
System Level Verification of Digital Signal Processing Applications Based on the
Polynomial Abstraction Technique

Tarvo Raudvere, Ashish Kumar Singh, Ingo Sander and Axel Jantsch
Royal Institute of Technology

Stockholm, Sweden
{tarvo,ashish,ingo,axel}@imit.kth.se

Abstract

Polynomial abstraction has been developed for data abstrac-
tion of sequential circuits, where the functionality can be expressed
as polynomials. The method, based on the fundamental theorem of
algebra, abstracts a possibly infinite domain of input values, into
a much smaller and finite one, whose size is calculated accord-
ing to the degree of the respective polynomial. The abstract model
preserves the system’s control and data properties, which can be
verified by model checking. Experiments show that our approach
does not only allow an automatic verification, but also gives con-
siderably better results than existing methods.

1. Introduction

Abstraction techniques are used in order to avoid the well known
state space explosion problem that model checking suffers from.
This paper introduces the polynomial abstraction technique that is
a modification of spatial abstraction [6]. Spatial abstraction sep-
arates the control part from the data path of a design and based
on the assumption about the correctness of the data path, it allows
to reduce the data path so that the behaviors of the control part
are preserved. This reduces the state space and allows to verify
the correctness of the control part and data path predicates with a
model checking tool.

In comparison to spatial abstraction, our method based on poly-
nomial abstraction allows to verify the system functionality as a
mix of data and control properties, i.e. it can be verified that a
system output is a function of the system inputs.

Our technique is applicable at a high abstraction level where
a design is described in terms of infinite data types, ideal com-
putation and storage units, while abstracting from techniques like
saturation arithmetic and fixed-point. The method reduces the do-
mains of data signals of a sequential design block, whose function-
ality can be expressed as a polynomial or rational function. Based
on the fundamental theorem of algebra even an infinite domain
can be replaced with a finite one, where the number of values is
determined by the degree of the respective polynomial. An addi-
tional reduction of the model state space is achieved through the
application of the Chinese remainder theorem [2].

2. Related Work
Various abstraction techniques are proposed for simplification

of model checking tasks. The idea of uninterpreted function sym-
bols is used to make the verification task smaller. In [1] an out-of-
order processor is verified through uninterpreted functions, which
allows to show the correctness of the machine independently of the
actual instruction set architecture and the implementation of the
functional units. Since this technique is based partly on theorem
proving, it needs a remarkable amount of designer contribution. A
disadvantage of the technique is that it does not allow to improve
the state space reduction from the distributive laws of arithmetic
operations. Also it may lead to a false negative result that often
involves with abstraction.

Hojati and Brayton [5] describe a methodology for integer com-
binational/sequential systems. According to the notion of data in-
dependence they separate a design into control part and data path.
All the data path variables are replaced with binary variables.

Spatial abstraction [6] combines this idea with the interval prop-
agation theory [4]. Through this technique the bit widths of the
data signals can be reduced so that all the possible behaviors of
the control part are preserved. A signal that does not determine the
control flow is classified as a data signal. These signals are initial-
ized with one bit variables. Through interval propagation [4] their
bit widths are calculated until a fix-point or the actual range of the
variable is achieved. All other signals (control) are irreducible.

The disadvantages of the method are: (1) the domains of the
variables must be determined before abstraction, (2) the abstract
model is valid only for verification of the properties related to
the control part and interconnecting signals between data path and
control part. Unfortunately the data properties based on the system
functionality given in the specification are not verifiable. Polyno-
mial abstraction allows to verify the implementation model against
the system specification. And the domains of data signals in the
design may be undetermined.

Polynomial methods have been applied for verification also at
lower abstraction levels. In [9] a method for component reuse
based on matching an arithmetic specification with bit-level im-
plementations is introduced. Our technique targets design descrip-
tions where the word sizes of an implementation are not yet spec-
ified.

Compared to our technique where proper ranges of variables
for verification are found according to their degrees, in [7] Pnueli
et. al. describe a method to analyze the structure of an equality for-
mula including source and target models, and to determine ranges
of the variables. Similar to polynomial abstraction it is possible to
verify systems at an abstraction level, where the domains of vari-
ables are unspecified. Unfortunately their approach is sensitive
to arithmetic optimization and thus may not give correct answer
about equality of the source and target models. Our method does
not lead to false negative answers about system correctness.

