
KUNGLIGA TEKNISKA HÖGSKOLAN (KTH)

Synchronization of Tasks in
Multiprocessor Systems-on-Chip

José Henrique de Magalhães Simões Calado

Master in Electrical and Computers Engineering

Examiner: Associate Professor Ingo Sander

Advisor: Jun Zhu

Advisor: Professor José Carlos Alves

October 2010
TRITA-ICT-EX-2010:278

c© José Henrique de Magalhães Simões Calado, 2010

Abstract

Multiprocessor systems on chip (MPSoC) are getting more popular as new ways to take advantage
of them are appearing. They are very useful, typically in embedded applications, since they can be
tailored according to the requirements. These architectures meet the performance needs of several
different types of applications such as, multimedia, telecommunication, and network security.

The aim of this work was to study the connection between tasks, either if they are inside the
same processor, or outside and distributed on several different processors connected by buffers of
first-in-first-out type.

We have used a Stratix II EP2S60 FPGA chip that, thanks to the Altera tools, has simplified the
whole hardware prototyping part. Thus, we have mainly focused in the software running on Nios
II soft-core processors, specially regarding the synchronization and communication inter-task.

In order to evaluate the performance, an abstract topology inspired on the Google’s MapRe-
duce framework was created. In a streaming data-flow it can be seen as two switching nodes; one
that splits data among the workers processors, and another that joins the results and sends them to
the next stage.

In our experiments we have used Nios II soft-core processors with tightly coupled memories
and we have created a pseudo-random generator as a Nios II custom instruction in order to speedup
the generation of numbers for a Monte Carlo test application. Several different approaches were
taken into consideration and, for the generation of 50K random numbers, we have experienced a
speed-up of 2.03x (19.21µs –> 9.43µs per random Cartesian point) between a sequential and a
parallel version with 2 workers processors, using fast Nios II with tightly coupled memories.

i

ii

Acknowledgments

I have to say that being on Sweden during one term was an incredible experience. One of the
most important of my life so far. In the beginning I was not even expecting to go and suddenly
everything happened really fast. I’ve met incredible people that have supported, helped and shared
amazing new experiences with me. I want to thank everyone who, somehow, changed something
important inside of me. Now I feel something that sounds better with the beautiful Portuguese
word “Saudade”. No direct translation exists but it means the feeling when someone misses some-
thing good.

However, during the journey, I always felt my roots of Porto, my hometown. Specially because
of Silvia and her simple, and yet powerful, love and friendship. By living abroad I’ve learned to
give more value to all the things that I care and to pay more attention to all the good things that
are always happening.

I’m eternally grateful to my Parents for everything. They have been on my side no mater what,
and never asked anything in return, only that I continued to seek the path to happiness. My brother
and best friend, Guilherme, who always gave me the strength to continue even when things seemed
to not go that well... Obrigado!

Finally, I will never forget the amazing coffees et al. with Ramon and Willeke, whose empathy
has always encouraged me to pursuit my goals. Also, I would like to thanks all the people that
I’ve crossed during these months in Sweden, specially the ones from “Jyllandsgatan”.

Muito obrigado a todos os meus amigos em Portugal, em particular ao Filipe.
A special thanks to Jun for his patience, support, ideas and guidance through this thesis.

The Author

iii

iv

“You were right about the stars,
Each one is a setting sun.”

Jeff Tweedy

v

vi

Contents

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Contributions . 4
1.3 Document Layout . 5

2 FPGA based MPSoC 7
2.1 Introduction . 7
2.2 Hardware . 7

2.2.1 Nios II . 9
2.2.2 Custom Instructions . 10
2.2.3 Avalon Switch Fabric . 12
2.2.4 Performance Counter . 13
2.2.5 Timer . 14
2.2.6 Mailbox . 14
2.2.7 Tightly Coupled Memory . 15
2.2.8 IRQ Mailbox Core . 16

2.3 MPSoC Platform . 17
2.3.1 Introduction . 17
2.3.2 Architecture . 18

2.4 Software . 20
2.4.1 Introduction . 20
2.4.2 µC/OS-II . 22
2.4.3 FIFO . 23
2.4.4 Pseudo-Random Generator . 25

3 Generic MPSoC Application 27
3.1 Introduction . 27

3.1.1 Basic Concepts . 28
3.2 Mailbox + IRQ Synchronization . 30

3.2.1 Test Application . 31
3.2.2 Workers Random Delay . 32

3.3 FIFO + IRQ Synchronization . 34
3.4 FIFO Synchronization . 35

3.4.1 Ordered FIFO . 40
3.5 Concluding Remarks . 42

vii

viii CONTENTS

4 Monte Carlo π Generator 43
4.1 Introduction . 43

4.1.1 Monte Carlo Method . 43
4.1.2 Pseudo-Random Generator . 44

4.2 Software Application . 46
4.3 Concluding Remarks . 51

5 Conclusions and Future Work 53
5.1 Future Work . 54

References 56

List of Figures

1.1 Streaming application model example . 3
1.2 Simple data-flow model example . 4

2.1 Block Diagram of Nios Development Board . 8
2.2 Simplified block diagram of Nios II soft-core processor 10
2.3 Custom instruction logic connects to the Nios II ALU, based on the picture from [17] 11
2.4 Timing diagram of a multi-cycle custom instruction, from [17] 12
2.5 Partial crossbar switch . 13
2.6 Block diagram of a simple Nios II system with TCM showing the Avalon interfaces 15
2.7 Block diagram of a simple Nios II system . 16
2.8 Block diagram of the IRQ mailbox module . 17
2.9 Hardware architecture with 3 Nios II processors 18
2.10 Architecture of the MPSoC with 4 CPUs . 20
2.11 Communication between two processors using a FIFO stored in the shared memory 23

3.1 MapReduce framework translated to a data-flow model 28
3.2 Simplest case of the MPSoC generic data-flow application 29
3.3 How the tasks are mapped onto 3 processors using the IRQ + Mailbox approach . 30
3.4 Sequence diagram explaining how the random seed is evaluated 33
3.5 How the tasks are mapped onto 3 processors using the FIFO + IRQ synchronization 34
3.6 How the tasks are mapped onto 3 processors . 36
3.7 Flow diagram of the scheduler . 37
3.8 Flow diagram of the OS scheduler . 38
3.9 Chart with temporal results of 100 tokens processed by RTOS 39
3.10 Ordering FIFO model . 40

4.1 Simplification of Karnaugh map to reduce the amount of logic gates 45
4.2 Logical implementation of a Linear Feedback Shift Register 46
4.3 How are the random numbers used to evaluate π 47
4.4 Performance improvement by sending N pairs of coordinates each time 50

ix

x LIST OF FIGURES

List of Tables

2.1 Summary of Stratix II EP2S60 specifications 9
2.2 Comparison between the performance of three different types of available memory

on Stratix II FPGA . 16
2.3 Summary of FPGA utilization . 19
2.4 Memory Usage . 19
2.5 Summary of FPGA utilization for the 4-core MPSoC 20
2.6 Division of a typical Nios II program . 21
2.7 Optimization achieved in a simple piece of code, using the typical Gcc compiler

optimization directives . 21

3.1 Results of the counting letters’ application . 32
3.2 Example values to find a truly random seed . 33
3.3 Results of the generic application using FIFO+IRQ synchronization 35
3.4 Comparison of times between using Altera Mailbox and Custom FIFOs 35
3.5 Performance of the on-chip memory FIFO buffers 39
3.6 Results for 1000 tokens processed with different buffer sizes and different times

performed on the model described in figure 3.10 41

4.1 Performance comparison between the custom instruction and the software pseudo-
random number generators for 10,000 values 45

4.2 Estimation of π after N iterations . 48
4.3 Timing results for the sequential versions for 50K Cartesian points 48
4.4 Timing results for several versions after generating 50K Cartesian points 49
4.5 Performance speedup by sending bursts of points each time 51

xi

xii LIST OF TABLES

Abbreviations and Symbols

CI Custom Instruction
CPU Central Processor Unit
FEUP Faculdade de Engenharia da Universidade do Porto
FIFO First-In-First-Out (Buffer)
FPGA Field-Programmable Gate Array
IDE Integrated Development Environment
IP Intelectual Property
KTH Kungliga Tekniska högskolan
LE Logic Elements
LFSR Linear Feedback Shift Register
MIEEC Mestrado Integrado em Engenharia Electrotécnica e de Computadores
MPSoC Multiprocessor System-on-Chip
PCB Printed Circuit Board
PRNG Pseudo Random Number Generator
RTOS Real-Time Operation System
SOPC System on Programmable Chip
TCM Tightly Coupled Memory
WCET Worst Case Execution Time

xiii

xiv ABBREVIATIONS AND SYMBOLS

Chapter 1

Introduction

Multiprocessor systems-on-chip (MPSoCs) are getting more popular due to the great advances

in microelectronics that are currently taking place. The integration is getting better with lower

power consumption. However, there is the need to develop ways to extend the natural boundaries

of physics by developing new strategies since we need a bigger processing power and, in many

situations, with lower consumptions.

The trend is to create smaller and more ecologic devices that, together in a network, can deliver

much more computational power than as if they were working alone. Of course that the research

starts from the simple problem and then, like in a bottom-up work flow, we are slowly creating

“clouds” formed by regular computers with typical architectures, smart phones, PDAs, tablets, and

several new emerging gadgets. This mesh is extremely vast and is expanding everyday.

Some of them have already MPSoCs inside; for example, many modern cell-phones have in

the same chip the general-purpose CPU, GPU (Graphic Processing Unit), DSP and many more IP

modules. The Nintendo Wii console combines a PowerPC 750CX and a GPU in the same chip,

hence it is also a heterogeneous MPSoC [1].

When reducing this “cloud” perspective to the chip level, it is possible to see a heterogeneous

multiprocessor SoC. Actually the clouding computation is also getting more popular because it

delivers a higher processing mechanisms with lower costs, but security risks are still a big and real

concern among the companies. This is beyond the scope of this thesis, though.

Common sense says that there is strength in numbers and that is valid for almost everything that

handles a lot of information (of any kind). Obviously, using parallel methodologies it is possible

to increase the amount of work done in less time. However, since this is a relatively new field

of research, there are still several pieces that can, and will, be better evaluated to improve overall

performance. One important, that will be the main theme of this thesis, is the communication

between processors and between peripherals inside the same chip. The interconnect network is

an important factor that limits the MPSoC performance and is as important as the capacity of the

node processors (e.g. CPU speed, cache size, etc.) [2].

1

2 Introduction

Many multiprocessor designs are based on shared resources due to their low cost, however

the scalability is limited and the concurrency is penalized due to the masters competition in the

access to the bus. In order to solve this, many studies are being made in order to have on-chip

micro-networks (or Networks-on-Chips, NoCs) to interconnect all IP blocks [3]. Despite the fact

that this is a topic beyond the scope, this work presents some ideas that can be helpful to improve

their design. However, our target is to insert small data-flow models into small embedded systems,

and find ways to efficiently interconnect the nodes.

1.1 Motivation and Objectives

Several works have been published regarding multiprocessor systems-on-chip. They are proposing

various types of architectures and models of computation (MoCs) in order to fulfill the require-

ments for a specific application. However, a global framework that can be used by the most generic

applications, with defined standards and rules is still in the childhood since there are a lot of dif-

ferent perspectives. A homogeneous designing flow could greatly improve the task of creating

new platforms and corresponding software. For that, there is the need to improve and define the

interconnection mechanisms and to find better methodologies to map and distribute tasks among

processors.

A MoC consists of the definition of the set of allowable operations used in computation and

their respective costs in the multiprocessor paradigm. Two widely used are Kahn process network

(KPN) [4] and synchronous data flow (SDF) [5].

KPN describes an application as a network of autonomous processes that communicate through

FIFO channels. It has clearly defined semantics and allows to explicitly express the parallelism

through the separation of communication and computation. The main advantage is that it allows

to avoid many pitfalls of parallel execution, such as data races, nondeterminism, or the need to

strict synchronization [6].

This MoC is very useful for streaming applications, such as audio and video codecs, signal

processing applications, or networking applications because their algorithms structures matches

the KPN model. However, the communication between processes and their orchestration can limit

the speed-up achievable by parallel execution.

A SDF MoC, when compared to the KPN, is more restrictive in the sense that there is a fixed

token production and consumption rate. However, it allows to statically schedule an application to

reduce the context switching overhead. In fact, the construction of periodic schedules at compila-

tion time is possible with bounded memory [7].

Typically, the FIFOs are unbounded which leads to the impossibility of analysing the dimen-

sion and costs of memory modules [8]. To overcome this problem, a timed extension has been

applied to the SDF MoC, but the single-unit time assumption [9, 10] is not useful for heteroge-

neous computation and communication timing in MPSoCs.

1.1 Motivation and Objectives 3

FIFOi,j FIFO j,k
ni,j j,kn mj,k mi,j

Pi Pj Pk

Figure 1.1: Streaming application model example

In this thesis we followed an alternative to program multiprocessor systems without restricting

to a certain model of computation, in order to focus more on the synchronization and communi-

cation mechanisms. However, we started from a SDF application model with three-stage pipeline

which was used as a tutorial example in [11] and is depicted in figure 1.1. The author explores the

SDF semantics in order to minimize the buffer requirements without affecting the throughput for

streaming applications.

