
System Synthesis Based on a Formal Computational Model and Skeletons

Ingo Sander, Axel Jantsch
Department of Electronics, Royal Institute of Technology, Stockholm, Sweden

Abstract

Formal approaches to HW and system design have not
been generally adopted, because designers often view the
modelling concepts used in these approaches as unsuita-
ble for their problems. Moreover, they are frequently on a
too high abstraction level to allow for efficient synthesis
with today’s techniques. We address this problem with a
synthesis method which bridges the gap between a highly
abstract functional model and an efficient hardware imple-
mentation. The functional model is strictly formal and
based on formal semantics, a pure functional language,
and the synchrony hypothesis. However, the use of skele-
tons in conjunction with a proper computational model
allows a hardware interpretation, where the structure is
given by skeletons and the combinatorial logic by elemen-
tary functions. Thus, without compromising the formal
properties we offer an effective modelling technique on a
high abstraction level which is still natural for hardware
designers, and is the basis for synthesis into an efficient
implementation. Furthermore, we describe a design meth-
odology which uses the modelling concepts and the syn-
thesis method. It contains a design exploration phase and
defines how and when design decisions are formally intro-
duced into the synthesis process. Finally, we illustrate
design space exploration and synthesis with a FIFO com-
ponent taken from an ATM switch.

1. Introduction

High abstract, formal models can be conveniently used
to capture the essential functionality of a system and to
utilize theorem provers, model checkers, and other formal
analysis and verification techniques. This is of increasing
importance when systems become more and more com-
plex and system analysis and verification becomes one of
the major roadblocks in product development. On the
other hand, there is a significant gap between high
abstract, formal models and all the details of an implemen-
tation, which has so far prohibited efficient synthesis tech-
niques. We attempt to bridge this gap without
compromising the formal properties and the high abstrac-
tion level of a functional model. We do this with (1) a care-
fully selected computational model based on timed signals
for communication and skeletons for typical design pat-
terns, (2) a two-phase design exploration, i.e. data type
exploration and architecture exploration, and (3) a synthe-

sis method based on skeletons which uses explicitly for-
mulated design decisions to infer all the details of a
hardware implementation.

The computational model essentially provides abstrac-
tions ofcommunicationandtime. This allows the concen-
tration on the important system functionality.
Furthermore, because communication in our model is a
very abstract and simple data flow mechanism, functions
can be added, removed and re-grouped very easily. This is
in contrast to many modelling approaches based on con-
current processes with complicated asynchronous or syn-
chronous communication mechanisms. There, functions
cannot be easily moved from one process to another
because this requires the redesign of the communication
structure. Furthermore, asynchronous message passing is a
very complex mechanism which cannot be implemented in
hardware directly.

Our synthesis method is based on skeletons which pro-
vide a structural hardware interpretation. During a design
exploration phase design parameters are evaluated, e.g. the
size of buffers and the interconnect architecture between
processes. The resulting design decisions are explicit
inputs to the synthesis process which fills in all the details
implied by the design decisions and the functional model.
The synthesis deals with several aspects, i.e. skeletons,
elementary functions, timing model, lists and data types,
and communication. The result is a VHDL model suitable
for processing by logic synthesis tools.

The rest of the paper is organized as follows. Section 2
discusses related work, Section 3 gives an overview of the
design methodology, Section 4 introduces the computa-
tional model and skeletons, and Section 5 illustrates the
design space exploration phase. In Section 6 we present
the synthesis method with a FIFO from an ATM switch
serving as illustrating example. In Section 7 we discuss
what research remains to be done to make this approach
usable in practice, but we underscore that the concepts
presented here are the core of the method, and the remain-
ing research on synthesis and verification are based on
existing knowledge and techniques, and therefore we do
not expect insurmountable problems.

