Development and application of design

transformations in ForSyDe

I. Sander, A. Jantsch and Z. Lu

Abstract: The formal system design (ForSyDe) methodology has been developed for system level
design. Starting with a formal specification model, which captures the functionality of the system at
a high level of abstraction, it provides formal design transformation methods for a transparent
refinement process of the specification model into an implementation model which is optimised for
synthesis. The formal treatment of transformational design refinement is the central contribution of
this article. Using the formal semantics of ForSyDe processes we introduce the term characteristic
function to be able to define and classify transformations as either semantic preserving or design
decision. We also illustrate how we can incorporate classical synthesis techniques that have
traditionally been used with control/data-flow graphs as ForSyDe transformations. This approach
avoids discontinuities as it moves design refinement into the domain of the specification model.

1 Introduction

Keutzer et al. [1] point out that ‘to be effective a design
methodology that addresses complex systems must start at
high levels of abstraction’ and underline that an ‘essential
component of a new system design paradigm is the
orthogonalisation of concerns, i.e. the separation of various
aspects of design to allow more effective exploration of
alternative solutions’. In particular, a design methodology
should separate (1) function (what the system is supposed to
do) from architecture (how it does it) and (2) communi-
cation from computation. The authors of that work ‘promote
the use of formal models and transformations in system
design so that verification and synthesis can be applied to
advantage in the design methodology’ and believe that ‘the
most important point for functional specification is the
underlying mathematical model of computation’. These
arguments strongly support the Formal System Design
(ForSyDe) methodology, which addresses the transform-
ational design of embedded system applications. The
objective of ForSyDe is to move system design to a higher
level of abstraction.

ForSyDe starts with a formal specification model which
captures the functionality of the system at a high abstraction
level. While the high level of abstraction is suitable to
system level specifications, there is a gap between the
specification model and a possible implementation in a
complex system architecture. ForSyDe tries to bridge this
gap using the concept of process constructors. Although a
system model is formulated as a function, the use of process
constructors implies that the functional model can be
interpreted as a network of synchronously communicating

© IEE, 2003

IEE Proceedings online no. 20030836
doi: 10.1049/ip-cdt:20030836

Paper received 9th May 2003

The authors are with the Royal Institute of Technology, Department of
Microelectronics and Information Technology, Laboratory of Electronics
and Computer Systems, Isafjordsgatan 39, SE-164 40, Stockholm, Sweden

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

concurrent processes. Such a process structure is almost
fixed in other design languages (VHDL, SDL), but in
ForSyDe processes can be merged and split during the
application of transformation rules during the design
transformation phase [2]. As each process constructor has
a hardware and software interpretation, the refined
implementation model can be interpreted into a structure
with hardware and software components.

In contrast to [3], where the significant potential of our
approach was illustrated by two powerful transformations
for clock domain and communication refinement, the
emphasis of this article is on the formal treatment of design
transformations in ForSyDe. Here we introduce the formal
basis, define a format for transformations in ForSyDe and
show how the large amount of work that exists for high-
level synthesis can be used for the development of design
transformations.

2 Related work

The ForSyDe system model is based on the perfect
synchrony hypothesis, which also forms the basis for the
family of synchronous languages. According to Benveniste
and Berry ‘the synchronous approach is based on a
relatively small variety of concepts and methods based on
deep, elegant, but simple mathematical principles’ [4]. The
basic synchronous assumption is that the outputs of
the system are synchronised with the system inputs, while
the reaction of the system takes no observable time. The
synchronous assumption implies a total order of events and
leads to a clean separation between computation and
communication. A global clock triggers computations
which are conceptually simultaneous and instantaneous.
This assumption frees the designer from the modelling of
complex communication mechanisms. These properties
give a solid base for formal methods.

Data flow models [5], such as Kahn process networks [6]
or SDF [7], are well-suited to applications which do not
require the expression of time, such as DSP applications.
Even though they excellently fit their application domain,
we have chosen a synchronous model to enable the

313

expression of timing properties and constraints on a level
that abstracts from physical time.

The family of synchronous languages can be divided into
two groups, one group targeting data flow applications (e.g.
Lustre [8] and Signal [9]), the other targeting control
oriented applications (e.g. Statecharts [10], Esterel [11] and
Argos [12]). There is, however, no synchronous language
covering both application domains [4]. The clean math-
ematical formalism has led to the development of several
verification tools for these languages. The research in [13]
gives an overview of the techniques and tools developed for
the validation of reactive systems described in Lustre.
However, the authors point out that these techniques can be
adapted to any synchronous language. ForSyDe is based on
the same foundation as the synchronous languages (the
perfect synchrony hypothesis) but extends it to cover both
control and data flow applications.