The nodes are processes where computation occurs and the edges are the channels with finite

buffers of type FIFO. As said before as one of the biggest restriction of SDF model, the input and

output rates of the processes, or mi, j and ni, j, are fixed.

We tried to respect the flow of SDF MoC with some differences regarding the semantics:

Although in [10] the data tokens remain on the input side FIFO while the computation of a process

is completed, in this work when a process is triggered, it reads and immediately consumes the

tokens. The second difference is that we do not use any type of static scheduling policy, only a

best effort dynamic scheduling. As soon as data is available in the input side of a node and there

is space in the output side inside the FIFO, the process starts. This is not very efficient since the

processors are always running at full-speed, but it allows to check the biggest possible performance

achievable when using different types of synchronization. Furthermore, it can be easily modified

to have a static scheduler, or a more complex dynamic scheduler, to became suitable for real-time

streaming applications.

In some cases, when a streaming application is divided into several stages mapped on dif-

ferent processors, the biggest worst case execution time (WCET) of a specific stage dictates the

throughput that, in a real-time environment, might not respect the deadlines. Therefore, our goal

is to parallelize one or more pipeline stage(s) in order to reduce the overall WCET. For instance,

assuming that in the figure 1.1 the biggest WCET belongs to Pj and it is 5 ms. The WCET of Pi

and Pk is only 1 ms and, after the initial start-up delay, the real-time requirements dictates one new

Pk conclusion every 3 ms. Ideally, if Pj can be divided in two sub-nodes, Pj,1 and Pj,2, where each

one of them needs 5 ms to finish the job but, when combined, the WCET is 2.5 ms.

Of course that there are the mapping and synchronization delays, and most of the times the

computation can not be completely parallelized. This was only an utopian scenario to show the

idea. Actually, we were more interested to evaluate the buffers and synchronization than the

mathematical formalisms of this approach.

This can be compared to how Google’s MapReduce framework processes large data sets. A

huge amount of data is splitted and mapped into several computers that work independently and,

when they finish the processing, there is the reduction stage where the results are concatenated

4 Introduction

FIFO
j2,k

nj2,k mj2,k

 FIFO
i,j2

ni,j2 mi,j2

FIFO
j1,k

n
j1,k

m
j1,k

FIFOi,j1

ni,j1

mi,j1

FIFO
i,jn

n
i,jn

m
i,jn

FIF
O jn

,k

n jn
,k

m jn
,k

Pi P
k

Pj,1

Pj,2

Pj,n

Figure 1.2: Simple data-flow model example

and sent to the output [12]. As shown in the figure 1.2, the node Pi, or Source Task from now on,

is responsible for the distribution of the data into the workers. The node Pk, or Destination Task,

is where the results obtained from the workers, Pj,x, are concatenated.

The authors in [13] presented two synchronization mechanisms for MPSoCs. The mailbox

based synchronization has low latency and low resource overhead, but it is not feasible for a large

number of processors because they share the same buses. On the other hand, the packet switch

method has larger latency as it needs the headers to be processed in order to route them toward the

destinations, but it has more scalability and feasibility.

Another goal of this thesis is to clearly describe the fundamentals behind the MPSoC concept

in a higher level, since the hardware functionality is automatically created by the Altera tools,

using the SOPC Builder. We just need to “say” which components we want and the correspond-

ing connections. Therefore, we do not have to worry about the system level design, particularly

regarding the power issues and the inherent complexity of the physical mesh between several

processing units.

1.2 Contributions

The main contributions of this thesis are described next:

1. Present a brief study about the work done in the last years about MPSoCs and its challenges.

2. Elaborate several MPSoCs with Nios II cores with tightly coupled memories and custom

hardware modules.

3. Contribute with a comparison between the most common ways to synchronize different

CPUs using buffers that can be used in streaming or pipelined real-time applications.

1.3 Document Layout 5

4. Integrate a Monte Carlo method inside the MPSoC to extend the experiments regarding the

communication between processors and to test the hardware random generator.

5. Develop a way to get a truly random seed for the random generator using a Nios II custom

interruption module.

1.3 Document Layout

Besides the introduction, this thesis has four more chapters. In chapter 2, the board from Al-

tera with the FPGA chip is described and introduces all the pieces used to form several MPSoC

platforms. Also, it shows the reader, the architecture followed and introduces the basic software

components like the real-time operative system. Chapter 3 presents some experiments with an

abstract application that synchronize tasks and forces communication between processors. One

particular case-study is debated in chapter 4, using the work of the previous chapter adding more

concepts. Finally, chapter 5 concludes the thesis and proposes future work.

6 Introduction

Chapter 2

FPGA based MPSoC

In this chapter there is an overview of all components and ideas used for this thesis that were

performed together in several experiments in order to find interesting results.

2.1 Introduction

In order to fully understand all the following chapters, it is important to clearly describe all the

components that were used. This chapter is divided in three sections where the first one aims

the definition of the target hardware and the description of the main hardware modules used to

form a system that, because it is inside the FPGA chip (SoC) and there are multiple processors

running, it is a MPSoC (Multiprocessor System-on-Chip). The second section is about the chosen

architecture for the MPSoC platform and how the components are connected. Finally, in the third

section, the main software modules running on the Nios II processors are explained.

The possible optimizations during the software compilation are also explained here since it

was a background study followed along the rest of this thesis. Also, a simpler SoC was made

to test and prove the usability of tightly coupled memories as a useful storage place for data and

instructions, even for the case where there is a lot of data transactions between processors.

2.2 Hardware

The hardware platform used is a Nios Development Board, which contains a Altera Stratix II

EP2S60 FPGA chip.

The architecture of the Stratix II edition of Nios Development Board is depicted in the fig-

ure 2.1. As it is presented, this platform is comprised of a FPGA chip, communication interfaces,

data buses, memories and I/O pins. The system on-chip is built inside the FPGA chip with one

or more Nios II, which are 32-bit RISC processors embedded in resident logic (soft core), BRAM

7

8 FPGA based MPSoC

Figure 2.1: Block Diagram of Nios Development Board

memories, data buses and I/O controllers. This board is also supported by a developing environ-

ment from Altera, Quartus II.

The most relevant features of this board are as described, according to the reference man-

ual [14]:

• FPGA Chip – Stratix II EP2S60F672C5ES device with 24,176 adaptive logic modules

(ALM) and 2,544,192 bits of on-chip memory;

• External Memory – 16 Mbytes of flash memory, 1 Mbyte of static RAM, and 16 Mbytes

of SDRAM;

• Interface – JTAG connectors to Altera R© devices via Altera download cables;

• Crystal Oscillator – 50 MHz.

The letters “ES” on the FPGA device label means that it is an engineering sample. That is due

to the fact that it came in early shipments of the Nios development board and it has a known issue

affecting the M-RAM blocks. Thus, the two of them available in this device were not used, which

means less 1,179,648 bits (144 kbytes) of on-chip memory.

The 50 MHz oscillator is socketed and can be changed or removed. There is the possibility

to use the external clock connector but that would require to change the configuration controller.

Despite of the fact that this FPGA device can work with a maximum theoretical clock of 550

MHz, all the experiments were made using the 50 MHz oscillator. A maximum frequency is

2.2 Hardware 9

usually computed during the system generation based on the distance of the biggest path and

optimizations are made in order to respect the given clock rate.

BRAM (Block RAM) is comprised by three different memory block structures; the already

spoken M-RAM not used in this thesis, M512 RAM and M4K RAM. M512 RAM blocks are

simple dual-port memory blocks with 512 bits plus parity (576 bits) and M4K RAM blocks are

true dual-port memory blocks with 4K bits plus parity (4,608 bits). This FPGA device has 329

blocks of M512 RAM and 255 blocks of M4K RAM, hence a total of 145 kbytes of on-chip

memory available to the user.

The other important type of memory used in this thesis is the external PC100 Synchronous

Dynamic RAM (SDRAM). It has 16 Mbytes and is meant to work at a speed of 100 MHz, but in

this work it is clocked at the same speed as the rest of the system: 50 MHz.

These two types of memory are used to store data and instructions. However, the access to

SDRAM is very slow when compared to the on-chip memory but has significant more space.

The on-board FPGA chip is a powerful system and its attributes are summarized by the fol-

lowing table:

Table 2.1: Summary of Stratix II EP2S60 specifications

ALMs ALUTs Equivalent LEs Total RAM bits User I/O pins
24,176 48,352 60,440 2,544,192 492

The adaptive logic module (ALM) is the basic building block of logic in the Stratix II archi-

tecture. Each ALM contains a variety of look-up table (LUT)-based resources that can be divided

between two adaptive LUTs (ALUTs). This adaptability allows the ALM to be completely com-

patible with four-input LUT architectures, and makes it possible to have a equivalent counting of

logic elements (LEs) [15].

Several different platforms were built in order to pursuit interesting results. In figure 2.5 it is

possible to see a simple MPSoC with shared memory.

In the following sections is presented the way that everything works. They are the “pieces”

of the final goal; which is the best way to synchronize different processors, or tasks, with the

available modules. It will start with a brief description of Nios II soft-core processor, then how

is it possible to use tightly coupled memories and custom instructions with this processor. The

description of the fabric used to interconnect all the components is given in section 2.2.3. After,

a brief explanation of how several hardware module works are given, namely the performance

counter to measure time, the timer, the mailbox and finally the IRQ mailbox.

2.2.1 Nios II

Nios II is a soft-core processor provided by Altera [16]. It has an architecture of 32-bit RISC

suitable for embedded applications and it is entirely implemented using the FPGA resources. One

of the major advantages is his highly customizable features. There are three different types in size

and features but the core remains the same and follows the Harvard architecture, where the data

10 FPGA based MPSoC

Figure 2.2: Simplified block diagram of Nios II soft-core processor

and the instructions paths are independent. The most used version was the Fast one, which also

occupies more internal logic. Furthermore, it supports up to 8 masters ports (4 for instructions

and 4 for data) that can be used to directly connect to on-chip memory and form tightly coupled

memories. The simplified block diagram is depicted in 2.2, where the main components inside

and the most important signals and ports are shown.

Another great advantage of this CPU is the feature of letting the user to add more instructions

to the arithmetic logic unit (ALU) in a hardware level. These custom instructions are handled by

Nios II exactly in the same manner as all others, and there is only the need to respect the signals

and timings.

2.2.2 Custom Instructions

One of the greatest advantages of using soft-core processors like Nios II is the possibility of ex-

tending his usability by adding custom instructions to the processor instruction set. In this way,

it is possible to accelerate time-critical software algorithms by reducing a complex sequence of

standard instructions to a single instruction implemented as hardware. In our system, the usage

of a custom instruction allowed a linear feedback shift register, originally built on software, to

increase performance from several thousands of clock cycles to only two, as it will be described

later on chapter 4. The custom instruction logic connects directly to the Nios II ALU as shown in

figure 2.3.

As explained in [17], Nios II processor supports up to 256 different custom instructions and

each one of them can have different configurations. In this thesis a multi clock cycle custom logic

block of fixed duration is used, but it is possible to have only a combinational type, an extended

type, a type to access internal registers or one that works as an external interface. The simpler

case is the combinational custom instruction, which consists of a logic block that is able to be

2.2 Hardware 11

Figure 2.3: Custom instruction logic connects to the Nios II ALU, based on the picture from [17]

completed in a single clock cycle. However, when there is a big delay between the input and the

output, the maximum frequency (fmax) of the CPU can be highly decreased. In this situation is

better to separate the combinational circuitry into several stages, and to use a multi-cycle custom

instruction instead.

The extended custom instruction uses another input signal, n[7..0], that can be used to multi-

plex several different instructions (up to 256 since it is 8-bit wide) inside the same custom instruc-

tion module. The internal register file custom instruction allows logic to access its own internal

register file that can be either from the Nios II processor’s register file or from the custom instruc-

tion’s own internal register file. Finally, the custom instruction used as an external interface allows

the designer to communicate with logic outside the processor’s data path.

The multi-cycle custom instruction only requires the following ports; clk, clk_en and reset.

All of the others are optional and they only depend on the application.

In the timing diagram of the figure 2.4 it is possible to see its functionality. Processor asserts

the active high start port on the first clock cycle of the custom instruction execution. At this time,

the dataa and datab ports, if they are used, have valid values that remain valid throughout the

duration. In the case of having a fixed length, the processor waits a specified number of clock

cycles, and then reads the result. The number of clock cycles that it has to wait is specified

during system generation. If the length is variable, the processor waits until the active high done is

asserted and reads the result. Of course, it can be further optimized by combining several different

types of configurations in the same custom instruction.

After the hardware is finished, there is the need to use it through the software. To simplify

the procedure, the Nios II IDE generates macros that allow easy access from application code

12 FPGA based MPSoC

Figure 2.4: Timing diagram of a multi-cycle custom instruction, from [17]

to custom instructions. Those are specified in the system.h header file, where all the system

information from that processor point of view is described.

2.2.3 Avalon Switch Fabric

As described in [18], Avalon Switch Fabric is the interconnect interface designed by Altera to

connect all the components inside the FPGA. Usually, in the typical bus there is only one master

access at a time. However, this switch fabric lets multiple masters to operate simultaneously due

to a slave-side arbitration scheme. In the figure 2.5 is shown a basic multiprocessor platform with

the arbiter represented in the slave-side. This is the default topology of the fabric, and is the ideal

interconnection mechanism for embedded systems. It uses a partial crossbar switch which is a

mixture of the traditional bus and the full crossbar switch. The normal bus does not allow to

have a big concurrency because there is only one master at a time, but it can operate at higher

frequencies. Meanwhile, the full crossbar switch is meant for parallel activities since there is a

dedicate path between the master and the slave, but it grows exponentially as more masters and/or

slaves are added.