2. Related Work

Many computational models have been described in the
literature. For a comprehensive overview see Edwards et
al. [4]. Very often real-time systems are specified by

means of concurrent processes, which communicate asyn-
chronously. Such a communication model forms the base
for languages such as SDL [23], VHDL, or SpecCharts
[14]. While this model serves as a good implementation
model, due to its closeness to architecture, we argue, that it
is not a good choice for a functional system model. Many
design decisions are already present in such a model, in
particular the partitioning into processes and the communi-
cation mechanism between the processes. It is very diffi-
cult to correct a wrong design decision in the later design
phases. The complexity of the communication mechanism
in some of these languages, such as asynchronous message
passing with infinite buffers e.g. in SDL or Erlang [17], is
a major difficulty for both, the functional design explora-
tion and the subsequent implementation, even though its
simple usage in these languages does not make it always
apparent.

Skillicorn and Talia [19] present a hierarchy of models
for computation on parallel architectures. This is very rele-
vant also for specification and implementation of hardware
systems because many of the problems and challenges are
similar or even identical. Depending on what information
is explicit in a model they distinguish 6 levels, i.e. (1)
“nothing explicit”, (2) “parallelism explicit”, (3) “parallel-
ism and decomposition explicit”, (4) “parallelism, decom-
position, and mapping explicit”, (5) “parallelism,
decomposition, mapping, and communication explicit”,
and (6) “parallelism, decomposition, mapping, communi-
cation and synchronization explicit”. According to this
scheme our modelling approach falls into the “nothing
explicit” level, with parallelism, mapping and communica-
tion implicit in the model and therefore left to be decided
by the synthesis and design process. However, the use of a
specific computational model and skeletons restrict the
model to a static structure with bounded communication
which can be determined at synthesis time. Because of this
restriction cost measures can be developed to control and
predict performance and cost of an implementation as
elaborated in [19].

The synchrony hypothesis [1] forms the base for the
family of synchronous languages, which are designed to
target reactive systems. It assumes, that the outputs of a
system are synchronized with the system inputs, while the
reaction of the system takes no observable time. The syn-
chrony hypothesis abstracts from physical time and serves
as a base for a mathematical formalism. All synchronous
languages are defined formally and system models are
deterministic. The family of synchronous languages can be
divided into two groups, one group targeting data flow
applications (e.g. Lustre [5], Signal [8]), the other target-
ing control oriented applications (e.g. ESTEREL [3],
Statecharts [6]). However, there is no language, which is
good in both areas as elaborated in [1]. We use this theory
for our computational model, but go beyond it by using a
more powerful language paradigm, which allows us to
address both, data flow and control flow applications.

Reekie [11] used the functional language Haskell [9] to
model digital signal processing applications. He modelled

streams as infinite lists and used higher-order functions to
operate on them. Finally, correctness preserving transfor-
mations were applied to transform a system model into an
effective implementation. Transformations of functional
programs is an active research field of the functional pro-
gramming community [2, 10].

The parallel programming community has used func-
tional languages to derive parallel programs from a func-
tional specification [12, 13]. They use skeletons to
structure a problem. This formulation is then transformed
into an efficient implementation for a chosen parallel com-
puter architecture.

Only few attempts to synthesize hardware from an
abstract functional specification have been published. All
of them differ significantly from our approach. Ruby [21]
is a circuit description language based on relations. The
target applications are regular, data flow intensive algo-
rithms, and much of its emphasis is on layout issues. In
contrast our approach is based on a functional language,
addresses data flow and control dominated applications,
uses a fully fledged functional language, and links to com-
mercial logic synthesis tools rather than dealing with lay-
out directly. HML [22] is a hardware description language
based on Standard ML, which is a functional language
similar to Haskell used in our approach. However, HML
attempts to replace VHDL or Verilog as hardware descrip-
tion languages, while we propose a hardware and system
specification concept on a significantly higher abstraction
level with a very different computational model. In [22] a
direct translation of HML to VHDL is described, which
would not be possible in our approach since we propose a
design space exploration and synthesis method which
requires explicit user input in the form of design decisions.

To summarize, we base our work on the synchrony
hypothesis, place it in a functional environment, use skele-
tons to limit the models to statically determined computa-
tion and communication structures, and propose a design
and synthesis method which involves design space explo-
ration and explicit design decisions.