While we advocate the use of a single unified system
model in the ForSyDe methodology, much work is done
using mixed models of computation. This approach is
advantageous in that a suitable model of computation can be
used for each part of the system. As the system model is
based on several computational models, however, the
semantics of the interaction of fundamentally different
models has to be defined, which is not a simple task. This
also amplifies the verification problem, because the system
model is not based on a single semantics. There is little hope
that formal verification techniques can help and we are left
with simulation as the only means of validation. In addition,
once a heterogeneous system model is specified, it is very
difficult to optimise systems between different models of
computation. In summary, cross domain verification and
optimisation will remain elusive for many years with respect
to any heterogeneous modelling approach.

In =charts [14] hierarchical finite state machines (FSMs)
are embedded within a variety of concurrent models of
computations. The idea is to decouple the concurrency
model from the hierarchical FSM semantics. An advantage
is that modular components (e.g. basic FSMs) can be
designed separately and composed into a system with the
model of computation that best fits the application domain.
It is also possible to express a state in an FSM by a process
network of a specific model of computation. *charts has
been used to describe hierarchical FSMs which are
composed using data flow, discrete event and synchronous
models of computation.

The Ptolemy project [15] ‘studies heterogeneous model-
ling, simulation, and design of concurrent systems’. It is
implemented in the Ptolemy II software environment [16]
which provides support for ‘hierarchically combining a
large variety of models of computation and allows
hierarchical nesting of the models’.

Internal representations like the SPI model [17] and
FunState [18] have been developed to integrate a hetero-
geneous system model into one internal representation. The
SPI model ‘shall enable the analysis and synthesis of mixed
reactive/transformative systems described in several
languages with possible differences in the underlying
models of computation. All information relevant to
synthesis is abstracted from the input languages and
transformed into the semantics of the SPI model’.

The parallel programming community has used func-
tional languages to derive parallel programs from a
functional specification [19]. Skeletons are used to structure
a problem. This formulation is then transformed, using cost
measures, into an efficient implementation for a chosen
computer architecture. Reekie [20] has used Haskell to
model digital signal processing applications. Similarly to

314

ourselves, he modelled streams as infinite lists and
used higher-order functions to operate on them. Finally,
semantic-preserving methods were applied to transform a
model into a more efficient representation. Ruby [21] is a
relational language that has mainly been used for hardware
design. In [22] a declarative framework for hardware/
software codesign based on Ruby has been proposed. Ruby
also supports transformations based on equational reasoning
and supports data type refinement. Lava [23] is a hardware
description language based on Haskell. It focuses on the
structural representation of hardware and offers a variety of
powerful connection patterns. Lava descriptions can be
translated into VHDL and there exist interfaces to formal
method tools. Recently, Singh [24] has proposed the use of
Lava for system level specifications. Hardware ML (HML)
[25] is based on the functional language Standard ML and
mainly an improvement of VHDL - there is a direct
mapping from HML constructs into the corresponding
VHDL constructs. Mycroft and Sharp have used the
functional languages SAFL and SAFL + mainly for hard-
ware design but extended their approach in [26] to
hardware/software codesign. They transform SAFL pro-
grams through meaning preserving transformations and
compile the resulting program in a resource-aware manner,
i.e. a function which is called more than once will be a
shared resource.

A good overview of program transformation in general is
given in [27] and of transformation of functional and logical
programs in [28]. One of the best known transformation
systems is the CIP (computer-aided, intuition-guided
programming) project [29]. Inside CIP, program develop-
ment is viewed as an evolutionary process which usually
starts with a formal problem specification and ends with an
executable program for the intended target machine. The
individual transformation use semantic preserving trans-
formation rules, which guarantees that the final version of
the program still satisfies the initial specification. Such an
approach has the following advantages [29]:

e the final program is correct by construction

e the transitions can be described by schematic rules and
thus be reused for a whole class of problems

e due to formality the whole process can be supported by
the computer

e the approach is quite flexible in that the overall structure
is no longer fixed throughout the development process

Within the CIP framework Kloos and Dosch [30] have used
correctness-preserving transformations to derive different
kinds of adder structures from an initial specification. In
order to allow for a successful transformation of a
specification into an effective implementation, a transform-
ation framework has to provide a sufficient number of
transformation rules, and there must also exist a transform-
ation strategy to choose a suitable order of transformation
rules. Ideally, this strategy interacts with an estimation tool
that indicates whether one implementation is more efficient
than another. Since program transformation requires a
well-developed framework, it has thus far been mainly used
for small programs or modules inside a larger program,
where software correctness is critical.