Another important advantage is that it is extremely easy to set-up all the connections using

SOPC Builder [19].

There are six different available interfaces. The most common ones, in the optical of the user,

are the Avalon-MM (Memory Mapped Interface) and Avalon-ST (Streaming Interface). The first

is the typical interface for master-slave connections and the second one is very useful to stream

data between different hardware components. There is also a tristate interface to handle multiple

peripherals that can share data and address buses. In this way it is possible to reduce the pin

count of the FPGA and the number of traces on the PCB (printed circuit board). Besides those,

there are three more specific interfaces: Avalon Clock, Avalon Interrupt and Avalon Conduit. The

Avalon Clock is responsible to drive and receive the clock and reset signals in order to synchronize

all interfaces. The Avalon Interrupt allows components to signal events to other components.

2.2 Hardware 13

Figure 2.5: Partial crossbar switch

Finally, the Avalon Conduit that allows signals to be exported out so they can be connected to

other modules of the design or FPGA pins.

Despite of the fact that it is relatively easy to build a SoC in SOPC Builder, several optimiza-

tions are required to take the best of the Stratix II FPGA chip, where some of them are available

in [20].

2.2.4 Performance Counter

This hardware module from Altera allows to check the time of a given computation inside a Nios

II soft processor. It is very important to accurately check the WCET (worst case execution time) of

each process (or task), and to evaluate the generated overhead by all synchronization mechanisms

and by the µC/OS-II, which is the embedded operating system used for control and processing the

retrieved data.

The main benefit of using the performance counter is the accuracy of the results due to the

fact that it is unobtrusive. It does not use any RAM and requires only a single instruction to start

and to stop up to 7 different segments of code. However, it costs several FPGA’s logic elements

(LEs) so it is not recommended to use it when there is not the need to verify the timings with such

precision.

It has a slave interface to the Avalon Switch Fabric and, in a multi-processor system, there

should be one performance counter per processor connected to the corresponding data master

interface. Next, the macros used to control the measurements are shown:

14 FPGA based MPSoC

/ / Base Addres s o f per fo rmance c o u n t e r d e f i n e d i n s y s t e m . h header

d e f i n e PERFORMANCE_COUNTER_1_BASE 0 x60c0

PERF_RESET (PERFORMANCE_COUNTER_1_BASE) ;

/ / Macro t o s t a r t r u n n i n g t h e g l o b a l c o u n t e r

PERF_START_MEASURING (PERFORMANCE_COUNTER_1_BASE) ;

/ / Macro t o s t a r t measur ing t h e segment 1

PERF_BEGIN (PERFORMANCE_COUNTER_1_BASE, 1) ;

/ / code t o be measured i s p l a c e d here .

/ / Macro t o s t o p measur ing

PERF_END (PERFORMANCE_COUNTER_1_BASE, 1) ;

/ / Macro t o g e t t h e number o f c y c l e s o f t h e measurement

t ime1 = p e r f _ g e t _ s e c t i o n _ t i m e (PERFORMANCE_COUNTER_1_BASE , 1) ;

/ / Macro t o s t o p r u n n i n g t h e g l o b a l c o u n t e r

PERF_STOP_MEASURING (PERFORMANCE_COUNTER_1_BASE) ;

The performance counter module has 64-bit counters that must be connected to the same clock

of the measured CPU. In our systems the clock frequency is set to 50 MHz. Due to the fact that

the software variable to store the number of cycles is only 32-bit wide, it was easy to overflow.

Thus, it is only possible to count the number of clock cycles up to around 85 seconds. However, it

is not changed because it is enough for our experiments.

2.2.5 Timer

A timer is a basic requirement for an embedded system in order to work properly. Specially for

real-time applications, a real-time clock (RTC) is mandatory to keep track of the time. In this work,

there is no need to keep track of the time, but a timer is needed to generate periodic interruptions

(1 ms) for the real-time operating system. In this way, it is possible to control the time that certain

tasks might take by counting the number of IRQs, although this task is hidden inside the kernel.

The timer used is described in Altera manual [21] and has 32-bit and 64-bit counters.

2.2.6 Mailbox

The Altera Mailbox is a hardware component that works as a FIFO, and lets the delivery of 32-bit

messages from one component to other. It contains mutexes to ensure that only one processor

modifies the mailbox contents at a time. It is used in conjunction with a separate shared memory,

which is used for storing the messages. It is also described in the Altera manual [21].

2.2 Hardware 15

Figure 2.6: Block diagram of a simple Nios II system with TCM showing the Avalon interfaces

2.2.7 Tightly Coupled Memory

Nios II permits to add up to 8 special ports in order to easily allocate direct links to the on-chip

memories, avoiding the normal rules of Avalon Switch Fabric. In this way, the bottleneck effect

and the signaling overhead is highly decreased and the speed is almost the same as if it was

accessing cache. However, it is not possible to use TCM as shared memory since only one master

port can be connected to each memory.

There are two different purposes, as shown in figure 2.6. One requires a dual-port on-chip

memory and only handles the instructions (or the .text segment of a typical program). The other

type is for data storage, or all the other program segments.

A single processor test system with the fastest available components is included to check

the performance at 50MHz clock speed according to the tutorial [22]. The connections between

components are depicted in the figure 2.7 and specifications are the following:

• CPU — Fast version of the soft-core Altera Nios II with tightly coupled master interfaces

for instructions and data;

• TCM for Data — Tightly Coupled Memory for data storage with 32 kbytes;

• TCM for Instructions — Tightly Coupled Memory for instructions storage with 64 kbytes;

• Interface — JTAG UART module that is the I/O interface connected to the USB Blaster for

debugging and data communication with the host computer;

• Timer — 1ms timer to generate the interruptions needed by Nios II;

• Shared Memory — On-chip memory with 16 kbytes.

In the table 2.2 there is a comparison of performance achieved by three different choices of

memory. Note that TCM are on-chip memories with a dedicated link. Those values are the result

16 FPGA based MPSoC

Stratix II FPGA

TCM

Data

TCM

Instr.

CPU 1

Data Instr.

On-Chip Memory SysIDPLL

SDRAM

Controller

JTAG UART

Performance

Counter

Timer

Jtag

Debug

Avalon Switch Fabric

Figure 2.7: Block diagram of a simple Nios II system

of writing and then reading a block of 320 32-bit words (i.e. 10,240 bits or 1.25 kbytes of raw

data). In this test, the times are already optimized due to the fact that the access to the memory

is sequential, without the need to give the bus access to another master or to repeat again the

start-up procedure to initiate communication. The Avalon Switch Fabric works better in this way;

otherwise, the times for the on-chip memory and for the SDRAM would have been worse. This

issue will be debated again with more depth in chapter 3.

Table 2.2: Comparison between the performance of three different types of available memory on
Stratix II FPGA

Time Clock Cycles
Tightly Coupled Memory 90.02 µs 4,501

On-Chip Memory 119.54 µs 5,977
On-Chip Memory (cached) 94.88 µs 4,744

SDRAM Memory 162.00 µs 8,100
SDRAM Memory (cached) 89.90 µs 4,495

The purpose of this performance test is to show that it is possible to use tightly coupled mem-

ories for the worker’s CPUs so they can achieve considerable better performance. Using this kind

of memory, the system works faster and simplifies the architecture because the bottleneck effect is

completely avoided since there is a direct connection to the CPU.

2.2.8 IRQ Mailbox Core

This hardware module is responsible to generate an interruption with the corresponding descrip-

tion and was designed by Hang Zhang in VHDL. It is very useful to synchronize a CPU, running

an operating system like µC/OS-II, with some event that occurred in some other component. It

is used to generate a truly random seed in the random generator; however, it might be used for

2.3 MPSoC Platform 17

Figure 2.8: Block diagram of the IRQ mailbox module

another applications like triggering tasks for a different processor. For instance, in a streaming ap-

plication where tasks are mapped on several different processors and there is a scheduler running

on another dedicated processor, this module allows the scheduler to know when some particular

job is done so it can trigger another job in the same processor.

Figure 2.8 shows the block diagram with the corresponding I/O ports required to work with

the Avalon Switch Fabric. Basically, it has four 32-bit registers and, when one of them is written

by software, the core generates an IRQ alerting the existence of a new message.

2.3 MPSoC Platform

In this section there is an overview of all different platforms built with the components previously

described in this chapter. The goal is to explore different approaches for the communication inside

MPSoCs, using the same interconnection interface.

2.3.1 Introduction

A typical MPSoC consists on multiple CPUs on a SoC, aiming to have a parallel application

to take full advantage of the hardware [23]. Traditional Symmetric Multiprocessing (SMP) is a

useful solution where the performance of a certain application is scaled up by adding more similar

processors. However, by having a heterogeneous system like for instance a CPU and a GPU inside

the same chip, new challenges arise and they require new methods to be designed in order to

greatly improve overall performance. As explained in [1], heterogeneity presents many problems

during their design. In this thesis some of those problems are minimized since that all the CPUs are

Nios II with similar instruction sets and the synchronization mechanisms are mutual. Furthermore,

all the custom hardware follows the Avalon Switch Fabric rules. However, the problems that still

remain are the following, but they will be discussed in the next chapter since they belong to a

higher level:

1. How is it possible to evaluate the load balance of the processors in a heterogeneous MPSoC.

There is also the challenge of application partitioning/mapping on independent processors

to ensure dependent services.

18 FPGA based MPSoC

Figure 2.9: Hardware architecture with 3 Nios II processors

2. Trade-offs between performance, power and real-time programming are very difficult to

achieve and its very application dependent.

2.3.2 Architecture

A simplified architecture of a MPSoC was already presented in the figure 2.5, where the arbitration

modules are needed if there is a concurrent access by two masters to a slave. Using the SOPC

Builder, the work of connecting all the modules is dramatically decreased since it allows to use

directly the interconnect fabric provided by Altera. In fact, the user does not need to be concerned

about the arbitration inside the fabric. During the generation of the system, the SOPC Builder

creates a description of all system in a hardware description language (HDL) that is later compiled

by Quartus. Thanks to these tools, it is possible to add as many processors and peripherals to a

system as desired. The design challenge in building multiprocessor systems now lies in writing

the software for those processors so they can operate efficiently together, thus avoiding conflicts.

The most used platform in our applications is depicted in the figure 2.9. It has 3 Nios II

processors, where two of them are the fastest version with tightly coupled memories for data and

instructions. The third one is a standard version that acts as both the scheduler and the interface to

the outside world.

The latter is connected to the SDRAM controller that communicates to the external SDRAM

chip, where it stores the data and instructions, and to the JTAG UART module, which in turn is

connected to the USB Blaster peripheral that is used to program the FPGA and to send the values

to the user console in the computer. All the processors have a JTAG port for debugging that allows

the IDE tools to run the code step-by-step and to set break-points.

All processors have a private performance counter and a timer connected to the corresponding

data master port, and they all have access to the on-chip memory (8 kbytes of size). There is also

2.3 MPSoC Platform 19

a global System ID module very useful to check if a compiled software belongs to the system it

was created for, and a Phase-Locked Loop (PLL) module that is a control system meant to keep

the phase of the clock always synchronized. In fact, it has a -3ps time shift in order to avoid some

problems related to the timing loss by the SDRAM controller.

These are the main modules used since other aspects were changed according to the target

application, specially the amount of space available on the memories used as TCM and the mail-

boxes. However, in the picture is shown the most used architecture during this thesis.

In the smaller square there is a simple worker that can be replicated as many times we want,

as long as there is enough logic (and on-chip memory) space inside the FPGA. For the first ap-

plication it had also the Interrupt Mailbox and a Mailbox connected to the CPU 3. For simplicity

it was shown only for CPU 2. The Interrupt Mailbox and the Mailbox needs to be connected to

the corresponding data master ports, since they can be seen by both processors. The interruptions

generated by the Interrupt Mailbox also uses the same interconnection fabric but is represented

with a dashed arrow to better explain the concept.

Table 2.3: Summary of FPGA utilization

Used Available Used(%)
ALUTs 8,402 48,352 17%

Dedicated Logic Registers 6,245 48,352 13%
Estimated ALMs 5,586 24,176 23%

Total LABs 828 3,022 27%
I/O Pins 67 492 14%

The table 2.3 shows the FPGA utilization of the platform. The area is reported in terms of

ALUTs and these statistics have been obtained by synthesizing the platform with Quartus 10.0

into Stratix II EP2S60. The first experiments were made with Quartus 7.2 which was, back then,

more stable and reliable before the release of 10.0. The overall logic utilization was only 23%,

hence we could perfectly add more components thus increasing the complexity according to the

application. The estimated number of adaptive logic modules (ALMs) and the number of total

logic array blocks (LABs) reflects partially or completely used units since that they are adaptive.

On the other hand, as said in the beginning of this chapter when we introduced the FPGA

board, a limitation is the amount of on-chip memory available. In fact, we could not use the two

M-RAM blocks available in order to avoid eventual problems. As shown in the table 2.4, the

most used memory block was the true dual-port M4Ks. Despite the fact that only 34% of the total

on-chip memory was used, in fact this value is 64% when not considering the M-RAM blocks.