3. Design Methodology

Our design methodology is illustrated in Fig. 1. System
design starts with the development of anunconstrained
functionalsystem model which is based on a synchronous
computational model (Section 4.1), a functional modelling
language (Section 4.2) and the use of skeletons (Section
4.3). The system model isfunctional in the sense, that it
uses formally defined functions to focus on the system
functionality rather than structure and architecture. The
behaviour of the system model is only based on data-
dependences. It abstracts from implementation details, in
particular from low-level communication and timing
mechanisms. The system model isunconstrainedin the
sense, that it uses unconstrained data types, such as infinite
lists. The nature of the unconstrained system model leaves
a wider design space compared to traditional system mod-
els based on imperative languages such as VHDL, SDL, or

C++.
During data type explorationunconstrained system

functions are constrained by replacing infinite data types
with fixed size data types. In this way we obtain several
constrained functionalsystem models which are simulated
and analysed to determine the suitable constraints, such as
the size of buffers. Also, they can be verified with the same
method as used for the unconstrained system model to
guarantee that the functional requirements are fulfilled. As
part of the future work we want to connect our system to
available formal verification and analysis tools, similar to
the approach taken in the HAWK project [18]. The result
of the data type exploration process aredata type decisions
which describe the specific constraints established during
this phase. Data type decisions serve as input to the next
step in thedesign space explorationprocess,architecture
exploration.

Architecture exploration uses the unconstrained system
model together with the data type decisions and adesign
library. The design library contains possible implementa-
tions for skeletons and library elements. Architecture
exploration is part of our future work, but is planned to be
done by means of cost models and estimation techniques.

The result of this phase arearchitecture decisions, which
are an input to thesynthesis process. Architecture deci-
sions define the details of interfaces and implementation
necessary to generate the details in a VHDL model. Exam-
ples of architecture decisions relating to the data rate and
the sequential-parallel trade-off of interfaces are discussed
in Section 5.

Synthesis is done in two steps. First the unconstrained
system model, guided by data type and architecture deci-
sions, is synthesized into a synthesizable VHDL-model on
RTL-level. In the second step the VHDL-model is synthe-
sized with a logic synthesis tool into a netlist for a chosen
technology.

We discuss the computational model in Section 4,
design space exploration in Section 5, and synthesis in
Section 6.

4. Computational Model

4.1. Definition

For a formal definition of the computational model we
use the denotational framework of Lee and Sangiovanni-
Vincentelli [7]. They define a signal as a set of events,
where an event has a tag and a value. Tags are used to
model the order of events. In our model events are totally-
ordered by their tags. We model synchronous systems, that
means every signal has the same set of tags. Events with
the same tag are processed synchronously. To model the
absence of an event, we use a special value⊥ (“bottom”).
Absent events are necessary to establish a total ordering
among events for real time systems with variable event
rates.

A system is modelled by means of concurrent proc-
esses. Events with the same tag are processed synchro-
nously. The output signals of a process are synchronized
with its input signals and are generated instantaneously.
There is no delay inside a process.

Unconstrained System Model

Data Type Exploration

Constrained System Model

Constrained System Model

Verification
Method

Data type
Decisions

Synthesizable VHDL-Model

Hardware Synthesis

Hardware Description

Figure 1. Design Methodology

Synthesis to VHDL

Unconstrained
System Model

Architecture Exploration

Data type
Decisions

Unconstrained
System Model

Architecture
Decisions

Functional
Domain

VHDL
Domain

Design
Library

13 9 15 7⊥ 8

 Event

Tag

Absent Event

ValuePresent Event

Figure 2. A signal is a set of events

s1

s4s5

s7

s2

s6

s3

P1
P2

P3

Figure 3. A system is modelled with concurrent processes

4.2. Modelling Language

We have chosen the functional language Haskell as our
modelling language, as it
• is based on formal semantics andpurely functional
• supportshigher-order functions
• has alazy evaluation mechanism
• provides a variety of control constructs to facilitate also

the modelling of complex control flow
• is executable to allow the simulation of the system

model
In addition Haskell offers some other versatile facilities

aspattern matchingand a powerfultype system, which can
be used for verification purposes.

A Haskell program is a function, which consists of a
composition of other functions. Functions produce only
one result. However a result can be a tuple (similar to a
record) consisting of values of different data types.