Most of the transformational approaches are concerned
with software programs where concepts of synchronous
sub-domains and resource sharing, as discussed in this
paper, have no relevance. Our approach allows also to use
the large amount of research in high-level synthesis [31-32]
by defining design decision transformations for refinement
techniques like re-timing or resource sharing.

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

Voeten points out that each transformational design that
is based on a general purpose language will suffer from
fundamental incompleteness problems [33]. This means that
the initial model determines to a large extent whether an
effective and satisfying implementation can or cannot be
obtained, since only a limited part of the design space can be
explored. The same problem is known in the context of
high-level synthesis as the syntactic variance problem [34],
which in general is unsolvable.

3 The ForSyDe methodology

3.1 Design process

The ForSyDe design process (Fig. 1) starts with the
development of a formal, abstract, functional specification
model which can be executed using the functional language
Haskell. This model is then refined inside the functional
domain by a stepwise application of well-defined design
transformations to an optimised and detailed implemen-
tation model. Since the implementation model is a refined
version of the specification model, the same validation and
verification methods can be applied to both models.

The next phase in the design process is implementation
mapping, where the implementation model is partitioned
and mapped onto the components of the target architecture.
Only at this late stage of the design process does ForSyDe
leave the functional domain and enter the implementation
domain since the design is now described with ‘implemen-
tation languages’. So far, ForSyDe defines a mapping to
hardware (VHDL) and sequential software (C) as elaborated
in [35].

3.2 Specification model

The specification model is based upon a synchronous
computational model and uses ideal data types such as real
numbers and infinite buffers. It abstracts from implemen-
tation details, such as low-level communication mechan-
isms, and enables the designer to focus on the functional
behaviour of the system rather than structure and archi-
tecture. The specification model leaves a wide design space
for further design exploration and design refinement, which
is supported by our transformational refinement techniques
(Section 4).

In order to formally describe our computational model,
we follow the denotational framework of Lee and
Sangiovanni-Vincentelli [36]. They define signals as a set
of events, where each event e has a tag ¢ and a value v,
ie. e=(t,v) €T xV. As our specification model is
synchronous, 7 is the set of natural numbers, and all signals
have the same set of tags. In order to model the absence of a

specification
model

!

(transformational |
verification design transforma—
| refinement | tion library
\ implementation
model
functional i
domain implementation architecture
implementation mapping model

domain /—l—\

hardware communication software
implementation implementation implementation

Fig. 1 Design flow in ForSyDe

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

event
\tig PincJ_
654'»""3"3’/ HBOE .
1312 (incy) 71113213
signal
value

absent value

Fig. 2 Modelling of signals and processes

value at a certain tag, a data type D can be extended into a
data type D, by adding the special value L (‘bottom’).
Absent values are used to establish a total order of events
when dealing with aperiodic signals or signals with different
event rates.

Figure 2 illustrates the modelling of signals and the
behaviour of processes. During the event cycle n a process
processes the events of each signal with the tag n and
outputs the result with the same tag n. A signal s is defined
as a set of events, where each event e¢; has a tag i
and a value ¢;. For an indexed signal s; we denote an event
as (ey); where k is the number of the signal and i is the tag of
the event.

s = (eg,e1,...)

se = ((ex)o, (€x)1s---)

Parallel signals are described as a tuple of signals. A process
P maps m input signals on n output signals.

P(s1,82, ..., 8m) = (s1,85,...,8,) mmne€N

Processes are executed concurrently and communicate with
each other synchronously by means of signals. Process
networks can be modelled as sets of equations.

As we employ the perfect synchrony hypothesis [4], all
input and output signals have the same set of tags. We
implement the synchronous computational model with the
concept of process constructors. A process constructor is a
higher-order function that takes combinational functions,
i.e. functions that have no internal state, and values as input
and produces a process as output. The ForSyDe method-
ology obliges the designer to use process constructors for
the modelling of processes. This leads to a well-defined
specification model where all processes are constructed by
process constructors. There is a clean separation between
synchronisation (process constructors) and computation
(combinational function). In addition, each process con-
structor has a structural hardware and software semantics,
which is used to translate the implementation model into a
hardware/software implementation [35].

The process constructor mapSY takes a combinational
function f and constructs a process with one input and one
output signal, where f is applied on all values of the input
signal. The process P;,. of Fig. 2 is constructed with
mapSY.