Table 2.4: Memory Usage

Used Total Used(%)
Block Memory Bits 865,792 2,544,192 34%

M512s 6 329 2%
M4Ks 219 255 86%

20 FPGA based MPSoC

Figure 2.10: Architecture of the MPSoC with 4 CPUs

In chapter 4, in order to increase performance and have a totally on-chip processing, we added

one more processor that was used as the scheduler. This platform is depicted in figure 2.10 and

the mailboxes were removed. Thus, all the communication between processors were made using

FIFOs stored in the on-chip shared memory.

The summary of the FPGA utilization is in the table 2.5 and it is possible to see a bigger

occupation. The overall logic occupation has increased from 23% to 30%. The CPU 1 is now

responsible to give the start/stop order to the applications and to print out the results that have

been written on the shared memory by the other processors. Once again, the real amount of on-

chip memory used is 72% when not considering the M-RAM blocks.

Table 2.5: Summary of FPGA utilization for the 4-core MPSoC

Used Available Used(%)
ALUTs 10,508 48,352 22%

Dedicated Logic Registers 8,409 48,352 17%
Estimated ALMs 7,127 24,176 29%

Total LABs 1,064 3,022 35%
I/O Pins 67 492 14%

Total Block Memory Bits 985,152 2,544,192 39%

2.4 Software

In this section the software components used are exposed and debated.

2.4.1 Introduction

After having the hardware platforms explained, it is important to describe the middle and higher

levels parts (i.e. the hardware abstraction layer (HAL) and the software).

2.4 Software 21

In order to run the software on a specific system, an abstract layer that describes all the devices

is needed and it is very important since it allows, for instance, to run the same operating system

on different processors. Its function is to interact directly to the hardware instead of leaving that

tedious task to the programmer. Therefore, the HAL requires less processing time than application

programming interface. In Nios II systems, the HAL is a lightweight runtime environment that

provides a simple device driver interface for programs to connect to the underlying hardware. It is

integrated to the standard ANSI C library in a way that the user can use familiar C functions, such

as printf(), fopen(), fwrite(), etc.

A typical Nios II program is divided in several segments as shown in the table 2.6.

Table 2.6: Division of a typical Nios II program

.heap place where the fixed variables are
stored (i.e. declared variables, global
variables, static local variables, etc)

.stack place where the dynamic variables are
stored (i.e. local variables and function
parameters)

.bss non-initialized variables
.rodata read-only data
.rwdata read and write data

.text code segment

To learn and verify the available optimizations during the compilation, a simple program (the

one used as an example in the Altera’s tutorial about the tightly coupled memories, available

through [22]) was customized to fit in the test system exposed in the section 2.2.7, regarding the

usability of TCM in our applications.

Therefore, without the use of any function of stdio.h library, with best possible optimization

(-O3), and with the following flags enabled (“enable reduced device drivers” and “enable C small

library”), we have experienced a reduction of 62,5% for initialized data and 42% for program

size. The reason to not take into account the stdio.h library is because it will not be used during

the normal working mode since that there is no I/O needs, only pure raw calculations. It is obvious

that this reduction is completely application dependent. We just wanted to show what can be used

to optimize the compilation of the C programs into machine language.

Table 2.7: Optimization achieved in a simple piece of code, using the typical Gcc compiler opti-
mization directives

Program Size Initial Size of Data
Before 12KB 8KB

After 7KB 3KB

22 FPGA based MPSoC

2.4.2 µC/OS-II

This is a real-time operating system designed for embedded applications written by Jean J. Labrosse

and fully described in his book [24]. µC/OS-II is currently maintained by Micrium Inc. [25], and

can be used as a hard real-time RTOS where all the dead-lines and constraints must be respected,

otherwise it can result in fatalities. In fact, according to the book, in July of 2000, after extensive

tests, µC/OS-II was certified to be used in avionics of commercial aircraft by the Federal Aviation

Administration (FAA), which means that the software is both robust and safe. In this section there

will be only a brief review of its operation with a special focus on the functionalities used in this

thesis.

The main benefits of µC/OS-II is that it is simple to use, to implement and very effective. It

has been ported to more than 100 microprocessors and micro-controllers, including Nios II. Altera

allows an easy way to use it through their integrated development environment (IDE). It is a very

scalable, preemptive real-time, deterministic and multitasking kernel that can manage up to 56

user tasks. In fact, it can manage up to 64 tasks but the four highest and the four lowest priority

tasks are reserved for its own use. The lower the value of the priority, the higher the priority of the

task. This value is also used as the task identifier.

The scheduler uses a special type of Rate Monotonic Scheduling (RMS), where the tasks with

the highest rate of execution are given the highest priority. However, in this case the priorities are

given by the user, so the worst case execution time (WCET) must be known.

In RMS there are three basic assumptions:

• All tasks are periodic;

• They do not synchronize with one another, share resources, etc;

• Preemptive scheduling is used which means that runs the highest priority task that is ready.

Under these assumptions, let n be the number of tasks, Ei be the execution time of task i, and

Ti be the period of task i. Then, all deadlines will be met if the following inequality is satisfied:

∑Ei/Ti ≤ n
(

21/n−1
)
. (2.1)

This is not good for our applications because two or more tasks should have similar priori-

ties since we are trying to speed-up the system in order to analyse the synchronization and the

communication between tasks. However, when migrating the framework for a real-time scenario,

we need to ensure that the tasks only executes when we want. In the topology evaluated in the

next chapter, if both Source and Destination tasks are meant to run inside the same processor, it is

convenient that Source has higher priority, otherwise the Destination will never get the results. On

other words, in a chain of events, if the first one does not work, all the others will be stalled.

The biggest advantage of using this RTOS when we do not want in fact, the real-time capa-

bilities, is due to the fact that it is easier to process interruptions, and to verify the CPU usage

2.4 Software 23

Figure 2.11: Communication between two processors using a FIFO stored in the shared memory

rate. Furthermore, we pulled it to the limits in order to see how well it can handle inter-tasks

synchronization using semaphores, delays, priority switching when compared to a single task, that

can perfectly run without any operating system.

2.4.3 FIFO

The controlling mechanisms of the buffers used for inter-processor communication are made in

software, so they are not highly optimized for performance. However, they are simpler and can be

extended in a future work as hardware using custom instructions for example. All the values are

stored inside on-chip memory.

Many functions were made in order to allow non-blocking access to the shared memory, oth-

erwise it would dramatically decrease performance. To make this working, different approaches

were tried so when one processor is writing, the reader can not access to that memory slot. Due to

the slave-side arbitration of Avalon Switch Fabric, the problem of having two masters trying to ac-

cess the same memory location at same time is solved. However, we tried to improve performance

since read/write operations are relatively slow.

In the figure 2.11 is shown the way of how it is possible to use software to send values (i.e.

data tokens) to another processor. In the CPU 1 there is the Source task and in the CPU 2 the

Destination Task. The read and write operations are non-blocking which means that, if for some

reason they can not access, they will not be blocked waiting. That can occur if the sender tries

to write in a full buffer, if the receiver tries to read from an empty buffer, or even if during the

access to the FIFO another CPU is already taking control of the bus. In this last case, the Slave

24 FPGA based MPSoC

Side Arbitration of the Avalon Switch Fabric does not give access in order to avoid the corruption

of data.

That is why the processes need to keep checking to grant access since no static scheduling

policy is being used. The structure of the FIFO is circular and it has two pointers. The Head

points to the next value that is going to be read and the Tail points to the slot where a new value

will be written. A circular way to organize the slots inside memory has advantages since when the

pointers reach the limit of the reserved space, they jump back to the base address. This way the

code is simplified since both pointers increment in the same direction.

In order to make the distinction between the empty and full states, a slot is always kept open.

Therefore, the buffer depicted can use only 11 slots when in fact it has 12.

The FIFO is defined as a data structure. The type alt_u32 is a way to say to the compiler

that it is an unsigned 32-bit variable:

s t r u c t f i f o {

a l t _ u 3 2 s i z e ;

a l t _ u 3 2 ∗ b a s e A d d r e s s ;

a l t _ u 3 2 head ;

a l t _ u 3 2 t a i l ;

} ;

The write_fifo() copies the data to the current position of the tail and then increments the

pointer:

a l t _ u 3 2 w r i t e _ f i f o (s t r u c t f i f o ∗ f f , a l t _ u 3 2 d a t a) {

i f (i s F u l l _ f i f o (f f))

re turn 1 ;

e l s e {

∗ (f f−>b a s e A d d r e s s + f f−> t a i l) = d a t a ;

f f−> t a i l = (f f−> t a i l + 1) % f f−> s i z e ;

re turn 0 ;

}

}

The read_fifo() retrieves the value pointed by the head and then increments the pointer:

a l t _ u 3 2 r e a d _ f i f o (s t r u c t f i f o ∗ f f) {

a l t _ u 3 2 temp = ∗ (f f−>b a s e A d d r e s s + f f−>head) ;

f f−>head = (f f−>head + 1) % f f−> s i z e ;

re turn temp ;

}

2.4 Software 25

The following function is very useful to check the number of tokens inside the buffer:

a l t _ u 3 2 b a c k l o g S i z e _ f i f o (s t r u c t f i f o ∗ f f) {

a l t _ u 3 2 t a i l = f f−> t a i l , head = f f−>head ;

i f (t a i l >= head)

re turn (t a i l − head) ;

e l s e
re turn (f f−> s i z e + t a i l − head) ;

}

2.4.4 Pseudo-Random Generator

The software version to generate random values is based on a linear feedback shift register. The

original piece of code was taken from a white noise generator available in [26] as a SystemC

component.

SystemC is a way to have an event-driven simulation kernel in C++ and it is based in a set of

C++ classes and macros.

The code was customized for C, the shift-register is 16 bits wide and the generation of the first

value inside the shift-register based on the the value of the seed is:

i n i t i a l _ S R _ C o n t e n t () {

f o r (i =15; i >=0; i−−) {

i f (seed >=pow (2 . , (double) i)) {

s h i f t r e g [i] = 1 ;

seed −=(long i n t) pow (2 . , (double) i) ;

}

e l s e s h i f t r e g [i] = 0 ;

}

}

It is important that the first value is well chosen, otherwise it can not “stimulate” the feedback

and all the output values will be full of zeros or ones.

The linear feedback shift register was translated to Verilog in chapter 3 based on the following

C function:

26 FPGA based MPSoC

i n t my_rand () {

i n t i = 0 ;

i n t zw =0;

i f (s h i f t r e g [12]== s h i f t r e g [13]== s h i f t r e g [14]== s h i f t r e g [1 5])

zw =1;

e l s e zw =0; / / comput ing f e e d b a c k b i t ;

f o r (i =15; i >0 ; i−−) {

s h i f t r e g [i] = s h i f t r e g [i −1]; / / s h i f t i n g ;

}

s h i f t r e g [0] = zw ; / / w r i t i n g t h e f e e d b a c k b i t ;

f l o a t v a l = 0 . ;

f o r (i =0 ; i <7 ; i ++) { / / r e s u l t o n l y w i t h 7 b i t s ;

i f (s h i f t r e g [2∗ i])

v a l +=pow (2 . , (double) i) ; / / e x t r a c t i n g random number ;

}

re turn ((i n t) f l o o r (v a l)) ; / / ave rage around 63 a f t e r

} / / 1000 i t e r a t i o n s .

Where the code requires more time to finish is during the extraction of the random number. In

fact, it has to multiply 2 raised the number of the shift-register index that has a logical one in order

to transform a boolean array into a decimal value. The problem of this is that when there are more

logical ones inside the shift register, the time will also exponentially increase. The code included

here is already a big simplification, since in the original one, the shift register had 32 bits but it

was too slow when running on the Nios II.

Chapter 3

Generic MPSoC Application

In this chapter there is an overview of all different platforms built with the components described

earlier and using the MPSoC described in chapter 2. The goal is to explore different approaches

in the communication between heterogeneous components.

3.1 Introduction

In parallel computation there is the need to synchronize different tasks, either if they are execut-

ing inside the same processor in a multi-tasking environment, or if they are running on several

independent processors, where true parallelism can occur. Streaming applications running on a

multiprocessor system can be modeled in a graph that consists of an array of nodes, where in each

node is performed a task. If they are running on different processors, there is a pipelined com-

puting and performance can be increased resulting in a higher throughput. Between the nodes,

there are channels with FIFO buffers to cope with peaks of data being transmitted and they can be

also used for synchronization purposes. In this thesis data can be anything, hence the usage of an

abstract type called token. In fact, we are dealing with an abstract model of flow that can be ap-

plied to many different applications, as long as their algorithmic structures matches the data-flow

model.

To extend even more this sequential array, we have been inspired by the MapReduce frame-

work developed by Google as seen in figure 3.1. It has been applied on a large clusters of com-

puters in order to speedup a given task that requires the processing of a huge amount of data. It

is based on the functional mapping of smaller amounts of data into less powerful computers, and,

when they finish the work, the results are sent to another computer whose job is to concatenate all

the intermediate results into the final one.