A method for verification of combinational circuits, that con-
sists of the functions {+,−,∗} is introduced in [8]. This study
finds the order of a functional implementation and uses the sim-
ulation with a restricted set of input vectors to verify the system
correctness. Compared to polynomial abstraction, they do not ad-
dress sequential designs and rational functions.

Clarke et. al. use in [2] the Chinese remainder theorem to re-
duce the verification task of integer arithmetic functions. Although
it simplifies the task significantly, it is valid only for a finite input
domain. Our abstraction technique makes it possible to verify a
system with undetermined input domains through a bounded set
of input vectors. Thus we can additionally apply the remainder
theorem in order to reduce the number of input vectors even more.

3. Polynomial Abstraction

3.1 Scope and Target Designs

The design process of many digital signal processing applica-
tions starts at a high abstraction level, where the system specifi-
cation is described as a combinational function in terms of ideal
data types. It is natural to start at that level, since it abstracts from
lower-level implementation details, and allows to concentrate on
the system functionality. The specification model may have an
implicit mapping to arithmetic and logic operations, denoted as an
intermediate model. The direct implementation of this model as
a combinational circuit is often impractical, if the model contains
a large number of identical computation units. An improvement
can be achieved through component reuse. This can be performed
through a design transformation, which refines the intermediate
model into a sequential implementation model.

As an example, a clock domain refinement of the order-n FIR
filter is shown in Figure 1, which transforms the combinational
function f of the filter into an implementation as a circuit with
data path and control part. The data input of the filter is labeled
with d, and di denotes the i-th cycle delayed input value. The filter
coefficients are denoted by ci. The execution of the FSM is trig-
gered by the input start and the completion of the calculation is
announced by the signal ready. The FSM is configured so that in
the first cycle the register is initialized with a constant value 0 from
the multiplexer and in the following cycles the sum of multiplica-
tions di ∗ ci is calculated. In order to simplify the verification of a
sequential implementation against the combinational specification
data abstraction has to be applied.

Polynomial abstraction is applicable on sequential designs,
whose functionality can be expressed as a polynomial or a ratio-

* +

+ +
f

* * *
d1
c1

d2
c2

dn
cn

(b)

reg
shift

f
f (d1,d2, . . . ,dn,c1,c2, . . . ,cn) = d1c1 +d2c2 + · · ·+dncn

d

cn

c2

c1

dn

d2

d1

(c)

0

FSM ready

f

start

d1
d2

dn

c1
c2

cn

mux

mux

mux reg

(a)

Figure 1. a) Specification, b) Intermediate
Model and c) Implementation

nal function. The design (Figure 2) may contain boolean, enumer-
ated, integer and real number signals. There is a restriction for real
number input signals; these are allowed only in the case, if they do
not determine any computation path in the controller. The design
may contain logic operations, and arithmetic operations, which are
based on the operations: +, −, ∗ and /. The abstraction technique
assumes that the functionality of logic and arithmetic operators are
correct or verified separately.

enumerated
booleans

real numbers

integers

real numbers

System

Controller

Data path

Figure 2. System structure

3.2 Roadmap of the Technique

The roadmap of the abstraction technique is presented in Fig-
ure 3. The starting point of the algorithm is a sequential design. In
the first step the system inputs are classified as data or control that
specifies if the domain of a signal is reducible or not. The next
task is to find the degrees of input variables in the output poly-
nomial, which the system calculates. These degrees will be used
to determine reduced domains for the input signals in an abstract
model. If the design contains any division operator, the design is

mapped to a fractional model, in order to avoid real number sig-
nals. The abstraction flow continuous with the application of an
additional abstraction technique, which relies on the Chinese re-
mainder theorem. Finally we translate the abstract model into the
input language of a model checker - in our case into the SMV lan-
guage [10].