—» mapSY(f) —=

s’ —™ zipWithSY,, | s’
("

mapSY(f) = P

where P(s) = s'
f(e) = &

ZipWithSY(f) = P

where P(S4,Sp,+S) s'

f{(er)(€)in-em)) i

Fig. 3 Combinational process constructors mapSY and zip-
WithSY

315

s delaySY, s

— == .
(mg)
s| scandSY,(f, mg)

0] zioWithSYmaq |5, delaySY, s’
Sm [; (f) (my) o
mooreSY,(f,g,my)

5
scandSY,, |s8" s’
» mapSYi| =
ol (o) pSY(g)
sm
delaySY, (mg) = P
where P(s) = s
, my, i<n
€; = .
{ €_p,iz2n
scand8Y,, (fmy) P

'

where P(sq,....5,) s
s' (my,65"84"%..)
B0 4+1{81s:8m8") s"

mooreSY,,(f, g, my)= mapSY(g) 0 scandSY ,(f, my)

Fig. 4 Sequential process constructors delaySY,, scandSY,, and
mooreSY,,

P, = mapSY (inc)

where

inc, (x) — 1 ifx=_1
LT Y x4+ 1 otherwise

Figure 2 also illustrates the separation of synchronisation
(grey shaded and performed by mapSY) and computation
(white shaded and performed by the function inc).

The process constructor zipWithSY,, corresponds to
mapSY, but creates processes with multiple input signals.
The short notation * is used for mapSY and >, for
zipWithSY,,. Both process constructors are defined in Fig. 3.

The basic sequential process constructor delaySY, (short
notation A,)) constructs a process which delays a signal by n
cycles. We define the m-input process constructor scandSY,,
which takes a function f'and a value m, for the initial state to
construct the basic FSM process. Using the function
composition operator o, where

(fog)lx) =f(g(x))

we can define mooreSY to model a Moore FSM. The
discussed sequential process constructors are defined in
Fig. 4.

3.3 Implementation model

The implementation model is the result of the refinement
process (Section 4). In contrast to the specification model,
which is a network of concurrent synchronous processes, it
may also include domain interfaces in order to establish

domain interface

1 [y 1 1 1
— 4 L | -
process
Q, Q,

- network - 2
k | m n
main synchronous main
domain sub domain domain
(Rate: r) (Rate: r') (Rate: r)

Fig. 5 Synchronous sub-domains

316

s s.r/k
—» downDi(ky [—»

downDI(k)=Q

where
Q) = s
of = ek

Fig. 6 Domain interface downDI(k)

synchronous sub-domains which comprise local synchro-
nous process networks with signals having different events
rates as illustrated in Fig. 5.

In order to formally describe implementation models with
synchronous sub-domains we extend our notation for signals
by including the event rate r € Q to the form s" =
(ep, el -..) where the tag of a signal of ¢/ is given by the
position i and the event rate r and has the absolute value i/r.
A domain interface consumes m input signals with event rate
r and produces n output signals with another event rate . In
the specification model the event rate of all signals is one.

Figure 6 shows the domain interface downDI(k) which
consumes an input signal s with event rate r and produces an
output signal s' that includes only each k-th input event
(starting with k = 0) and has the event rate ' = r/k.
Synchronous sub-domains violate the synchronous assump-
tion, as not all signals share the same set of tags. Thus, they
are not allowed in the specification model, but are
introduced by well-defined transformations during the
refinement process. Inside a synchronous sub-domain the
synchronous assumption is still valid and the same formal
techniques can be used as for the specification model. Due
to the formal definition of domain interfaces we may also
reason about a refined model with synchronous sub-domains
as further elaborated in the following Section.

4 Refinement

One central idea of the ForSyDe methodology is to move
large parts of the synthesis, which traditionally is part of the
implementation domain, into the functional domain. This is
done in the refinement phase where the specification model
M, is stepwise refined by well-defined design transform-
ations 7; into a final implementation model M, (Fig. 7).
Only at this late stage is the implementation model
translated using the ForSyDe hardware and software
semantics into a synthesisable implementation description.
A transformation (Definition 2) is the application of a
transformation rule (Definition 1) to a process network
which is part of a system model as illustrated in Fig. 8.

Definition I (transformation rule): A transformation rule is
a functional mapping of a process network PN onto another
process network PN’ with the same input signals and the
same number of output signals. A transformation rule is

denoted by R(PN) = PN’ or PN % PN’

Definition 2 (transformation): A transformation T'(M, PN, R)
is a functional mapping of a system model M onto another
system model M’ with the same input signals and the same
number of output signals. Using the transformation rule R

Mo M,
T T,

Fig. 7 Transformational refinement

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

Y
R
Y
X

o
-

PN

Fig. 8 Design transformation

the internal process network PN in M is replaced by R(PN)

to yield M’. A transformation is(deno)ted by T(M,PN,R) =
T(PN,R

M' = M|R(PN)/PN] or M — M = M[R(PN)/PN],
where [x/y] reads as y is replaced by x.