When this idea is applied as a data-flow model into small embedded systems, it is possible to

parallelize some of the stages to improve the performance and better distribute the work among

the processors. The simplest case that has been followed throughout this thesis is the one depicted

27

28 Generic MPSoC Application

Map

Reduce
FIFO FIFO

FIFO
 FIFO

FIFO
 FIF

O

P P P
FIFO FIFO

i j k

Pi P
k

Pj,1

Pj,2

Pj,N

Figure 3.1: MapReduce framework translated to a data-flow model

in 3.2 with two workers. The task Source is responsible for the generation of tokens that are

distributed by two workers, and the task Destination receives the results and organizes them. The

goal is to analyze different approaches varying the size of the buffers, computational times and

using different platforms formed by heterogeneous components.

3.1.1 Basic Concepts

This chapter is divided in three topics, where all the experiments were made using the MPSoC

with 3 processors described in chapter 2. The workers are mapped on the two fast independent

processors, and the Source and Destination tasks are mapped onto the processor that saves both

data and instructions in the external SDRAM.

The first topic is based on the mapping stage of work among the processors, where a simple

application was built in order to test the hardware platform and perform the preliminary experi-

ments. The Mailbox + IRQ name arises from the fact that the scheduler fires the tasks by using the

Altera Mailbox and, when they finish, interruptions are generated back to the scheduler running

on the µC/OS-II so it can trigger new jobs.

The advantage of using the Mailbox is that Altera provides functions that enables a blocking

read, which means that the task is stalled waiting for the order. This can be a good thing to

reduce the power consumption while the system is idle. When the task finishes the current job,

it signals the scheduler by generating an IRQ through the IRQ Mailbox. Later, the mailbox core

was replaced by custom FIFOs in order to have a more flexible topology that can be extended

according to the needs, specially in a future work where the FIFOs are connected to an external

communication assistant.

Furthermore, we have included random times on the workers, with the purpose to verify if the

3.1 Introduction 29

FIFO1,2

n1,2

m1,2

FIFO
2,4

n
2,4

m
2,4

FIFO
1,3

n
1,3

m
1,3

FIFO3,4

n3,4

m3,4

Worker 1

Worker 2

Source Destination

Figure 3.2: Simplest case of the MPSoC generic data-flow application

synchronization was working properly and in order to seek the biggest overhead caused by bottle-

neck. Although we started to customize the test application to generate random numbers, we only

have used in a more flexible topology with only custom FIFOs between the processes. However,

since the time between sending a message and receiving an interruption is always different, this

can be used as a truly random seed to produce the first content inside the shift register used in the

pseudo-random number generator.

The second topic is the natural extension of the first topology using interruptions to alert the

scheduler that it can trigger a new job onto the specified worker. However, the Altera Mailbox was

replaced by the custom FIFO so we could have a more generic and flexible platform. Also, the

master CPU utilization rate was measured. Thus, it is possible to know if it can be used for other

tasks without affecting the mapping and the reducing stages of the test application.

The third topic is focused on having only custom FIFOs between tasks. Here, the Mailbox is

used again for the generation of the random seed, however the tasks only communicate via custom

FIFOs and the workers do not produce any interruptions when they finish the current task.

In order to measure the theoretical times achieved by having parallel computation, we just

need to add the reciprocals of each worker’s time and take the reciprocal of the sum, according to

the following equation:

EquivalentTime :
1

TEquivalent
=

1
t1
+

1
t2
+ ...+

1
tn
, (3.1)

where n is the number of workers that are running in parallel and t1, t2, ..., tn are the respective

times.

Hence, for two workers, n = 2, it is simplified to:

TEquivalent =
t1 · t2
t1 + t2

. (3.2)

30 Generic MPSoC Application

CPU 1

Nios II

Fast with

TCM

CPU 3

Nios II

Fast with

TCM

CPU 2

Nios II

Standard

RTOSWorker 1

M
ailbox

M
ailb

ox

FIFO
1,3

n
1,3

m
1,3

Worker 2

Source

Destination

FIFO3,4
 n3,4

m3,4

IRQ
IRQ

Figure 3.3: How the tasks are mapped onto 3 processors using the IRQ + Mailbox approach

This equation does not take into account the effect of the overhead caused by the communi-

cations and by the code that can not be parallelized, but it allows to discount the ideal time to the

achieved result in order to find the amount of existing overhead.

Finally, one problem that has grabbed our attention was related to the Nios II processors cache.

It was required to read data written by external modules and, in order to perform that, it was

required to bypass all the variables that were shared. The cache is used to temporary store the

most common data and it uses on-chip memory which is the fastest way to save data. It is a static

memory which means that there is no need for periodic “refresh” (i.e. recharging the capacitors

that holds the binary digits in SDRAM). In a two processor scenario where A and B perform read

and write operations in the same memory space, if A changes a shared variable, B will not “see”

because, according to his cache, it is the same as before. By doing a bypass of the cache, the

problem of having one value that in fact does not exist is solved but with a lower performance.

There are studies to use dynamic hybrid protocols to maintain the coherency among the caches of

different processors so when one processor changes something on the shared memory the others’

cache will not be corrupted [27]. However, this is beyond the scope of this thesis.

3.2 Mailbox + IRQ Synchronization

In this topology, described in the picture 3.3, the job information plus the synchronization are sent

in bulk to the workers, as a 32-bit message, using the Altera Mailbox module. When the job is

done, they generate an interruption back to the Source task and the results are sent through the

FIFOs to the Destination task. By using interruptions its easier to guarantee the availability of the

worker to produce more work without never completely use all the space of the Mailbox.

3.2 Mailbox + IRQ Synchronization 31

It is also possible to use this topology to make a more complex scheduler to fire the respective

tasks in the due times. The hardware platform is the one depicted in 2.9, with three processors,

in which the standard Nios II processor is simultaneously the simple dynamic scheduler and the

interface through the JTAG UART module connected to the computer to review the results.

One simple application was created to check the performance using the idea of Google’s

MapReduce, where one pair (key, value) is sent and, in the end, all data is concatenated to produce

the output result [12]. The goal is to retrieve in a text the number of occurrences of each letter

as fast as possible, using two workers. This can be extended to search files and folders using a

dedicated hardware module, even with more simple processors executing in parallel. Instead of

using software searching algorithms it is possible to have a hardware component with a simple

MPSoC designed to improve what is nowadays one of the major factor of performance limitation:

the access to the stored data on slow memories.

3.2.1 Test Application

In embedded systems with multiprocessors there is the need to have separate programs running on

each CPU, and all of them have different purposes, and uses different peripherals. The basic goal

of this application is to test the overall mode of operation in order to evaluate if it is a good ap-

proach to increase the throughput of a data-flow graph by dividing specific segments, and mapping

them onto different processors. Also, it is useful to test and learn the capabilities of the available

technology.

However, while building this topology we have made a little more than just trigger tasks, wait

some time and retrieve the results, such as the overheads of communication and the throughput.

In fact, it was also used to test a PRNG (pseudo-number random generator) since we took the

advantage of the fact that each processor is always executing a different instruction in the same

instant of time.

The workers’ job is only to count the number of occurrences of the letter received by the Altera

Mailbox in a predefined text saved on memory. When they finish, the result is written in the FIFO

so the master task can process a new letter. Also, they write a flag onto IRQ Mailbox module

alerting that a specific job is done. This module then generates an interruption on the Master CPU

so the Source task can trigger a new job on the available worker. This processor is running the

µC/OS-II to simplify the handling of the interruption.

At this point, it was evident that the speed of processing each letter was too fast when compared

to the mapping of the tasks, so a delay was introduced to mimic different workers speed. This

delay was obtained through a while cycle of 10,000 iterations for worker 1 and 15,000 iterations

for worker 2. The approximate time was in order of ms instead of µs, more precisely 3.23ms for

worker 1 and 4.45ms for worker 2. The results are exposed on table 3.1.

Despite of the simplicity of this experiment, it was vital since it proved that the synchronization

mechanism (both the IRQ and the buffers) was working properly and it was possible to know the

overhead associated to the flow of information between the processors. Also, it proved that using

multiprocessors in this kind of application increases performance as it was expected. Using both

32 Generic MPSoC Application

Table 3.1: Results of the counting letters’ application

Average Time per Letter Total Time Overhead
Worker 1 3.42ms 88.82ms 0.19ms
Worker 2 4.64ms 120.79ms 0.19ms

Both Workers 1.98ms 51.60ms 0.11ms

workers showed a time reduction of 42% when compared to having only worker 1 and 57.4%

with only worker 2. Furthermore, the overhead associated was about 0.19ms which is quite big if

the workers are faster than that. Our initial thoughts were that it was caused mainly by the real-

time operative system because it had to attend asynchronous interruptions. However, the RTOS

scheduler had a small effect since that only one important tasks was running and the background

ones almost were not called. Later we found that it was due to the slow accesses to the memory

by the processor connected to the SDRAM, but this will be more discussed ahead.

3.2.2 Workers Random Delay

After having a multiprocessor application working, a random delay mechanism was included to

see how the system handles different working times that in real non-deterministic systems exists.

The WCET was fixed so it can be later applied to a real-time application.

Without the random generator the values were around 274.84ms for 10ms per letter, when the

ideal value should closer to 260ms since there are 26 letters (26x10= 260ms). Thus, the remaining

14.84ms, or 0.57ms per letter, was the overhead caused by the firing mechanism and the retrieval

of the data through the FIFO.

Initially we used a software pseudo-random number generator (PRNG), described on the sec-

tion 2.4.4 as a SystemC module, to produce a sequence of pseudo-random numbers from 0 to 127

(7 bits). Thus, the time of the workers was varying within the range from 10 to 20 ms. The biggest

problem was that the multiplications required to generate a new value was too computational de-

manding. Furthermore, the time was completely unpredictable and never respecting the defined

WCET.

The 7-bit version was already a simplification from the original algorithm of 16-bit, where

initially the times obtained to reach the final letter, “Z”, were from 642ms to 894ms (or about

233% worst) using only one worker with a theoretical fixed delay of 10 ms. The random values

were generated in run-time every time a new task was fired, however they were not used since the

goal was only to verify how worst the addition of the software PRNG could be.

With the 7-bit version the values were better, from 282.40ms to 336.65ms, but still not enough.

The fact that the times are also random is not good for a real-time system except if the WCET is

known. For a 64-bit shift register used in the random generator, the worst case execution time

should be when all the values are binary 1 and there is the need to compute 20 +21 +22 + ...+263

to get the next random value. In software this proved to be too slow and that is why the need to

build a random generator in hardware appeared.

3.2 Mailbox + IRQ Synchronization 33

Figure 3.4: Sequence diagram explaining how the random seed is evaluated

However, before it was build, a way to overcome this flaw was to generate several pseudo-

random values before the actual computation and save them in a table to this way check if the

computation and synchronization was working. The times using a previously generated table were

again about the same as before, like in the situation when no random generator was used; between

274ms and 276ms.

As explained before, the linear feedback shift register method to evaluate a sequence of pseudo-

random values is pseudo due to the fact that it is deterministic. Knowing the seed, the method to

obtain the first value inside the shift register, and the logic function used in the feedback, it is pos-

sible to know all the other values. To be more random and less pseudo, a method was evaluated to

find a truly random seed.

Like is described in the figure 3.4, the seed is determined during the initialization of the pro-

gram, when all the processors are already active and running. The cycles needed between the

sending of a mailbox message asking for an interruption and the interruption are measured. The

14 LSB (less significant bits) of the number of cycles are always different so they can be used as a

random seed. In the table 3.2 is shown two measurements that were used to get new random seeds.

Table 3.2: Example values to find a truly random seed

No. of Cycles No. of Cycles in Binary Time Seed
First run 506,634 111 1011 1011 0000 1010 10.132 ms 15,114

Second run 506,671 111 1011 1011 0010 1111 10.133 ms 15,151

After the seed is determined, the function initial_SR_Content() is called to compute

the first content inside the shift register. The code is exposed in section 2.4.4 and, for the table

above, the first three values of the sequence of random values are 103, 32, 78 for the first seed and

111, 38, 94 for the second one.

34 Generic MPSoC Application

CPU 1

Nios II

Fast with

TCM

CPU 3

Nios II

Fast with

TCM

CPU 2

Nios II

Standard

RTOS

Task

Sync.

Worker 1

FIFO
1,2

n
1,2

m
1,2

FIFO2,4
 n2,4

m2,4

FIFO
1,3

n
1,3

m
1,3

Worker 2

Source

Destination

FIFO3,4
 n3,4

m3,4

IRQ
IRQ

Figure 3.5: How the tasks are mapped onto 3 processors using the FIFO + IRQ synchronization

As said before, this is the result of having Nios II processors executing different instructions

in a particular instant of time. It is also a direct consequence of the fact that all the components of

this MPSoC are different (and processors start in a different instant of time). This is a special case

of a mailbox plus interruption where the latency of the synchronization has been used.

3.3 FIFO + IRQ Synchronization

This section is a short extension of the previous one, regarding the synchronization using the

Altera Mailbox, and interruptions that signals the conclusion of the task assigned to the respective

worker.

The Altera Mailbox was replaced by the custom FIFO in order to have a more generic platform

that was extended. A dummy application was made to check the rate of the master processor

running the µC/OS-II operating system in the same conditions as before.