Signal classification
fraction model

Mapping to SMV

Abstract model

Application of the Chinese remainder theorem

Sequential design

Model checking

Degree calculation
Mapping to

Figure 3. Roadmap of abstraction

One possibility to verify systems like in Figure 1.c is to use
symbolic execution, which finds the output function as a poly-
nomial in symbolic variables. The correctness of the refinement
can be verified through equivalence checking of the corresponding
specification and implementation polynomials. Unfortunately this
polynomial presentation does not contain all the behaviors of the
sequential circuit. Let’s consider the FIR filter in Figure 1. In this
case the verification based on equivalence checking of polynomi-
als does not cover multiple executions in sequence. For instance:
(1) does the FSM properly turn back to the initial state; or (2)
does the output value stay correct if the next start signal appears
at the same time when an announcement about completion of the
last calculation is issued? This kind of properties can be verified
by model checking, but the technique is not proper for targeted de-
signs with infinite input domains, since model checkers can handle
only finite models.

We address the latter problem by introducing polynomial ab-
straction. The technique is based on the fundamental theorem
of algebra [3]. Using this theorem we have proven that two de-
gree k uni-variable polynomials are equivalent if they evaluate to
pairwise the same values for k + 1 different input assignments.
We have extended this for multi-variable polynomials and proven
the corresponding theorem. The proofs are given in Appendix
A. Based on the latter theorem, we can decide about the equiva-
lence of two n-variable polynomials P(x0, ...,xn) and Q(x0, ...,xn),
through assigning to them all the possible input vectors 〈x0, ...,xn〉,
where the domain of the input xi contains k +1 different values if
the degree of xi in P and Q is k.

The given theoretical background allows us to reduce the in-
finite domains of the input signals to finite ones, and in this way
makes it possible to use a model checker for verifying an imple-
mentation against a specification. Implicitly the method can be
applied also to the systems with finite input domains in order to
reduce the state space and thus to simplify the model checking
task.

Since the symbolic execution is memory and time consuming
and the exact implementation polynomial is not required to deter-
mine the degrees of the input variables, we only statically analyze
the circuit in order to calculate the maximum degrees.

To be precise we explain some notations used in the paper. The
number of clock cycles needed for a single input assignment to
calculate the function in the implementation model, is denoted as
an execution cycle.

Let x denote the set of variables x0, ...,xn ,i.e., P(x0, ...,xn) =
P(x). The function �(P(x),xi) gives the maximum degree of xi
in P(x). The maximum degree of multiplication of two polyno-
mials is calculated as follows: �(P(x)Q(x),xi) = �(P(x),xi) +
�(Q(x),xi).

3.3 Signal Classification

According to their tasks we classify the signals as data sig-
nals or control signals. If a signal steers a process to take one of
many computation branches then the signal is a control signal. In
other words all signals, which appear in the conditional part of an
if or case expression or in a pattern matching construction as a
pattern are control signals. Also all binary and scalar signals are
control signals. If an output of a process is a control signal then
all the input signals of the process are regarded as control signals
as well. Clearly the last definition is recursive. Finally all the sig-
nals, which are not marked as control signals are data signals. The
domains of the data signals can be reduced by the abstraction tech-
nique. The domains of the control signals will not be modified in
order to preserve all the possible behaviors of the controller. If the
design contains any control input with an infinite domain, then the
designer has to specify a finite domain for that input signal.

3.4 Maximum Degree Calculation

We have developed a tool that finds the degrees of the output
polynomial of an implementation through analyzing the design for
one execution cycle. If the design has control inputs, then it calcu-
lates the degrees of a data variable for any input combinations of
the control values. The domain of an input in the abstract model
will be determined according to the maximum degree of this input.

Since designs may contain division operations, we represent
polynomials and their maximum degrees in fractional form through

this section. For a polynomial P(x)
Q(x) the maximum degree fraction

looks like
〈νx0 ,...,νxn 〉
〈δx0 ,...,δxn 〉 , where νxi and δxi are the maximum degrees

of the input variable xi in the numerator and denominator poly-
nomials respectively. For example consider a data path with two
data inputs x1 and x2. If some internal process in the data path

calculates the function �= x3
1x2

2+2x1
x1x2+7 then the respective maximum

degree fraction of the process output signal is 〈3,2〉
〈1,1〉 , since the max-

imum degrees of x1 and x2 in the numerator polynomial are three
and two respectively. And the maximum degrees of x1 and x2 in
the denominate polynomial are both one.