In order to classify transformations and to compare
process networks we introduce the term ‘characteristic
function’ which characterises the functional behaviour of a
process network.

Definition 3 (characteristic function): The characteristic
function

fPN((sl)r» HR) (Sm)r7 i)

of a process network PN with the input signals (s;)’,...,
(s,,)" and the output signals (s7)", ..., (s,)" expresses the
dependence of the output events at index i on the input
signals.

fPN(S{a .. ,S,rn,l.) = ((e/l)?lv- s (e;l);‘”)

The characteristic function can be derived for any process
network including domain interfaces. Processes based only
on combinational process constructors have characteristic
functions which only depend on current input events. Here,
we give the characteristic function for the basic combina-
tional processes mapSY and zipWithSY,,,.

(€)i = Fupls"i) - =(fe))i
(6/)? = fb,,l(f)((sl)ra sy (sm)l) i) = (f(el)i7) (em)z)zr

Sequential processes have a characteristic function which
also depends on past input values. A process constructed
with delaySY, has the following characteristic function.

N ron o (my)i i<n
(6‘)i *fA,l(mo)(s 7l) - { eztn 12 n

The characteristic functions for FSM processes like
mooreSY,, are more complex as they depend on past values
and include an internal feedback loop. The characteristic
function on mooreSY,, is recursively given as

(61)? = fmooreSY,,,(ng,mo)((SO)ra ceey (sm)ra l)

= (8(my));

where

i {.}T&el);—la”-

We can classify transformations as semantic preserving or
design decision according to the following definitions.

ifi=0
,(e,)i_1,mi_;) otherwise

Definition 4 (semantic preserving transformation):
A transformation rule

PN S PN

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

T(PN, Rule)

Y
R
Y
N
|

Y
v

is semantic preserving, if and only if

Vi € No.pr(Sl,...,Sm,i) :pr/<S],...,Sm,l.)

Definition 5 (design decision): A transformation rule

PN E PN’
is a design decision, if and only if

Jdie NO'fPN(Slw'wsm?i) #pr’(S],...,Sm,i)

Semantic preserving transformation do not change the
meaning of the model and are mainly used to optimise the
model for synthesis. In contrast, design decisions
change the meaning of a model and are mainly used
to introduce the necessary low-level details required
to yield an efficient implementation. Definition 5 gives
only the formal definition of a design decision. For a
meaningful design decision it is also necessary that
the transformed process network PN’ and the
original process network PN are closely related. A
typical design decision is the refinement of an infinite
buffer into a fixed-size buffer with n elements. While such
a design decision clearly modifies the semantics, the
transformed model may still behave in the same way as
the original model. For instance, if it is possible to prove
that a certain buffer will never contain more than n
elements, the ideal buffer can be replaced by a finite one
of size n.

The designer applies transformations to a system
model by choosing transformation rules from the
transformation library. The transformation rules are
characterised by a name, the required format and
constraints of the original process network, the format
of the transformed process network and the implication
for the design, i.e. the relation between original and
transformed process network expressed by the character-
istic function.

We exemplify transformation rules by a combinational
process with n inputs. If the process has a regular structure
such as an N-input adder or multiplier, where N =
4,8,16,... the process can be transformed into a balanced
network of N — 1 2-input processes. The transformation
rule BalancedTree(PN) is defined in the transformation
library as

Transformation Rule: BalancedTree(PN)
Original Process Network:

PN(s1,....sn) =on(f)(s1,- - 5m)
N =2%k>1
S, ooxy) =x ® -+ ®xy; ® is associative

317

S;—1
Sy —] .
- L
54—
* BalancedTree
21—> >2(+)
2—»
_L> >2(+) s’
53—
so—w 2™
* PipelinedTree
s »
] T B A(m) —|_>
B, e Am) s
S3 —P
sj | Byt e Ag(m)

Fig. 9 Transformation into balanced pipelined structure

Transformed Process Network:

PN/(Sla'" aSN) = Dz(g)(...(Dz(g)(sl,Sz),bz(g)(537S4)),
o (P2(8) (Sw—3,5v-2),>2(8) (Sn—1,5N)))
XKy

8(x,y)
Implication:

Fen(Stsenssny i) = Fpy (st sn,0); Vi € Ny

This transformation can be used for all processes that
comply with the format and constraints given in
Original Process Network, here multiple 2*-input pro-
cesses, where the operator & is associative. From the
Implication we can see that BalancedTree(PN) is
semantic preserving, as the characteristic functions of the
original and transformed process network are identical.
There is another transformation PipelinedTree that
pipelines a balanced tree structure of possibly different
two-input processes into a pipelined tree structure.