We introduce some of the properties of Haskell with the
higher-order functionmap, which applies a function to all
elements in a list.
map f [] = []
map f (x:xs) = f x : (map f xs)

The functionmaphas two arguments (written by juxta-
position). The first argument is a functionf and the other
argument is a list. The function uses pattern matching. The
first pattern matches, when the list is empty. The second
pattern matches, when the list is constructed (:) by a first
element (x) and a rest list (xs).

The type system of Haskell infers the following type for
map:
map :: (a -> b) -> [a] -> [b]

This meansmap is a function, that takes a function as
its first argument. This function is characterized by the
specification, that it takes one argument of typea and pro-
duces a result of typeb. The second argument ofmap is a
list with elements of typea. The result ofmap is a list of
type b. Thusmap can be used for all functions and lists
which are compatible to the type ofmap, which makes it
very general and useful. In addition the lazy evaluation
mechanism of Haskell allows to use infinite lists, as lists
are processed elementwise from the front. We use this
mechanism to model signals.

4.3. System Modelling with Skeletons and
Function Composition

Following the definition of our computational model in
Section 4.1 we describe in this section how a system is
modelled. First, we discuss the modelling of signals. Sec-
ond, we show how skeletons are used to model processes,
and finally we introduce function composition, which is
used to compose the system model.
Signals.We model signals in the functional language
Haskell by means of infinite lists, where the tag corre-
sponds to the position in the list. In our model we use
timedsignals, which can contain absent events. We define
a data typeToken , which is used to represent absent

events or present events of the typevalue .
data Token value = Absent
 | Present value

A timed signal is a signal of the typeToken value .
This is expressed by means of a type synonymTimed :
type Timed value = [Token value]

Elementary Processes.Elementary processes are mod-
elled withskeletons. A skeleton is ahigher-order function,
which takeselementary functionsand signals as input
parameters and produces signals as output. We define an
elementary function as a function, that is combinatorial
and does not include any timing behaviour.

The use of skeletons is the following:
• Skeletons are used for the synchronization of signals.

They separate timing behaviour from computation, the
latter is done by means of the elementary functions.

• Skeletons can contain state information.
• A skeleton has a hardware interpretation. Thus, a sys-

tem model, which is a composition of skeletons, has
also an interpretation in hardware.

• As skeletons are higher-order functions, the work on
correctness-preserving transformations, which has been
done by the functional programming community [2, 10]
can be used to transform a system model into a more
effective implementation model.
In the following we present two important skeletons

and give a hardware interpretation for each of them.
The skeletonmapS is based on the higher-order func-

tion map (Section 4.2), which recursively applies a func-
tion f on all elements of a list.mapScan be interpreted as
a combinatorial component with one input.

The skeletonscanlS applies a functionf on the
events of a signal and an internal statemem. The result of
the function f works as the new state and as output.
scanlS can be interpreted as a state machine with no out-
put decoder. The needed memory elements can be derived
from the data type ofmem.

Composition of Processes.We usefunction composition
to compose new processes. Haskell provides a composi-
tion operator “.”, which takes two functionsf and g as
arguments and produces a new function. The composition
operator is defined by
(f . g) x = f(g(x))

Systems are modelled by composition of processes. In
addition, libraries of application-oriented functions can be

mapS f
s' f e1() f e2() …,{ , }=s e1 e2 …,{ , }=

Figure 4. The skeleton mapS

s e1 e2 …,{ , }= s' e'1 e'2 …,{ , }=

mem

m m0 e'1 e'2 …, ,{ , }=
e'1 f m0 e1,()=
e'i f e'i 1– ei,() if i 1>,=

scanlS f

Figure 5. The skeleton scanlS

built by composition of skeletons. Hence each library ele-
ment has a hardware interpretation. However, often an
effective implementation is known for a certain library ele-
ment and can be added to the design library.

This concept is illustrated with a small example. We use
the skeletonsmapS and scanlS to constitute a new
library elementmooreS .
mooreS nextState output initState
= mapS output . scanlS nextState initState

mooreS can be interpreted as a Moore-FSM. It takes
two elementary functions,nextState andoutput , and
a valueinitState for the initial state as arguments (Fig.
6).