The degree of any variable of a system input is one, thus the
maximum degree fraction of a data input variable xi is:
〈νx0 ,...,νxi−1 νxi ,νxi+1 ,...,νxn 〉
〈δx0 ,...,δxi−1 ,δxi ,δxi+1 ,...,δxn 〉 = 〈0,...,0,1,0,...,0〉

〈0,...,0,0,0,...,0〉 . The rules for the calcu-

lation of the maximum degree for arithmetic operations are given
in Table 1.

Table 1. Rules for the Calculation of the Max-
imum Degree

Maximum Degree of xi

�((P(x)
Q(x) + R(x)

S(x)),xi) = max(�(P(x)S(x),xi),�(R(x)Q(x),xi))
�(Q(x)S(x),xi)

�((P(x)
Q(x) −

R(x)
S(x)),xi) = max(�(P(x)S(x),xi),�(R(x)Q(x),xi))

�(Q(x)S(x),xi)

�(((P(x)
Q(x))(

R(x)
S(x))),xi) = �(P(x)R(x),xi)

�(Q(x)S(x),xi)

�((P(x)
Q(x)/

R(x)
S(x)),xi) = �(P(x)S(x),xi)

�(Q(x)R(x),xi)

Let’s consider the degree calculation for the output signal f in

Figure 1.c. Let the fraction be in the form
〈νd1 ,νc1 ,νd2 ,νc2 ,...,νdn ,νcn 〉
〈δd1 ,δc1 ,δd2 ,δc2 ,...,δdn ,δcn 〉 .

In the initial state the fraction contains only zeros. In the first
execution cycle the register is initialized with constant 0, which
do not change the degree fraction. In the second cycle the cir-
cuit calculates the operation d1 ∗ c1 + f . At that moment the de-

grees corresponding to d1, c1 and f are 〈1,0,0,0,...,0,0〉
〈0,0,0,0,...,0,0〉 , 〈0,1,0,0,...,0,0〉

〈0,0,0,0,...,0,0〉
and 〈0,0,0,0,...,0,0〉

〈0,0,0,0,...,0,0〉 respectively. According to the degree calculation

rules the new fraction of f is 〈1,1,0,0,...,0,0〉
〈0,0,0,0,...,0,0〉 . In the third cycle the

operation d2 ∗c2 + f increases the values of νd2 and νc2 by one. In
the end of the execution cycle, when the signal ready goes high,
the numerator vector contains only ones and the denominator vec-
tor contains only zeros.

Since the degree calculation for a sequential circuit is done step
by step based on the degrees instead of the exact functions in the
previous steps, then the simplification of a degree fraction through
reducing the respective degrees νi and δi is not allowed. For ex-

ample we cannot change the fraction 〈3,2〉
〈1,1〉 to 〈2,1〉

〈0,0〉 . Although this

simplification is valid for the function x3
1x2

2
x1x2

, it does not hold for the

function �= x3
1x2

2+2x1
x1x2+7 . Thus we actually find the upper bounds of

the degrees.

If the output polynomial according to the specification is P(x)
Q(x)

and the implementation functionality can be expressed as R(x)
S(x) ,

then based on the mathematical rule a
b = c

d ⇒ ad = bc, we calcu-
late the final maximum degree for the input variable xi as
max(�(P(x)S(x),xi),�(Q(x)R(x),xi)).

3.5 Mapping to the Fractional Model

As common for model checkers, the SMV tool supports only
boolean, enumerated and integer variables. Although the abstract
domains of the input signals can be defined such that they contain
only integers, a division operation may still give a real number

result. Due to this reason we map the design to the fraction model.
In this model all signals (s) related to arithmetic operations are
presented as a pair of signals (sν ,sδ), so that s = sν

sδ
. For this

purpose all arithmetic operations have to be replaced as shown in
Figure 4. Since none of the operations in the new model does
include explicit division, all the internal and output signals belong
to the domain of integers.

cδ
cν

bδ
bν
aδ
aν

cb
a OPOP

OP cν cδ
c = a+b aν ∗bδ +bν ∗aδ aδ ∗bδ
c = a−b aν ∗bδ −bν ∗aδ aδ ∗bδ
c = a∗b aν ∗bν aδ ∗bδ
c = a/b aν ∗bδ bν ∗aδ

Figure 4. Operations in fractional model

Additionally to the arithmetic operations also all registers, mul-
tiplexors and other logic units, which are connected with data sig-
nals have to be modeled as a pair, where one unit is used for nu-
merator and the other for the denominator signal.