Transformation Rule: PipelinedTree(PN)
Original Process Network:

Transformed Process Network:

PN'(sy,...,sy) = Ay (mg) o>y (gn—1)

(- (A (mg) o2(g1)(51552)5--.),

v (e Ay (mg) 0 D2(81\7/2)(SN—17S1\/)))
Implication:
fAk(mO)oPN(slv"'asti) = FPN’(S]7"'7SN71.);VZ. > k

As expressed in the Implication, PipelinedTree is a
design decision, as it introduces a delay of k cycles. Since
such implications are part of the transformation rule, the
designer is always aware of the consequences of a
transformation. During the refinement process s/he chooses
transformations from the library and applies them succes-
sively as visualised in Figure 9, where a four-input addition
process is transformed into a pipelined structure.

A direct translation of a computationally intensive
algorithm such as an nth-order FIR filter results in an
implementation with a large amount of multipliers and
adders. Using the concept of synchronous sub-domains we
have developed a transformation SerialClockDomain which
transforms a combinational process of a regular structure

PN(sy,...,sn) =Do(gv-1)(--- (>2(81)(51,52), - - -), into a structure with two clock domains using an FSM
(e Pa(gny2) (w1, 5w))) process to schedule the operations into several clock cycles.
N =2%k>1 This transformation (as illustrated in Fig. 10 and formally
(1) =
: b (j] P (s)"
(8m)" ———
* SerialClockDomain
(S
: P/S P Pry —B Dm) (s
($)r—— ‘ :
main domain synchronous main domain
sub-domain
rate: r rate: mr rate: r

Fig. 10 Transformation into a serialised form with two clock domains

318

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

given below) is very efficient where if there are identical
operations that can be shared.

Transformation Rule: SerialClockDomain(PN)
Original Process Network:

7sm) = Dm(f)(sla ce asm)
7xm71) = gmfl(hmfl(xm71)7

(s (81 (x1), o (%0))) -)

Transformed Process Network:

PN(SI,...
-

PN'(s1,...,8m) = (D(m) o Ppgyy 0 P/S,,) (51,5 Sp)

Prsy = mooreSY(f', g, vy)
(1, hi(x))i=0

f’(x,(i,u)) = (i+17gi(hi(x)ay))0<i<m—1
(0,8i(hi(x) +v))i=m—1

1/ o 14 l:0

g (i,v) _{L 0<i<m

Implication:

fAl(uo)oPN(slw'-vsmai) :pr/(Sl,...,Sm,l')

The transformed process network works as follows. During
an input event cycle the domain interface P/S,, (parallel to
serial) reads all input values at rate r and outputs them at rate
mr one by one in the corresponding m output cycles. The
process Prgy is based on mooreSY and executes the
combinational function f of the original process in m cycles.
In state zero the first input value (operand x,) is stored as
intermediate value v. In the n — 1 following states a function
g; is applied to the new input value (x;) and to the
intermediate value. At tag 0, m, 2m, ... the process produces
the output value, otherwise the output has the value L . The
domain interface downDI(m) (D(m)) down-samples the
input signal to rate r and outputs only each mth input value
starting with tag zero, thus suppressing the absent values
from the output of Prgy,.

As domain interfaces can be characterised by a
characteristic function, it means that, while not shown
here, the characteristic function for the whole transformed
process network can be developed. It follows that Serial-
ClockDomain delays the output of the transformed process
network one event cycle compared to the original process
network, which is given as Implication.

This transformation can, for example, be applied to the
four-input adder of Fig. 9, where h;(x) is the identity
function and g;(x,y) is an add operation, resulting in a
circuit with two clock domains using a single adder.

5 Refinement of FIR-filter

We now use the developed transformation SerialClock-
Domain for the refinement of a FIR-filter which is part of the
specification model of a digital equaliser [3]. A FIR-Filter is

| ; ;
. M, : : !
1

—:—>| sipoSY, o] P/Sut || Prew | Dlkr1) !
: main domain synchronous sub-domain main domain :
1 rate: r H rate: (k+1)r H rate: r 1

i

Fig. 11 Transformation of a FIR-Filter

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

described by the following equation:

k
Yn = Z Xn—m Cm
m=0

We model the FIR-filter as shown in Fig. 11. The process
sipoSY, models a serial-in-parallel-out shift register with
k+ 1 output signals. The process zipWithSY, (ipV(c))
computes the inner product of the coefficient vector, c,...,
¢y, and the outputs of the process sipoSYy,x,,,...,x,_. Since
the process ipV(c) is defined as

(ipV(€))(Xgy--,X,) =CoXg + -+ + CpX,y

it complies with the Input Process Network format of the
transformation rule SerialClockDomain, where

gi(x,y)=x+y
hi(x)=cx

We can use this rule to apply the transformation
T (M, zipWithSY, ., (ipV(c)), SerialClockDomain)

on the FIR-filter model M, in order to receive a model M,,
where sipoSY), remains unchanged and the FIR-filter is
realised with two clock domains and only one multiplier,
and one adder (Fig. 11).