In order to evaluate the CPU utilization rate, only one task inside the operating system is cre-

ated during the initialization of the operating system, void TaskStart(void* pdata). In

the beginning of its execution, the function OSStatInit() is called, and only after, the remain-

ing tasks are created. This function is used to start the statistics task and define all the needed

global variables. Every second this task runs in order to update the global variables used to check

the current CPU usage, based on the amount of ticks that happened while the Idle task was running.

In the following table the results for a generic application are exposed, where the workers only

have a fixed delay and, when they finish, the corresponding interruption is sent to the master CPU.

It is obvious that, when the theoretical time, given by the equation 3.2, is smaller, the master

needs to execute more often, so the processor will have a bigger utilization rate. It was also

interesting to verify that, under the same conditions than the experiment made using Mailbox

3.4 FIFO Synchronization 35

Table 3.3: Results of the generic application using FIFO+IRQ synchronization

Worker 1 Worker 2 Result Theoretical Overhead Master
Result CPU Usage

1.11ms 20.13ms 1.18ms 1.05ms 0.12ms 19%
3.23ms 4.45ms 1.94ms 1.87ms 0.07ms 12%

10.07ms 100.42ms 9.26ms 9.15ms 0.11ms 5%

(where Worker 1 and Worker 2 had a fixed delay of 3.23 ms and 4.45 ms), the overhead was

smaller using the custom FIFO.

Table 3.4: Comparison of times between using Altera Mailbox and Custom FIFOs

Altera Mailbox Custom FIFO
Time to Process 26 Tokens 51.60ms 50.44ms

Average Time per Token 1.98ms 1.94ms
Theoretical Time per Token 1.87ms 1.87ms

Overhead 0.11ms 0.07ms

3.4 FIFO Synchronization

The synchronization between tasks is one important aspect of parallel computation. They can

be inside the same processor where the need of some kind of scheduling policy is mandatory

to achieve a good quasi-parallel computation, or outside using different processors or dedicated

hardware modules. In the case of having heterogeneous components it is even more critical since

the way of handling information is variable according to the component, hence the need of having

a reliable mechanism to synchronize everything.

In this topic we focus the attention to the synchronization through buffers of the type first-in-

first-out and we start again from the graph depicted in 3.2. The workers nodes are “dummy” in

the sense that they are not doing anything useful. They only call the following C function to burn

some time:

void w a i t _ t i m e (i n t n u m b e r _ o f _ i t e r a t i o n s)

{

whi le (n u m b e r _ o f _ i t e r a t i o n s > 0)

n u m b e r _ o f _ i t e r a t i o n s −−;

}

As said before, one of the major drawback of this thesis was due to the usage of SDRAM that

has limited the theoretical high performance of the FIFOs stored in on-chip memory. The times

to access them were worse than expected, hence the need to add a bigger dummy delay on the

workers in order to mimic a more demanding computational time.

36 Generic MPSoC Application

CPU 1

Nios II

Fast with

TCM

CPU 3

Nios II

Fast with

TCM

CPU 2

Nios II

Standard

RTOS

Task

Sync.

Worker 1

FIFO
1,2

n
1,2

m
1,2

FIFO2,4
 n2,4

m2,4

FIFO
1,3

n
1,3

m
1,3

Worker 2

Source

Destination

FIFO3,4
 n3,4

m3,4

Figure 3.6: How the tasks are mapped onto 3 processors

One of the biggest challenges was to find a better way to synchronize the tasks on µC/OS-II.

It was due to the fact that this RTOS is preemptive and all the tasks have different fixed priorities,

which arises the problem of how to give the same priority to both Source and Destination task.

Also, no interruption mechanism was used so all the processors were now working at full speed.

Despite that this topology is intended to be used in real-time applications, where usually the

processing do not need to be the fastest possible as long as the deadlines and constraints are

satisfied, by speeding up to the limits of the hardware it is possible to analyze and measure with

more quality all the communication paths between tasks inside the operative system, and outside

in different processors or peripherals.

Several tests were performed to find the best way. The mapping of the tasks to the proces-

sors was the one depicted in 3.6 where the CPU 2 is simultaneously the interface to the computer

through JTAG UART module and it is responsible to generate and distribute the tokens (map-

ping/scheduling) in the Source task and to process the results (reduce) in the Destination task.

For a simple round-robin scheduling, one task is enough and it is the fastest way to guaran-

tee the best time. It works by checking in a cyclic way the 4 abstract slots where each one of

them represents the access to one of the 4 available buffers, like as if it was TDM (time-division

multiplexing). The flow is depicted in the figure 3.7.

However, despite this is the simplest and fastest way to synchronize the system, if there are

more parallel workers, the overhead will proportionally increase. Therefore, besides the dynamic

scheduler introduced in the previous section that uses IRQs, different approaches were taken into

account, and they share the following concepts: two independent RTOS tasks, one regarding the

mapping of the tokens into the workers (Source Task) and another to collect all data produced

by them (Destination Task). As previously said, this arises the problem that the priorities should

be equal but this operative system does not allow that, so there is the need to manually force the

3.4 FIFO Synchronization 37

Figure 3.7: Flow diagram of the scheduler

RTOS to switch task as shown in the flow diagram 3.8. The Mapping Task has more priority than

the Reduce Task since it has to run first to allow the workers to execute.

Three ways were tested; one using semaphores to pend the higher priority task letting this way

the other with lower priority to run, another using the RTOS delay when the higher priority task

finishes his current computation and needs to wait for more work, and finally, the third way was,

during runtime, to manually switch the priorities forcing the RTOS scheduler to preempt to the

lower priority task. This way it is possible to see the overhead generated by the context switching

of the µC/OS-II.

Looking to the chart of figure 3.9 it is possible to see the different types and respective times

of synchronization between tasks running inside the RTOS. The workers had random delays gen-

erated before the experiment took place, with a truly random seed, and the time frame is within

the range from 10ms to 20ms. The bottom boundary was set by decrementing the value 20720

toward zero using a while loop and, for the upper boundary, the value was set to 41360. These

values were discovered by a trial and error method by measuring the loop with the performance

counter. Thus, since we have used the 7-bit software PRNG that generates numbers up to 127, the

expression used to mimic a pseudo-random delay was Var = 20720+ rand ·162, where Var is the

amount that is decreased toward zero using the while loop, and rand is the random value.

Since only 100 tokens were processed each time and we have made a lot of runnings, it was

possible to know the most probable range by dividing the sum of all the random values by 100.

Also, during all the experiments the buffers’ size was fixed to 5 slots, except when using a µC/OS-

38 Generic MPSoC Application

Figure 3.8: Flow diagram of the OS scheduler

II delay, OSTimeDly(), where we have increased the size to 20 slots. This function allows the

calling task to delay itself for a user-specified number of periodic interrupts from the timer that is

set to 1 ms.

The experimental results showed that if the buffers are too small, using delay to force task

switching might increase the times due to the buffers overflow. Also, to change priorities in run-

time obliges the operative system to execute a lot portion of background code for the context

switching, resulting on a penalty of the overall performance.

Due to the fact that this requires a permanent check to see if work is available (i.e. if the buffers

have space or have data to be processed), the control processor is always working at his full speed

and this is not good for the energy consumption. In the ideal system it should be stalled most of

the time to save power and only turned on to process or fire a new task. However, that requires an

independent hardware module whose job is to check the current status of the FIFOs.

Therefore, we needed to have hardware buffers instead of software controlled ones, with the

capability of generating interruptions. µC/OS-II have always a background task, called Idle Task,

that reduces power due to the lower switching rate of the transistors - the main source of energy

consumption in digital circuits. This task can even switch off the processor in battery operated

devices. When this “supervision” feature of the buffers detects a new job to be handled, it could

generate an IRQ in the operative system, thus resuming activity.

These experiments were possible because the computation time of the workers was bigger

when compared to the control tasks. However, a huge overhead was detected and we had to

find its origin. The delays on the workers were removed so they could work as fast as possible

and the overall performance was measured. Both workers now only took 9.35µs to process one

token and 1000 tokens were sent to them. This experiment took 288.64ms or 288.64µs per token

3.4 FIFO Synchronization 39

Figure 3.9: Chart with temporal results of 100 tokens processed by RTOS

which proved that the overhead due to the synchronization and communication was approximately

279.25µs.

Some reasons that could explain this issues are the following: the operative system and the

fabric overhead were bigger than thought or, the most plausible one, the usage of the SDRAM by

the control processor was not a wise choice since it is not fast. Furthermore, it is working at half

of its recommended speed because it has to be synchronized with the clock of the processor. On

the other hand, the on-chip memory used for data storage of the buffers is very fast (latency of 1

clock cycle to read), but the amount available on the FPGA chip requires a previous ponderation

regarding its usage. However, in order to have a bottleneck effect on the fabric, a huge amount of

data needs to be exchanged between the processors and peripherals. In fact, we could not notice

any overhead caused by bottleneck during our experiments, possibly because we used too few

masters competing for the access to the shared peripherals.

The single task version using operative system has been compared to a similar one without

and, under the same conditions, the times were similar. In some cases, the RTOS version could be

slightly faster.

Table 3.5: Performance of the on-chip memory FIFO buffers

Nios II Fast + TCM Nios II Standard + SDRAM
Time (µs) Clock Cycles Time (µs) Clock Cycles

write_fifo() 3.42 171 15.00 750
write_fifoN() (N = 2) 9.88 494 45.04 2,252
write_fifoN() (N = 4) 16.90 845 72.76 3,638

read_fifo() 1.98 99 8.38 419
read_fifoN() (N = 2) 6.98 349 27.94 1,397
read_fifoN() (N = 4) 11.26 563 41.98 2,099
backlogSize_fifo() 1.24 62 4.90 245

40 Generic MPSoC Application

Source Ordering

Worker1

Worker2

FIFO1,2

n1,2

m1,2

Destination

FIFO
2,4

n
2,4

m
2,4

FIFO
1,3

n
1,3

m
1,3

FIFO3,4

n3,4

m3,4

FIFO4,5
n4,5 m4,5

Figure 3.10: Ordering FIFO model

In the table 3.5, the measurements of the buffer accesses for the Nios II Fast with coupled

memories and for the standard version using external SDRAM are presented. N means the num-

ber of tokens that are sent (or received) each time. The two functions, write_fifoN() and

read_fifoN() have thread safe mechanisms in order to guarantee that no other processor ac-

cesses to the buffer while they are reading or writing. Both processors access to a shared on-chip

memory but the tests were made separately to avoid any kind of bottleneck that could might occur.

However, the performance differences between the two processors are quite significant. In fact,

the time to assign a simple value to a variable (32-bit unsigned integer) only takes 5 clock cycles

when using tightly coupled memories in contrast to the 18 clock cycles required by the Standard

Nios II using the external SDRAM.

Later on chapter 4 we test ways to improve the performance using sequential accesses by

sending a lot more tokens each time, and we also use a third Nios II processor with TCM to avoid

the limitations of the available SDRAM.

3.4.1 Ordered FIFO

One problem that might happen in parallel computation is when there is the need of having some

kind of order on the output. In the previous topics, the results of the workers depends only on

the instant when they finish and they are not dependent among themselves. However, in many

applications, like for instance in a NoC, the packets might travel through different paths to avoid

bottleneck and there is the need to re-organize them in the destiny.

In this section, the goal was not to build a MIFO (multiple-input-first-output), but a way to re-

trieve and process indexes and, when they are not sequential, wait for the next one of the sequence.

In the figure 3.10 there is a schematic of the flow between tasks.

To be a real self-ordering FIFO, the values inside must be organized by some process, like

the one used in windowed FIFO [6]. In this type of FIFO the producer or the consumer needs to

acquire a window before write or read operations. During this time the values inside can be freely

modified or ignored. When the operations are done there is a commitment; a consume in case of

3.4 FIFO Synchronization 41

reading or a release in case of writing, and the consumer can, only now, remove the values or the

producer can write more data in the buffer.

Like was said before, the overhead associated to the FIFOs accesses is quite evident so, if

we had modified the software routines to implement a MIFO, the results would probably be even

worse and useless. The only purpose would be to see if it is working to then build onto hardware

as an IP core or even as a Nios II custom instruction. However, in this case, all the FIFOs have

already the indexes positively organized so there is no need to internally re-organize data. The

goal is make the Destination task to receive the indexes sequentially, even when the workers run

at different speeds. For that, the Ordering task just needs to analyze the current index and, if it is

the expected one, just moves it to the FIFO4,5. This way the Destination task will have always

the indexes already ordered.

Table 3.6: Results for 1000 tokens processed with different buffer sizes and different times per-
formed on the model described in figure 3.10

Test Workers FIFO2,4 FIFO3,4 FIFO4,5 Average Time Theoretical Total
Time (ms) Size Size Size per Token (ms) Time (ms) Time (ms)

#1 5 –. 10 6 6 9 3.36 3.33 3,355.57
#2 5 5 6 6 9 2.51 2.50 2,514.41
#3 1 10 6 6 9 2.86 0.91 2,865.99
#4 1 10 12 2 9 2.01 0.91 2,008.40
#5 1 10 12 2 1 2.01 0.91 2,008.19
#6 1 10 20 20 9 1.45 0.91 1,449.27
#7 1 10 20 20 1 1.45 0.91 1,449.27
#8 1 10 40 40 4 0.97 0.91 968.17
#9 1 10 50 50 4 0.97 0.91 968.09

In the table 3.6 is shown the results by varying the buffers size, and the average time of the

workers. We have concluded that FIFO4,5 has a little effect on the overall times but the size of the

buffers is very important when workers run at different speeds.

