre-
characterization of the main RTOS functionalities in terms of
energy and cycles; second, the development of an algorithm
to predict the occurrences of such RTOS functionalities. As
a result, we are able to achieve a significant mean speedup
(36X) compared to TLM, while only losing 12% of the gate-
level accuracy when doing energy and performance estimation.

As part of the future work, we intend to extend the OS pre-
diction algorithm to work also for a priority-driven scheduling
policy and to account for inter-dependent tasks that need to
compete for shared resources.

REFERENCES

[1] F. Ghenassia, Transaction-Level Modeling with SystemC, 2005.
[2] S. Penolazzi, A. Hemani, and L. Bolognino, “A General Approach to

High-Level Energy and Performance Estimation in SoCs,” in VLSI, 2009.
[3] Y. Yi, D. Kim, and S. Ha, “Virtual Synchronization Techniques with

OS Modeling for Fast and Time-accurate Cosimulation,” 2003.
[4] ——, “Fast and accurate cosimulation of mpsoc using trace-driven

virtual synchronization,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 2007.

[5] C. Brandolese and W. Fornaciari, “Measurement, Analysis and Modeling
of RTOS System Calls Timing,” in Euromicro, 2008.

[6] F. Hessel, V. M. da Rosa, I. M. Reis, C. A. M. Marcon, and A. A. Susin,
“Abstract RTOS Modeling for Embedded Systems,” in RSP, 2004.

[7] M. A. Hassan, K. Sakanushi, Y. Takeuchi, and M. Imai, “Enabling RTOS
Simulation Modeling in A System Level Design Language,” in ASP-
DAC, 2005.

[8] Z. He, A. Mok, and C. Peng, “Timed RTOS Modeling for Embedded
System Design,” in RTAS, 2005.

[9] “RTEMS Homepage. http://www.rtems.com.”
[10] “AEROFLEX GAISLER. http://www.gaisler.com.”