We have used the ForSyDe hardware semantics to
translate both the original model and the transformed
model for an eighth-order FIR-filter with sample and
coefficient size of 10-bit into VHDL, and synthesised it
for the CLA90OK standard cell library. The results (for
f = 8 MHz) show that the area for the transformed model
(4030 gates) is as expected, clearly less than for the original
model (10482 gates).

6 Conclusions

The focus of this article is the formal basis of transforma-
tional refinement in the functional domain in ForSyDe.
Using the formal definition of process constructors and
domain interfaces we can develop characteristic functions
for process networks in order to define transformations
which can be classified as either semantic preserving or as
design decisions. Each transformation rule is well defined
by format and constraints on the original process network
and the resulting transformed process. In addition, each rule
also shows the consequences for the design through an
implication part, expressed with the characteristic function.

As illustrated, powerful synthesis techniques can now be
formulated as transformation rules and applied inside the
functional domain. This is contrast to traditional methods,
where the initial model is first translated into a control/
data-flow graph before it is transformed, which leads to
discontinuities in the design process. By selecting trans-
formation rules from the transformation library, the designer
is now able to perform a transparent and documented
refinement process inside the functional domain.

As part of our future work, we plan to analyse how a design
decision on a local process network effects the overall system
model. Further future work covers the incorporation of
formal verification techniques and the development of tool
support for transformational design in ForSyDe.

7 Acknowledgment

The research presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) and is

319

part of the Integrated Electronic Systems(INTELECT)
program.

8

—_

~

[=))

References

Keutzer, K., Malik, S., Newton, A.R., Rabaey, J.M., and Sangiovanni—
Vincentelli, A.: ‘System-level design: Orthogonolization of concerns
and platform-based design’, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 2000, 19, (12), pp. 1523-1543

Wu, W., Sander, 1., and Jantsch, A.: ‘Transformational system design
based on a formal computational model and skeletons’. Presented at the
Forum on Design Languages 2000, Tiibingen, Germany, September
2000

Sander, 1., and Jantsch, A.: ‘Transformation based communication and
clock domain refinement for system design’. Presented at 39th Design
automation Conf (DAC), New Orleans, USA, June 2002

Benveniste, A., and Berry, G.: “The synchronous approach to reactive
and real-time system’, Proc. IEEE, 1991, 79, (9), pp. 1270—1282
Lee, E.A., and Parks, T.M.: ‘Dataflow process networks’, Proc. IEEE,
1995, pp. 773-801

Kahn, G.: ‘The semantics of a simple language for parallel program-
ming’. Presented at the IFIP Congress, North-Holland, 5—10 August
1974

Lee, E.A., and Messerschmitt, D.G.: ‘Synchronous data flow’, Proc.
IEEE, 1987, 75, (9), pp. 1235-1245

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.: ‘The
synchronous data flow programming language LUSTRE’, Proc.
IEEE, 1991, 79, (9), pp. 1305-1320

Le Guernic, P., Gautier, T., Le Borgne, M., and Le Marie, C.:
‘Programming real-time applications with SIGNAL’, Proc. IEEE,
1991, 79, (9), pp. 1321-1335

Harel, D.: ‘Statecharts: a visual formalism for complex systems’,
Sci. Comput. Program., 1987, 8, (3), pp. 231-274

Boussinot, F., and De Simone, R.: ‘The ESTEREL language’, Proc.
IEEE, 1991, 79, (9), pp. 1293-1304

Maraninchi, F.: ‘The Agros language: Graphical representation of
automata and description of reactive systems’. Presented at IEEE
Workshop on Visual languages, Kobe, Japan, October 1991
Halbwachs, N. and Raymond, P.: “Validation of synchronous reactive
systems: from formal verification to automatic testing’, Lect. Notes
Comput. Sci., 1999, 1742, pp. 1-12

Girault, A., Lee, B., and Lee, E.A.: ‘Hierarchical finite state machines
with multiple concurrency models’, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 1999, 18, (6), pp. 742-760