To optimize the overall performance it is possible to iteratively change the size of each FIFO

while measuring the global times. While the difference between two loops is bigger than a given

value, its approaching for the optimal buffer size. Otherwise, if a given threshold is not specified,

the buffers will not have boundaries.

For two workers, it is curious to see that when the times of the workers are similar, the buffers

do not need to be very big. When is the opposite happens, and workers have considerable different

speeds among themselves, then the size of the buffer that is connected to the faster worker, needs

to be at least three times bigger than the number of times that the fastest task can execute during

one execution of the slowest one.

42 Generic MPSoC Application

3.5 Concluding Remarks

In this chapter we have presented a topology based on the framework used by Google, MapReduce,

which has a very useful mechanism to handle an huge amount of data in a shorter time. It is based

in the splitting of data on several independent computers during the mapping phase, and when

they finish the processing, the results are joined together during the reducing phase. We used

this general notion in a typical pipelined synchronous data-flow to parallelize one particular stage,

trying this way to reduce the WCET.

However, in our first experiments, we did not send the data to be processed through the buffers.

Instead, we only send the order (as a 32-bit message) since the data was already inside the workers.

This way the overall picture was simplified since our research was about the synchronization and

communication mechanisms between tasks and not about the real computation. If one certain

application can be depicted as a data-flow model, then it is possible to map it on a MPSoC platform.

We presented a synchronization policy based on the sending of a message to the workers and,

when they finish the tasks, they produce an interruption to the mapping task and the results are

sent, through buffers, to the reduce task. The mapping phase can be used as a firing mechanism

of a centralized scheduler (mapped on a different processor) since it has a low overhead. Also, the

Mailbox and IRQ scheme was used to evaluate a truly random seed that can be used to fill the first

content of the shift register used in a random generator.

We also addressed to the problem of synchronization and communication of tasks in differ-

ent processors using only FIFOs and between tasks inside the same processor using a real-time

operative system, although we have skipped the real-time semantics and focused on the function-

ality and performance instead. However, this can be later extended for real-time applications since

the timings and mechanisms between tasks are described. If the application can be modeled as a

graph, where each node has a processing component, it is easier to transcribe it to the hardware.

Furthermore, if the WCET of each node is known, a good scheduling policy can be applied in

order to respect the real-time constraints and requirements, while at same time it allows to reduce

the cost of the system.

Chapter 4

Monte Carlo π Generator

In chapter 3 there is an explanation of how the synchronization is performed between several tasks,

running or not in different processors. In this chapter a case study with a Monte Carlo application

is discussed using the same methodology, also with the goal to test the pseudo-random generator

built as Nios II custom instruction.

4.1 Introduction

The goal is to show the speed-up of parallel computing on MPSoCs when compared to a single

core SoC. Monte Carlo π generator is not intended to find the best possible value of this universal

mathematical constant. In fact, it is useful to test the “randomness” of a given random generator to

see if it is good enough so it can be later used in multiple different devices. Also, this experiment

suits the purpose to test and evaluate the platform exposed in the previous chapter.

“Anyone who considers arithmetical methods of producing random digits is, of course,

in a state of sin.”, John von Neumann1 [28]

This chapter starts with an explanation about the Monte Carlo method, followed by the de-

scription of the pseudo-random generator used to test the method and the synchronization between

tasks. Next, one simple way to compute π is described with the respective results.

4.1.1 Monte Carlo Method

This method describes a large and widely-used class of approaches of computational algorithms

that rely on repeated random sampling to compute their results. They are specially useful in

simulations of systems with a large number of coupled degrees of freedom, such as fluids, for

instance. Thus, they are used when it is unfeasible or impossible to compute an exact result with

1John von Neumann was one of the most brilliant mathematicians from 20th century. He is mentioned here due to
his contribution for Monte Carlo method during his work on hydrogen bomb.

43

44 Monte Carlo π Generator

a deterministic algorithm [29]. The term “Monte Carlo” appeared during 1940’s by the physicists

working on nuclear weapon projects in the Los Alamos National Laboratory because they needed

a method to test the radiation shielding and the distance that neutrons would likely travel through

various materials. Despite they had most of the data, the analytic tests were not enough, so they

modelled the problem using chance. Because those experiments were secret, they had to coin the

research as “Monte Carlo” in a reference of Monte Carlo Casino in Monaco [30].

However, there is no single method but a relative common pattern followed by most of the

applications:

1. Definition of the domain of possible inputs;

2. Generation of inputs randomly from the domain using a certain specified probability distri-

bution;

3. Perform a deterministic computation using the inputs;

4. Aggregate the results of the individual computations into the final result.

There are several applications using this method. Most of them share the fact that they need

chance to reach valid and non-deterministic results. In engineering, Monte Carlo methods are used

for sensitivity analysis and quantitative probabilistic analysis because typical process simulations

are interactive, and show a non-linear behaviour. They are also widely used in physical sciences,

design and visuals, finance and business, telecommunications and games. Also in mathematics

they play a key role on solving several problems like integration and optimization.

The application that was used to test the communications between tasks follows this pattern,

and it will be explained in the following section.

4.1.2 Pseudo-Random Generator

In chapter 3, a pseudo-random generator was used to change the time of each worker in order to

see the functionality of the synchronization by buffers when only the WCET is known. A table

with 1000 results was generated before the actual computation because the software version of the

linear feedback shift register was too slow, even with the software improvements made to speed-up

the generation of new random values.

The Monte Carlo method is precisely based on the generation of a lot of random values to

perform several kinds of different simulations, so the need to build in hardware was evident. Fur-

thermore, the initial 7-bit software version could only deliver up to 127 values, which is a too short

range to be used in the application that we recreate to test the multiprocessor platform.

In the figure 4.1(a) there is the original Karnaugh map used on the software pseudo-random

generator with the logic function F = Ā.B̄.C̄.D̄ + A.B.C̄.D̄ + Ā.B.C̄.D + A.B̄.C̄.D + Ā.B̄.C.D +

A.B.C.D+ Ā.B.C.D̄+A.B̄.C.D̄.

The probability of having a logical 1 or 0 is 50% since they are equality distributed in the

truth table. However, the direct translation to hardware would require eight 4-input AND gates

4.1 Introduction 45

1 0 1 0

0 1

0 11 0

01

1 0 10

A

D

B

C

(a) Software version

1 0 0 1

1 1

1 10 0

00

1 1 00

(b) Hardware version

Figure 4.1: Simplification of Karnaugh map to reduce the amount of logic gates

and one 8-input OR gate which means a lot of logic gates. The propagation delay and the size

required makes it a bad choice, so the truth table was reorganized to have the same probability

but with only two groups of bits, as seen in 4.1(b). This way the logic function is smaller while

maintaining the probability. The logic function is now F = B.D+ B̄.D̄ and the gates used can be

seen in the figure 4.2.

The first hardware version produced only 8-bit values, and the shift register was only 16-bit

wide. However, all the connections to the Nios II were tested and it has been proved that the

custom instructions feature is really useful. It was written in Verilog and in the section 2.2.2 is

described the way how the signals are defined.

It only requires two clock cycles to drive a new result to the output port and all the multiplica-

tions needed by the software version are this way avoided. The speed-up was enormous as seen in

the table 4.1.

Table 4.1: Performance comparison between the custom instruction and the software pseudo-
random number generators for 10,000 values

Total Time Time per Value
Software 7-bit PRNG 58,553.98ms 5.85ms

Hardware 8-bit PRNG 32.09ms 3.21µs
Hardware 32-bit PRNG 30.41ms 3.04µs

After the 8-bit version was completed, the width of both shift register and the output value was

increased to 64-bit and 32-bit, respectively. The 32-bit version is even faster because all the port

width is used and there is no need to perform extra shifting operations to reduce the size to 8-bit.

This hardware module is used as a random generator of Cartesian points in order to easily

evaluate the value of π through the Monte Carlo method described before. It is also useful to test

the quality of the pseudo-random generator where the probability of hitting a certain value should

be about the same within all range.

46 Monte Carlo π Generator

1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1

11011011

Next Value

Shift Register

= 219

015

A B C D

Figure 4.2: Logical implementation of a Linear Feedback Shift Register

4.2 Software Application

This is a simple embarrassingly parallel application that was initially computationally intensive

with minimal communication between processors, and with a minimal I/O operations. Later the

communication was increased by using a centralized random generator in order to extend the

content introduced in chapter 3. The idea is to know the area of the circle and the square by using

random shots inside them, in order to calculate π as seen in figure 4.3, and to further analyse the

synchronization. The equations to evaluate the constant are shown below and the only important

constraint is regarding the radius of the circle that has to be twice the width of the square.

The flow of the program is the following and it is possible to see how close it is of the “typical”

Monte Carlo method:

1. Inscribe a circle in the square;

2. Randomly generate points in the square;

3. Determine the number of points in the square that are also in the circle;

4. Divide the number of points in the circle by the number of points in the square;

5. The constant π is approximately four times that value.

If the random generator have good properties, and the probability to hit certain number is about

the same for them all, the more points generated leads to a better approximation.

CircleArea : Ac = πr2 (4.1)

SquareArea : Asq = (2r)2, (4.2)

= 4r2. (4.3)

4.2 Software Application 47

r

2r

III

III IV

y

x

Figure 4.3: How are the random numbers used to evaluate π .

Pi :
Ac

Asq
=

πr2

4r2 , (4.4)

=
π

4
⇔ (4.5)

⇔ π = 4 · Ac

Asq
. (4.6)

It was built in the platform presented in chapter 2 and, because of the fact that the workers tasks

were faster than the scheduler, it was required to add one more fast Nios II soft-core processor

with TCM in order to get more results. However, the first results were taken using a 3 processors

platform, where the two fast Nios II with TCM are used as workers, and the third one is both the

interface and the scheduler.

The first application was intended to find the best possible performance, using the available

resources, in order to have a better insight of how the communications between processors might

decrease the benefits of using parallel processors when not well designed. This way, our purpose

was trying to reach this value with more communication between tasks so we could find better

ways to reduce the overhead caused by the shared memory.

Both workers received the custom instruction module responsible to generate random values

in order to have a distributed random numbers generation. The master processor needed only to

send through the buffers the number of points that the workers should process each time. This way

the communications are kept to the minimum and the speed is the highest possible. The buffers

size is only four slots and they are always full. However, the master core has to wait either way

so, even when the buffer was bigger, the difference is not significant. For the case where worker 1

process 1,000 pairs each time and worker 2 process 10,000 pairs, 10 million pairs where processed

in 12.69 seconds which means that each pair took about 1.27µs and π was 3.141498. For 50K

pairs, the most typical amount used and, from now on, the reference value, the time was 63.50ms

with the following result: 3.145584.

48 Monte Carlo π Generator

Using a centralized way to generate and distribute the random Cartesian points the perfor-

mance is worst due to the higher communication between processors but, on the other hand, sev-

eral new tests can be made to evaluate better ways to optimize communication, one of the goals of

this thesis.

Table 4.2: Estimation of π after N iterations

No. of Iterations π Estimation Error
50K 3.08088 1.93%

100K 3.10064 1.30%
150K 3.11795 0.75%
200K 3.12838 0.42%
250K 3.13318 0.06%
500K 3.14134 0.01%

1000K 3.13966 0.06%
2000K 3.14278 0.04%
100M 3.14159 < 0.001%

Initially, two sequential versions were made using only one processor to see if everything was

working properly since there is the need to process 64-bit variables using a 32-bit RISC soft-

processor. No operative system was used at this point, it was purely raw computation. In the

first version, the size of the square was one and, when divided by 231 (or 2,147,483,648) small

segments, it has required the use of double precision floating point operations, which consumes

much more time and they are performed in software. The second one, which was later evaluated to

work in parallel, only uses integers. This way the computation is faster using the same hardware.

Thus, the size of the square is now 231 and the 32-bit random values are shifted one bit to became

directly usable. This way there is no need to perform the division, hence resulting in a significant

performance improvement.

Table 4.3: Timing results for the sequential versions for 50K Cartesian points

Size of the Square Time per Point Total Time
1 625.35µs 31,267.65ms

231 12.34µs 617.05ms

For both version the results for the π are the same since the seed was not modified; {32’d43608;

32’d43608} 2. In the table 4.2, the values for different number of iterations are presented. It is

important to note that the accuracy depends on the “randomness” of the generator, hence the fact

that sometimes with more points the result has more error. In the table 4.3, the timing results are

exposed for these two sequential versions. It is evident the speed improvement to perform exactly

the same computation when the double precision operations can be avoided.

2This is the HDL (hardware description language) way to represent a concatenation of two 32-bit values. {A;B} is
the concatenation of A with B, the 32’ means that the value is 32-bit wide and the d is for the compiler to know that the
value is written as decimal.

4.2 Software Application 49

Also, these two centralized versions did not required the usage of buffers and the best one was

10 times slower than the fastest possible version discussed before. This was due to the fact that it

was not parallel and, besides, it was running on the slowest processor that uses SDRAM to store

information.

Next, the parallel version using the method with less division operations is addressed. It uses

the flow depicted on the figure 3.2 in the previous chapter, where the abstract tokens were replaced

by the coordinates of the points and the results, if the hit was inside or outside the circle.