3.6 Application of the Chinese Remainder Theo-
rem

Based on the arithmetic identity presented in Equation 1 the
Chinese remainder theorem can be used to simplify the verifica-
tion task of arithmetic circuits [2]. Let the index I denote imple-
mentation and the index S specification variables.

((aI mod mi) OPj (bI mod mi)) mod mi ≡ (aS OPj bS) mod mi |
OPj ∈ {+,−,∗} and mi ∈ Pos.Int and a,b ∈ Int (1)

If Equation 1 holds for a set of numbers, which are relatively
prime numbers M = {m1,m2, . . . ,mn} then (aI OP bI)≡ (aS OP bS)
holds for the integer domain 0≤ (a OP b)≤∏n

i=1 mi , mi ∈M. Ac-
cording to this knowledge, the system verification for the domain
{0, . . . ,∏n

i=1 mi} can be replaced with n verifications for the do-
mains {0, . . . ,mi}. In order to perform the series of verification we
have to change the assignment statements reg value := input value
to reg value := (input value mod mi).

Let’s consider an arbitrary design, which contains a calculation
of the value x10. Polynomial abstraction makes it possible to verify
the design such that the input x gets integer assignments from 0 to
10. Although the domain is small, we need 33 bits to present the
value 1010, as 1010 ≈ 233. Instead of verifying directly this model,
we can apply the described modulo computation method, to verify
eleven much smaller models, since the multiplication of the first
eleven prime numbers {2,3,5, . . . ,31} is approximately 237, that
is greater than 233. Although we need to verify several models, the
size of these are significantly smaller, e.g., to present the largest
prime number in the set we need only 5 bits (31 < 25) instead of
33 bits.

3.7 Model Checking

We translate the specification model and the implementation
model into the SMV language [10]. According to the maximum
degrees of the input variables in the output polynomial, that have
been found previously, we specify new domains for all the data
signals. If the maximum degree of the signal si is k then the model
checker can assign values from 0 to k to that input. The domains of
the control signals are unchangeable. The model checker verifies,

that if the input values 〈x〉 of specification (Sν(x)
Sδ(x)) and implemen-

tation (Iν(x)
Iδ(x)) are the same then after an execution cycle the output

values are equal as well ,i.e., Sν(x)Iδ(x) = Sδ(x)Iν(x).

4. Case Studies

The efficiency of our methodology is illustrated with several
case studies, where we have verified the sequential implementa-
tions of well-known digital signal processing applications. The
time and the number of BDD nodes required for verification are
presented in Table 2 for some examples. The experiments are done
on a Sun machine with 900MHz CPU and 1GB RAM, using the
Cadence SMV tool [10].

Let’s consider the verification of the order 16 FIR filter, which
structure is shown in Figure 1.c. The circuit has 33 inputs - 16 data
inputs (di), 16 coefficients (ci) that can vary in time, and the sig-
nal start. According to the signal classification the signals di and
ci are data signals, since they do not determine any computation
path in the model. According to the proposed degree calculation
algorithm, the degree of these signals is one. Thus in the abstract
model the signals get assignments from 0 to 1, instead of the initial
infinite date types. This corresponds to one bit variables, which are
the smallest possible.

In a similar way we have verified an IIR filter, cosines function,
an FFT application and Sigma-Delta-Demodulator. These are ex-
amples of applications, which can be found almost in every design
that contains signal processing, e.g. today’s audio, video and com-
munication devices.

Table 2. Verification Time and BDD Nodes

Design Function Time BDD−
sec. nodes

FIR filter ∑16
i=1 di ∗ci 29.4 1.4M

IIR filter ∑7
i=0(di ∗bi −di ∗ai ∗b0) 2.5 458k

DFT 8 point FFT 1.5 91k

Cosines ∑4
i=0

x2∗i

(2∗i)! 9.5 153k

Σ∆− Includes order 4 CIC and 67.1 3.8M
Demodulator order 16 FIR filters

In order to compare our abstraction technique to the spatial ab-
straction [6], we have selected the 8-bit repetitive multiplier that
is the only design presented in a detailed way in [6]. The multi-
plier has two input and one output registers. The multiplication is
performed through decrement operation of one register and addi-
tion of the value in the other register to the output register in every