Eker, J., Janneck, J.W., Lee, E.A,, Liu, J., Liu, X., Ludvig, J.,
Neuendorffer, S., Sachs, S., and Xiong, Y.: “Taming heterogeneity—the
Ptolemy approach’, Proc. IEEE, 2003, 91, (1), pp. 127-144

Davis I1, J., Goel, M., Hylands, C., Kienhuis, B., Lee, E.A., Liu, J., Liu,
X., Muliadi, L., Neuendorffer, S., Reekie, J., Smyth, N., Tsay, J., and
Xiong, Y.: ‘Overview of the Ptolemy project’. Technical Report
UCB/ERL No. M99/37, Dept. EECS, University of California,
Berkeley, CA 94720, 1999

320

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31
32
33
34

35

36

Ernst, R., Ziegenbein, D., Richter, K., Thiele, L., and Teich, J.:
‘Hardware/software codesign of embedded systems - the SPI work-
bench’. Presented at the IEEE Workshop on VLSI, Orlando, USA, 1999
Thiele, L., Strehl, K., Ziegenbein, D., Ernst, R., and Teich, J.:
‘Funstate - an internal design representation for codesign’. Proc.
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 7-11
November 1999, pp. 558-565

Skillicorn, D.B.: ‘Foundations of Parallel Programming’ (Cambridge
University Press, Cambridge, 1994)

Reekie, H.J.: ‘Realtime Signal Processing’. PhD thesis, University of
Technology at Sydney, Australia, 1995

Jones, G., and Sheeran, M.: Circuit design in Ruby. Formal Methods for
VLSI Design, North-Holland, 1990, pp. 13-70

Luk, W., and Wu, T.: ‘Towards a declarative framework for hardware -
software design’. Proc. 3rd Int. Workshop on Hardware/Software
Codesign, Grenoble, France, 22—-24 September 1994, pp. 181-188
Bjesse, P., Claessen, K., Sheeran, M., and Singh, S.: ‘Lava: Hardware
design in Haskell’. Presented at the Int. Conf. on Functional
programming, Baltimore, MD, 27-29 September 1998

Singh, S.: ‘System level specification in Lava’. Proc. Design,
Automation and Test in Europe Conf. (DATE), Munich, Germany,
March 2003, pp. 370-375

Li, Y., and Leeser, M.: ‘HML, a novel hardware description language
and its translation to VHDL’, IEEE Trans VLSI, 2000, 8, (1), pp. 1-8
Mycroft, A., and Sharp, R.: ‘Hardware/software co-design using
functional languages’, Lect. Notes Comput. Sci., 2000, 2031,
pp. 236-251

Partsch, H.A.: ‘Specification and Transformation of Programs’
(Springer-Verlag, New York, 1990)

Pettorossi, A., and Proietti, M.: ‘Rules and strategies for transforming
functional and logic programs’, ACM Comput. Surv., 1996, 28, (2),
pp. 361-414

Bauer, F.L., Moller, B., Partsch, H., and Pepper, P.: ‘Formal program
construction by transformation — computer-aided, intuition guided
programming’, IEEE Trans. Softw. Eng., 1989, 15, (2), pp. 165-180
Kloos, C.D., and Dosch, W.: ‘Transformation development of circuit
descriptions for binary adders’, Lect. Notes Comput. Sci., 1999, 544,
pp. 217-237

Gajski, D.D., Dutt, N.D., Wu, A.C-H., and Lin, S.Y-L.: ‘High-Level
Synthesis’ (Kluwer Academic Publishers, Boston, 1992)

De Micheli, G.: ‘Synthesis and Optimization of Digital Circuits’
(McGraw-Hill, New York, 1994)

Voeten, J.: ‘On the fundamental limitations of transformational design’,
ACM Trans. Des. Autom. Electron. Syst., 2001, 6, (4), pp. 533-552
Gajski, D.D., and Ramachandran, L.: ‘Introduction to high-level
synthesis’, IEEE Des. Test Comput., 1994, 11, (4), pp. 44-54

Lu, Z., Sander, I., and Jantsch, A.: ‘A case study of hardware and
software synthesis in ForSyDe’. Presented at the 15th Int. Symp. on
System synthesis, Kyoto, Japan, October 2002

Lee, E.A., and Sangiovanni—Vincentelli, A.: ‘A framework for
comparing models of computation’, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., 1998, 17, (12), pp. 1217-1229

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003

	Development and application of design transformations in ForSyDe
	Introduction
	Related work
	The ForSyDe methodology
	Design process
	Specification model
	Implementation model

	Refinement
	Refinement of FIR-filter
	Conclusions
	Acknowledgment
	Bibliography
	References