We usemooreS to constitute a new processuncon-
strainedFifoT , that is used to model anunconstrained
FIFO, which has the following characteristics: (1) it has a
buffer of infinite length; (2) it accepts 0, 1 or more data

items per event cycle; (3) it outputs at most one event per
event cycle. Following (1) we model the buffer, which is
the state of the FIFO, by means of a list. The input to the
FIFO is modelled by a timed signal which carries a list of
values (2), while the output of the FIFO is a timed signal
which carries values (3). We model the unconstrained
FIFO by means of the functionmooreS and two elemen-
tary functionsfifoState andfifoOutput .
unconstrainedFifoT :: Timed [a] -> Timed a
unconstrainedFifoT
 = mooreS fifoState fifoOutput []

The functionfifoState is used to calculate the new
state of the buffer. The functionfifoOutput analyses
the buffer and outputs the first element or, if the buffer is
empty, an absent event.

5. Design Space Exploration

Starting with an unconstrained system model of an
ATM Switch with operation and maintenance functionality
[15, 16] (Fig. 7), we illustrate the design exploration proc-
ess, which includes data type exploration and architecture
exploration.

During data type explorationwe replace unconstrained
system functions by constrained functions. The con-
strained system model is then verified with the same verifi-
cation method, which proved the correctness of the
unconstrained system model; today this is done by simula-
tion. We illustrate this with a FIFO in the ATM switch. The
unconstrained FIFO is replaced by constrained FIFOs,
which
• have a fixed buffer size
• can only consume a fixed number of items during one

event cycle
The constrained FIFO is modelled similar to the uncon-

strained FIFO (Section 4.3). We obtain a template by
replacing the functionfifoState with a new function
constrainedFifoState with two additional parame-
tersb for the buffer size andi for the number of parallel
inputs.
constrainedFifoTemplate :: Int -> Int

-> Timed [a] -> Timed a
constrainedFifoTemplate b i
= mooreS (constrainedFifoState b i) fifoOutput []

The functionconstrainedFifoState behaves as
fifoState , except that it uses bounded lists, which
means that the lists are cut, if they have more elements as
specified in the parametersb andw.

mapS output

s

Figure 6. The composite process mooreS

initState

scanlS nextState s'
mooreS

extract
OAM

update
Table

(OAM)

merge
Signals

generate
OAM

FIFO*

generate
OAM

FIFO*merge
Signals

update
Switch
Table

extract
OAM

update
Table

(OAM)*

merge
Signals

generate
OAM

FIFO*

generate
OAM

FIFO* merge
Signals

Cell
Handler

Cell
Handler

distrib.
Table

Figure 7. Unconstrained system model of an ATM switch with operation and maintenance functionality

ATM
cells

ATM
cells

ATM
cells

ATM
cells

Configuration
messages

We can then build instances of constrained FIFOs by
specifying the parametersb andw.
constrainedFifoT_b8_i4 :: Timed [a] -> Timed a
constrainedFifoT_b8_i4
 = constrainedFifoTemplate 8 4

Note, that the type of the constrained FIFO is identical
with the data type for the unconstrained FIFO, which
makes it possible to replace the unconstrained FIFO by a
constrained FIFO without adjustment, and an arbitrary mix
of constrained and unconstrained functions can be simu-
lated. If verification shows, that the constrained system
model still fulfils the system requirements, we obtain the
following data type decisionsfor the FIFO:
• the buffer has to be dimensioned for eight items
• at maximum four items can be consumed during an

event cycle
A FIFO with the named design characteristics can be

implemented with different architectures. Duringarchitec-
ture explorationpossible implementations for skeletons
and library elements from thedesign libraryare compared
in order to get the most effective implementation, the result
of this process arearchitecture decisions. Fig. 8 shows two
possible implementations for the FIFO. The first one uses
parallel inputs, while in the second implementation the
inputs are consumed at a higher data rate compared with
the event data rate. Other intermediate solutions are also
possible. Fig. 8 illustrates how the unconstrained FIFO is
transformed into a hardware implementable architecture
by data type and architecture decisions.