Table 3. Polynomial Abstraction versus Spa-
tial Abstraction

Number of states Reduction

Original model 67 −
Model through 38 43.3%

spatial abstraction
Model through 17 74.6%

polynomial abstraction

clock cycle. The computation is finished when the value in the first
register is equal to zero. The initial model has 67 state variables
and through polynomial abstraction the number of states can be re-
duced to 17 (Table 3). In comparison with the spatial abstraction,
which reduces the number of states to 38, our method gives a sig-
nificant improvement, since in a rough estimation the number of
BDD nodes and the amount of time required for model checking
grows exponential with the number of states.

In contrast to the methods of Pnueli [7] and Berezin [1] that
use the advantages of uninterpreted functions and can verify larger
circuits, our approach allows to verify design implementations on
which arithmetic and logic optimization has been applied. This
is possible, since our abstraction technique preserves the system’s
actual functionality instead of mapping it to an uninterpreted one.

The technique of Smith and Micheli [9] can handle only de-
signs with fixed bit-widths and therefore has a limitation compared
with our polynomial method that is applicable in an earlier design
phase.

5. Conclusion

Based on the fundamental theorem of algebra and the Chinese
remainder theorem we have proposed an approach that enables to
verify efficiently sequential designs whose functionality can be ex-
pressed as a polynomial or rational function, such as DSP appli-
cations and VLSI implementations of cryptographical algorithms.
Experiments show that polynomial abstraction can be efficiently
applied at a high abstraction level.

In comparison with the existing methods, our technique has
many advantages. It is not sensitive to logic and arithmetic opti-
mization, and accordingly does not give false answers about sys-
tem’s correctness. It allows to verify designs at a high abstraction
level, where the bit-widths of variables are not yet decided. The
abstraction process preserves the data and control properties of an
initial design, which can be verified by model checking.

6. References

[1] S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu. Combining
symbolic model checking with uninterpreted functions for
out-of-order processor verification. In Formal Methods in
Computer-Aided Design, pages 369–386, 1998.

[2] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Transactions on
Programming Languages and Systems, 16(5):1512–1542,
September 1994.

[3] J. E. Eaton. The fundamental theorem of algebra. American
Mathematical Monthly, 67(6):578–579, 1960.

[4] E. Hansen. A generalized interval arithmetic. Lecture Notes
in Computer Science 29, 1975.

[5] R. Hojati and R. K. Brayton. Automatic datapath abstraction
in hardware systems. Lecture Notes in Computer Science
939, 1995.

[6] V. Paruthi, N. Mansouri, and R. Vemuri. Automatic data
path abstraction for verification of large scale designs. In
ICCD ’98 Topic : Verification and Test, 1998.

[7] A. Pnueli, Y. Rodeh, O. Strichmann, and M. Siegel. The
small model property: how small can it be? Information and
Computation, 178(1):279–293, 2002.

[8] P. Sanchez and S. Dey. Simulation-based system-level
verification using polynomials. In IEEE International High
Level Design Validation and Test Workshop (HLDVT’99),
November 1999.

[9] J. Smith and G. D. Micheli. Polynomial methods for
component matching and verification. In Proceedings of the
ACMIEEE International Conference on Computer-Aided
Design, pages 678–685, San Jose, California, USA, 1998.

[10] The SMV model checker. online [available]
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/.

APPENDIX
A. Theorem about Polynomials Identity

Let � denote the set of values {0,1,2, ...}, and let the set �i

consist of all possible tuples with i components from the set �.
The notation [i, j] denotes the set of integers between i and j in-
cluding i, j.

LEMMA 1. Let P(x) be a uni-variable polynomial of degree k. If P(x)
is equal to 0 for (k +1) distinct values then all the coefficients of P(x) are
zero.

Proof: Lemma 1 is based on a standard result from the fundamen-
tal theorem of algebra [3]. The theorem states that a uni-variable
polynomial of degree k has exactly k complex roots1 unless all of
its coefficients are zero. Since integers are a special case of the
complex numbers, the number of integer roots of a polynomial
cannot exceed the degree of the polynomial unless all the coeffi-
cients are 0. This establishes the statement of the lemma.