We point out that the functional system model for the
FIFO does not restrict the choice of an architecture since
the unconstrained model does not imply an architecture.

6. Synthesis

Synthesis is done in two steps. First we transform the
unconstrained system model into a synthesizable VHDL
model. Here the synthesis process uses the results of the
design exploration, the data type and architecture deci-
sions. Fig. 9 shows how the synthesis process is divided
into several sub-tasks. Finally the VHDL model is synthe-
sized with a logic synthesis tool.

We illustrate this through the synthesis of the process
unconstrainedFifoT . In particular we focus on the
refinement of the timing model (Section 6.1), skeleton syn-
thesis (Section 6.2), the synthesis of lists (Section 6.3), and
the synthesis of elementary functions (Section 6.4).

The processunconstrainedFifoT is defined as
follows:
unconstrainedFifoT :: Timed [a] -> Timed a
unconstrainedFifoT
 = mooreS fifoState fifoOutput []

fifoState :: [a] -> Token [a] -> [a]
fifoState [] Absent = []
fifoState (x:xs) Absent = xs
fifoState [] (Present ys) = ys
fifoState (x:xs) (Present ys) = xs ++ ys

fifoOutput :: [a] -> Token a
fifoOutput [] = Absent
fifoOutput (x:xs) = Present x

The design is synthesized with the followingdata type
decisions:

1. the buffer is dimensioned for eight items

2. at maximum four items are consumed during an event
cycle

Our architecture decisionis to choose the FIFO-archi-
tecture with parallel inputs.

6.1. Refinement of the Timing Model and Signals

We use a synchronous timing model, where a signal
carries events, which can either be present and have a

FIFO
(buffer_size = 8)

Event Clock
(Rate: 1)

4

FIFO
(buffer_size = 8)

Event Clock
(Rate: 1)

Input

Input Clock
(Rate: 4)

Figure 8. Data type and architecture exploration

unconstrained FIFO
(b = ∝)

 i = ∝

constrained FIFO
(b = 8)

 i = 4

Data type decisions obtained
during data type exploration

Possible implementations explored
during architecture exploration

parallel inputs inputs arriving at higher rate

Communi-
cation

Synthesis

Synthesis to VHDL

Synthesis of
Skeletons

Synthesis of
Elementary
Functions

Refinement
Timing
Model

Data Type
Decisions

Unconstrained
System Model

Architecture
Decisions

Synthesizable VHDL-Model

Figure 9. Synthesis to VHDL

Synthesis of
Data Types

value or absent. The time period between two events is
called anevent cycle. We use anevent clockto partition a
timed signal into a set of events. This event clock is the
clock signal used in the VHDL model to define a synchro-
nous hardware implementation. To indicate if an event is
present or absent we use additionalcontrol signals. Thus a
timed signal is transformed into a record, where the first
part is a value of the signals data type and the second part
is a control signal, indicating if an event is present or not.
The data typeTimed a (Section 4.3) is transformed into
the following record in VHDL.
TYPE Timed_A IS RECORD
 value : A;
 is_present : boolean;
 END RECORD;

6.2. Skeleton Synthesis

The processunconstrainedFifoT is based on the
library elementmooreS . All skeletons have a hardware
interpretation and this means thatmooreS , which is com-
posed of the skeletonsmapS and scanS , can be inter-
preted as a Moore-FSM. Fig. 10 shows the structure of a
Moore-FSM, which can be directly modelled in VHDL
with three parallel processes. The processes for the next
state decoder and the output decoder are combinatorial,
while the process for the memory elements includes regis-
ters.

The library elementmooreS has two functions and one
state value as parameters. The first function,fifo-
State , models thenext state decoder, while the second
function, fifoOutput , models theoutput decoder. The
synthesis task is to transform these functions into a synthe-
sizable VHDL process. A register process for thememory
elementsis inferred as a direct consequence sincemooreS
contains state information. The state parameter, here the
empty list, models the initial state and is interpreted as the
reset state of the Moore-FSM.

6.3. Synthesis of Lists

A list is implemented as a bounded list, which means
that the list has a maximum number of items. This number
is a result of the data type exploration. In VHDL a
bounded list is implemented as a record with an array and
a positive number; the number specifies how many items

are valid in the list (Fig. 11).