THEOREM 1. Two polynomials Q1(x1, . . . ,xi) and Q2(x1, . . . ,xi) are
identical if and only if for all the tuples (y1, . . . ,yi) ∈ �

i the following
condition is satisfied:

∀ j(1 ≤ j ≤ i), yj ∈ [0,max(�(Q1(x),x j),�(Q2(x),x j))]
⇒ Q1(y1, . . . ,yi) = Q2(y1, . . . ,yi) (2)

1A value α is a root of the polynomial P(x) if P(α) = 0

Proof: The ’only if’ part of the theorem is straightforward since
if Q1(x) and Q2(x) are identical then they will always evaluate to
the same value for the same input assignment. Hence Condition 2
is satisfied. The ’if’ part claims that Q1(x) and Q2(x) are identical
assuming that Condition 2 holds. Let Ce1,...,ei

Q1
and Ce1,...,ei

Q2
denote

the coefficients of the term xe1
1 . . .xei

i in Q1(x) and Q2(x) respec-
tively. The difference polynomial of Q1(x) and Q2(x) is denoted
as R(x),

R(x1, . . . ,xi) = Q1(x1, . . . ,xi)−Q2(x1, . . . ,xi) (3)

The coefficient of the term xe1
1 . . .xei

i in R(x) is Ce1,...,ei
R =Ce1,...,ei

Q1
−

Ce1,...,ei
Q2

. In order to prove the identity of Q1(x) and Q2(x) we must
show that all the coefficients of the polynomial R(x) are zero. We
observe that the degree of a variable x j in the polynomial R(x) is
bounded by the maximum degree of x j in Q1(x) and Q2(x) e.g.

�(R(x),xj) ≤ max(�(Q1(x),x j),�(Q2(x),x j)) (4)

We can translate Condition 2 into the following condition over R
using (4):

R(y) = 0,∀(y1, . . . ,yi) ∈ �i and y j ∈ [0,�(R(x),xj)] (5)

We give an inductive proof on the number of variables i for the
following statement: if Condition 5 holds then all the coefficients
of R(x) are zero.

Base Case: If i = 1 then Condition 5 implies that uni-variable
polynomial R(x) has at least m + 1 distinct integer roots, where
m =�(R(x),x1). In this case the proof follows directly from the
statement of Lemma 1.

Induction Step: We assume the correctness of the statements
for i−1 variables and based on this induction hypothesis we prove
that the statement is true for i variables as well. We group together
the terms of R(x1, . . . ,xi) which have the same exponent of the
variable x1. We can re-write such a group of terms as a multiplica-
tion of a power of x1 and a polynomial in the variables x2, . . . ,xi.
Thus we can re-write R(x1, . . . ,xi) in the following form, where
m =�(R(x),x1).

R(x1, . . . ,xi) = xm
1 Hm(x2, . . . ,xi)+ xm−1

1 Hm−1(x2, . . . ,xi)
+ . . .+H0(x2, . . . ,xi) (6)

�(Hk(x),x j) ≤�(R(x),xj), (2 ≤ j ≤ i)and (0 ≤ k ≤ m) (7)

For each assignment of the tuple values (p2, . . . pi) ∈ �
i−1 to

(x2, . . . ,xi) such that
0 ≤ pj ≤�(R(x),xj) (8)

we can evaluate each of the polynomials Hk in (6). Thus we get
a polynomial in one variable x1 on the right hand side of (6).
By the application of Condition 5 this polynomial evaluates to
0 for the integer range 0 ≤ x1 ≤ (�(R(x),x1) = m). Since the
degree of the polynomial is m and it has at least m + 1 integer
roots we can apply Lemma 1 to deduce that Hk(p2, . . . , pi) = 0
for all k such that (2 ≤ k ≤ i). The same procedure can be re-
peated for any (p2, . . . , pi) satisfying Condition 8. Thus we can
conclude that Hk(x2, . . . ,xi) = 0 if x j ∈ [0,�(R(x),x j)]. By the
application of Condition 7 we deduce that Hk(x2, . . . ,xi) = 0 if
x j ∈ [0,�(Hk(x),x j)]. Hence each of the coefficients of the poly-
nomial Hk should be zero on applying the induction hypothesis.
Using (6) we deduce that each of the coefficients of the polyno-
mial R(x) must also be zero.