The following data type is synthesized for the state of
the FIFO, where the number of elements is given by the
first data type decision, i.e. the buffer is dimensioned for
eight items.
TYPE List_A_Buffer_Size IS RECORD
 number : natural RANGE 0 TO buffer_size;
 item : Array_A_Buffer_Size;
 END RECORD;

6.4. Synthesis of Elementary Functions

The functions fifoState and fifoOutput are
transformed into combinatorial VHDL processes. We
illustrate the transformation method with the function
fifoState which is transformed into the process
OUTPUT_DECODER.
fifoOutput [] = Absent -- Pattern 1
fifoOutput (x:xs) = Present x -- Pattern 2

The function fifoOutput uses pattern matching,
which are transformed intoIF - or CASE-statements in
VHDL. The first pattern matches if the list, modelling the
state of the FIFO, is empty. In this case the output is an
absent event. Otherwise the second pattern matches, and
the output is the first element of the FIFO buffer (state).
OUTPUT_DECODER : PROCESS(state)
BEGIN
 IF state.number = 0 THEN

output.is_present <= false; -- Pattern 1
 output.value <= 0;
 ELSE

output.is_present <= true; -- Pattern 2
 output.value <= state.item(0);
 END IF;
END PROCESS;

6.5. Synthesis Results

We have manually transformed the Haskell model into a
synthesizable VHDL model according to the described
method. The VHDL model was validated by simulation
and synthesized with the Synopsys Design Compiler using
the LSI_10K library with different timing constrains. We
compared the results with a manually written VHDL
design for the FIFO. As illustrated in Table 1 the number
of gates generated with our synthesis method is only
slightly higher than for a design directly written in VHDL.

OutputOutput
Decoder

Next-
state State

State

Input

Event
Clock

Figure 10. Finite State Machine of Moore-type

Memory
Elements

Next
State

Decoder

Table 1. Synthesis results for the FIFO example
Frequency Manual Design

(number of gates)
Synthesized Design
(number of gates)

Difference
(in percent)

20 Mhz 645 671 4.03%

40 Mhz 680 692 1.76%

50 Mhz 692 758 9.54%

......

01buffer_size - 1 number - 1

Elements in List Head

Figure 11. Implementation of a bounded list

This synthesis of the FIFO is a very important step
towards synthesizing the entire ATM switch because the
FIFO is one of the most demanding blocks. It also shows
that the method is fully automatable when all necessary
design decisions are provided.

7. Conclusion

We presented a novel design methodology for system
design. We combine the synchrony hypothesis with the
functional language paradigm in order to design both con-
trol and data flow dominated systems. The design starts
with a high level system model, that is purely functional
and only based on data dependences. This means, that the
system model abstracts from implementation issues as
communication mechanisms and its formal nature supports
formal methods and verification. However, despite of its
high abstraction level, the use of skeletons makes it possi-
ble to interpret the system model as a hardware structure
leading to an efficient implementation.

The design flow consists of a design exploration and a
synthesis phase. The design exploration results in design
decisions which are input to the synthesis process. We
have discussed the synthesis method and illustrated it with
a FIFO. The FIFO is a demanding example because it has a
large internal state, which is traditionally a challenge for
functional languages, and it serves as a buffering and syn-
chronization device between producer and consumer
blocks running potentially at different rates. The example
shows how the unconstrained functional system model,
with a very large design space, is subsequently and sys-
tematically transformed into a synthesizable VHDL
model.

We will focus our future work on (1) software synthe-
sis, (2) communication synthesis between heterogeneous
components under consideration of memory structures
(message passing, shared memory), (3) architecture explo-
ration and (4) the connection of formal verification meth-
ods to our design methodology.

References

[1] A. Benveniste and G. Berry, “The Synchronous Approach to
Reactive and Real-Time Systems”,Proceedings of the IEEE,
Vol. 79, No. 9, pp. 1270-1282, September 1991.

[2] R.S. Bird, Lectures on Constructive Functional Program-
ming, Oxford University Programming Research Group,
Technical Monograph PRG-69, 1988.

[3] F. Boussinot and R. de Simone, “The ESTEREL Language”,
Proceedings of the IEEE, Vol. 79, No. 9, pp. 1293-1304,
September 1991.

[4] S. Edwards, L. Lavagno, E. A. Lee and A. Sangiovanni-Vin-
centelli, “Design of Embedded Systems: Formal Models,
Validation and Synthesis”,Proceedings of the IEEE, Vol. 85,
No. 3, pp. 366-390, March 1997.

[5] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, “The
Synchronous Data Flow Programming Language LUSTRE”,
Proceedings of the IEEE, Vol. 79, No. 9, pp. 1305-1320,
September 1991.

[6] D. Harel, “STATECHARTS: A Visual Approach to Complex
Systems”,Science of Computer Programming, 8-3, pp. 231-
275, 1987.

[7] E. A. Lee and A. Sangiovanni-Vincentelli, “A Denotational
Framework for comparing Models of Computation”,Techni-
cal Memorandum UCB/ERL M97/11, University of Califor-
nia, Berkeley, California, 1997.

[8] P. Le Guernic, T. Gautier, M. Le Borgne and C. de Marie,
“Programming Real-Time Applications with SIGNAL”,
Proceedings of the IEEE, Vol. 79, No. 9, pp. 1321-1335,
September 1991.

[9] J. Peterson and K. Hammond, editors,Haskell Report 1.4,
http://haskell.org/

[10] Alberto Pettorossi and Maurizio Proietti, “Rules and Strate-
gies for Transforming Functional and Logic Programs”,
ACM Computing Surveys, vol. 28, no. 2, pp. 361 - 414, June
1996.

[11] H. J. Reekie,Realtime Signal Processing, Ph.D. thesis, Uni-
versity of Technology at Sidney, Australia, 1995.

[12] D. Skilicorn, Foundations of Parallel Programming, Cam-
bridge University Press, 1994.

[13] Mario Südholt,The Transformational Derivation of Parallel
Programs using Data-Distribution Algebras and Skeletons,
Ph.D. thesis, Technical University of Berlin, 1997.

[14] S. Narayan, F. Vahid, and D. D. Gajski, “System Specifica-
tion with SpecCharts Language”,IEEE Design & Test of
Computers, December 1992.

[15] Wolfgang Horn,Modelling of an ATM Multiplexer in a Net-
work Terminal for a Mixed Hardware/Software Implementa-
tion, Electronic Systems Design Laboratory, Department of
Electronics, Royal Institute of Technology, Stockholm,
report no. TRITA-ESD-1998-06, May 1998.

[16] Ingo Sander, Axel Jantsch, “Formal System Design Based
on the Synchrony Hypothesis,Functional Models, and Skel-
etons”, Proceedings of the IEEE International Conference
on VLSI Design, 1999.

[17] Joe Armstrong, Robert Virding, and Mike Williams,Con-
current Programming in Erlang, Prentice Hall, 1993.

[18] John Matthews, John Launchbury, and Byron Cook, “Micro-
processor Specification in Hawk”,International Conference
on Computer Languages, 1998.

[19] D.B. Skillicorn and D. Talia, “Models and Languages for
Parallel Computation”,ACM Computing Surveys, vol. 30,
no. 2, pp. 123-169, June 1998.

[20] Yanbing Li and Miriam Leeser, “HML: An Innovative Hard-
ware Description Language and its Translation to VHDL”,
Conference on Computer Hardware Description Languages
and Their Applications (CHDL), 1995.

[21] G. Jones and M. Sheeran, “Circuit Design in Ruby”, inFor-
mal Methods for VLSI Design, North Holland, edited by J.
Staunstrup, 1990.

[22] Yanbing Li and Miriam Leeser, “HML: An Innovative Hard-
ware Description Language and its Translation to VHDL”,
Conference on Computer Hardware Description Languages
and Their Applications (CHDL), 1995.

[23] A. Olsen, O Faergemand, B. Moeller-Pedersen, R. Reed, and
J.R.W Smith, Systems Engineering with SDL-92, North
Holland, 1995.