For 50K points, where 25K was sent to worker 1 and 25K to worker 2, the total time was

4.21s, or 84.17µs/pair, which is almost 8 times worst than the sequential version without buffers.

Once again, it was patent the overhead due to the access to the shared memory. The goal was now

to decrease this value toward the “optimal”, and impossible to reach, 1.27µs/pair with a clock

frequency of 50MHz. With the compiling directive “-O3” that can be used to optimize the speed

and the size of the program, the performance was slightly better: 81.11µs/point.

The next step was to optimize the code to reduce the number of accesses to the shared memory.

The result is depicted in the subsection 2.4.3, regarding the software FIFOs. Also, semaphores

were used to switch tasks inside the operative system in order to distribute and process the work

among the workers, as described on chapter 3. The overhead was still evident but we experienced

a improvement of about 37%. Now, with exactly same conditions and same hardware, it took

51.09µs to process each pair of coordinates.

At this point, the question of why does the sequential version running on a slower processor

was way faster than the parallel version still continues. Most of the processing was performed on

faster processors with coupled memories. To answer that, a test was made by adding the external

buffers to the sequential version. This way it was possible to avoid any bottleneck effect. In fact,

a lot of traffic on the bus is produced by the workers running on the fast processors, since they are

always trying to access to the buffers. The results are presented in the table 4.4.

Table 4.4: Timing results for several versions after generating 50K Cartesian points

Version Time per Point Total Time

Single Core
Manually Optimized 3 12.34µs 616.98ms

With Buffers 79.19µs 3,959.82ms

MPSoC
Using 1 Independent Worker 64.25µs 3,212.47ms

Using 2 Independent Workers 51.09µs 2,554.97ms

It is possible to see that the overhead associated to the addition of the external FIFOs is

67µs/point for the standard Nios II with SDRAM. The tests to verify the current status of the

FIFOs (if they have free space or tokens to be consumed) takes in average 24µs. The idea was to

keep checking without being so intrusive but, without an interruption generated by the buffer or by

the workers, it is not possible. However, it has proved that the non sequential access to the Avalon

3The sequential manually optimized version does not use any FIFOs to temporary store values, hence the bigger
performance. The version with buffers is the one that is meant to be compared to the parallel ones.

50 Monte Carlo π Generator

0

20

40

60

80

100

120
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Parallel

Sequential

No. of pairs
each time (N)

time (s)

N=1

N=150.8

106.7

Figure 4.4: Performance improvement by sending N pairs of coordinates each time

Switch Fabric decreases the performance, specially when using the standard version of Nios II

with SDRAM as its storage place for data and instructions.

By default, SOPC Builder builds a partial crossbar fabric that connects master and slave com-

ponents. This is ideal for ASIC or FPGA structures due to the fact that it requires fewer resources

and allows parallelization. This way the biggest disadvantages of having only a bus or a full

crossbar switch architecture are avoided. The bus topology can achieve relatively high clock fre-

quencies at the expense of little or no concurrency. In fact, a shared bus architecture can lead to

a significant performance penalty in systems with many bus masters because all masters compete

for the access to the shared bus rather than a particular slave device. On the other hand, in the

full crossbar switch fabric, it is possible to have multiple concurrent transactions. Furthermore, it

is flexible and provide high throughput over a higher hardware cost as it grows exponentially as

more masters and slaves are added [20].

The partial crossbar fabric is automatically generated by SOPC Builder during the generation

of the system’s description. It has the advantages of both the bus and full crossbar topologies.

Furthermore, since the streaming interface was not used because it did not fit in our goals, the

times when accessing to the external memory proved to be too slow and have limited the use of

this approach.

One way to overcome this problem is to send more data each time to the workers in order to

force a more sequential access. Therefore, instead of sending only one (x, y) random pair to the

worker, the size of the FIFOs was increased to store more values. We have noticed that the overall

time was decreasing as more pairs were sent each time as seen in the figure 4.4. The parallel

version is exactly the same as the sequential one, only with the difference that two workers are

mapped on different processors. The sequential version uses external buffers to store the values

in order to mimic (with the associated overhead) the parallel version, however using only one

4.3 Concluding Remarks 51

processor. It is interesting to see the initial exponential decrease toward the ideal limit fixed by the

amount of computation on the slower processor. Also, in the sequential version, care was taken

to avoid any bottleneck effect that could effect the experiments. Hence, the Avalon fabric, even

when is not using any streaming modules, works better for sequential accesses.

A final test was made to check the performance speedup achievable by adding one more fast

Nios II processor to the platform to act as the scheduler, instead of the slow standard Nios II that

uses SDRAM. The architecture is shown in the figure 2.10 and it has 4 processors. 50K pairs

of random Cartesian points were again processed using two fast workers with coupled memory

and we could avoid the limit imposed by the SDRAM. However, when we tried to run the tests

with the RTOS synchronization, we found that the available on-chip memory was not enough.

The operative system needed to be compiled with a minimal set of services in order to reduce

considerably the size.

The slower processor was still available to act as the bridge between the computer and the

FPGA, however performing a passive job and without interfering in the application. It just reads

the results after 50K points have been processed.

The results are available in the table 4.5, where it is possible to see the speedup when compared

to the platform where the master processor uses SDRAM for data and instructions storage place.

Similarly, when the master sends more than one point each time to the workers, the performance

is better due to the lower rate of accesses to the bus by different masters.

Table 4.5: Performance speedup by sending bursts of points each time

No. of Points
Single Core MPSoC

SDRAM TCM Master uses Completely
SDRAM On-Chip

1 106.69µs 24.98µs 51.09µs 12.53µs
2 90.09µs 22.23µs 41.88µs 11.12µs
...
50 73.42µs 19.21µs 33.29µs 9.43µs

4.3 Concluding Remarks

In this chapter, a case study using the data-flow model described in chapter 3 was presented with

a simple application based on the Monte Carlo method. It estimates the value of π by generating

a lot of random points. Furthermore, we have implemented a pseudo-random generator as a Nios

II custom instruction.

With this application we have analysed the overhead of communications and several issues

that are inherent to multiprocessor systems-on-chip, such as the interconnect fabric limitations, the

trade-offs between high-speed on-chip memories versus the external memory with higher capacity,

the non-sequential access to the buffers, and the triggering of tasks on different processors.

52 Monte Carlo π Generator

Chapter 5

Conclusions and Future Work

In the course of this work, several approaches to evaluate and test communications in MPSoCs

were addressed in order to build an efficient workable model that could be easily adapted to

accommodate different purposes. For that, different synchronization policies were made using

dynamic scheduling.

We have presented several ideas to prototype streaming applications on FPGA based MPSoCs

using the MapReduce inspiration to parallelize tasks or stages. This was accomplished in a sim-

plified manner in order to analyse the overheads and performance, and thus, optimizing the flow.

Knowing the times required by the transactions of data and the overheads associated, it is

possible to build a better real-time system using a multi-processor environment.

Some heterogeneous multi-processor systems were built in the Stratix II FPGA chip using

SOPC Builder with tightly coupled memories. The communication between all the components

using the Avalon Switch Fabric was made in software and can be later masked so the designers

only need to be concerned about the division of the application and the mapping of the several

routines onto the processors or in dedicated hardware modules. It is also relatively easy to have

a better insight of the several blocks and layers used in order to customize them according to the

needs.

Also, it was proved the enormous capabilities of the Nios II soft-core processors by adding

custom instructions directly to the ALU, and the advantages of using the default topology of

the interconnect fabric. The partial crossbar switch is a good way to connect all the modules in

a embedded system. By using the slave-side arbitration scheme, the bottleneck is not a major

problem since it gathers the full crossbar switch (where one input leads to one dedicated output)

and the traditional bus (where the speeds can be higher but there is the need to have only a single

master each time). Of course that, in more complex systems with a huge flow of information in the

buses, different approaches must be used to avoid bottleneck. However, this work can be easily

extended to optimize the communications of a sequential pipelined synchronous data-flow model

or in a MapReduce way that can be reorganized as a central scheduler (or just Map).

53

54 Conclusions and Future Work

The communication entities were tokens (or abstract units of data) but it can be later extended

to process packets. By using special nodes that divide work and special nodes that join the results

it is possible to extend and model this work in order to have switches that route the packets toward

the destination, a bit similar to what is done in NoCs (Network-on-Chip).

Besides the communication between nodes through buffers, a test mechanism based on the

randomness was addressed. A Nios II custom instruction with a truly random seed was evaluated.

It uses a linear feedback shift register and can be very useful to find potential synchronization

problems in multi-core platforms such as race conditions, deadlocks, starvation, bottleneck, etc.

5.1 Future Work

This work can be extended in many directions. The conclusions and results could have been

more interesting if a hardware FIFO was used since one of the biggest backdraw was the low

performance of the FIFO written in software, because of the slow access to on-chip memory by

the CPU that has used the external SDRAM as data and instructions storage.

One easy way to improve communications between processors inside the FPGA is by adding

custom instructions to the Nios II that handles all the external data communications and synchro-

nization. This way, it is possible to avoid (or optimize) the Avalon Switch Fabric or even create

a new customized and dedicated fabric for interconnection. Also, Altera allows the use of several

dedicated slave interfaces for streaming purposes that can be used to speed up important critical

data transactions.

This special custom instruction may connect to a separate network management module, which

is a central core that is connected to all nodes, that can be processors or some other devices. This

way the latency and speed of communications can be optimized according to the application.

Experiments were made by using a communication assistant (CA) module to reduce the over-

head of the data transmissions but it did not showed any benefits because the processor accessed

the on-chip memory exactly the same way as before, using Avalon Switch Fabric and without

cache. However, in this case there was no shared memory involved, neither race conditions, since

that each processor had his own local and private space. The CA was built to access the local

space of one processor, read the contents of the FIFO and copy the values to the local space of

another processor. This procedure was automatic, running on background and the goal was to

minimize the overhead and the bottleneck associated to the communication between processors.

Communication assistant is always updating the buffers in two different processors. One idea is to

have the buffers directly attached to a special Nios II custom instruction. This way, it is possible

to have a significant speeding up of data communication between two or more processing devices

that can be also allied to a cache-coherency protocol.

In a streaming application embedded in a MPSoC, using a synchronous data-flow way to

distribute work among the processors, it is possible to analyse fragments of code that can be

embarrassingly parallel in order to better split the flow (and total computation) among processors.

5.1 Future Work 55

Later the output is treated and, through a buffer, sent to the following stage. By forking pipeline

stages, we can have trade-offs between more CPUs, performance gains and buffer requirements.

As a final remark, this was meant to be a basis of something bigger. An automated process to

analyse, separate and organize parallel work in a higher level still needs to be evaluated to help

programmers and designers to simplify thoughts. In fact, we are currently seeing a technological

improvement that it is not being followed by the programmers. Methodologies are being created

but there is still missing a way to switch from ordinary sequential way of thinking to a parallel one

but chances are that it will slowly appear with the contributions of a lot of people.

56 Conclusions and Future Work

References

[1] Benaoumeur Senouci, Abdellah.M Kouadri.M, Frédéric Rousseau, and Frédéric Petrot.
Multi-CPU/FPGA platform based heterogeneous multiprocessor prototyping: New chal-
lenges for embedded software designers. Rapid System Prototyping, 2008. RSP ’08. The
19th IEEE/IFIP International Symposium, pages 41–47, 2008.

[2] Terry Tao Ye, Luca Benini, and Giovanni de Micheli. Packetized on-chip interconnect com-
munication analysis for MPSoC. Design, Automation and Test in Europe Conference and
Exhibition, 2003, pages 344–349, 2003.

[3] Mirko Loghi, Federico Angiolini, Davide Bertozzi, and Luca Benini. Analyzing on-chip
communication in a MPSoC environment. Design, Automation and Test in Europe Confer-
ence and Exhibition, 2004, pages 752–757 Vol.2, 2004.

[4] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. Proc. IFIP
Congress, Stockholm, Sweden, pages 471–475, 1974.

[5] Edward A. Lee and David G. Messerschmitt. Synchronous Data Flow. In Proceedings of the
IEEE, vol. 75, no.9, pages 1235–1245, September 1987.

[6] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar Thiele. Efficient
execution of kahn process networks on multi-processor systems using protothreads and win-
dowed FIFOs. 7th IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTI-
Media’09), pages 35–44, October 2009.

[7] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. In IEEE Transactions on Computers, pages 24–35,
January 1987.

[8] Jun Zhu, Ingo Sander, and Axel Jantsch. Energy efficient streaming applications with guar-
anteed throughput on MPSoCs. In Proceedings of the 7th ACM international conference on
Embedded software (EMSOFT ’08), pages 119–128, October 2008.

[9] R. Govindarajan, Guang R. Gao, and Palash Desai. Minimizing buffer requirements under
rate-optimal schedule in regular dataflow networks. Journal of VLSI Signal Processing,
31(3):207–229, July 2002.

[10] Sander Stuijk, Marc Geilen, and Twan Basten. Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs. In Design Automation Confer-
rence, Proc. ACM, pages 899–904, July 2006.

[11] Jun Zhu, Ingo Sander, and Axel Jantsch. Buffer minimization of real-time streaming applica-
tions scheduling on hybrid CPU/FPGA architectures. In Proceedings of Design Automation
and Test in Europe (DATE ’09), April 2009.

57

58 REFERENCES

[12] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating MapReduce for multi-core and multiprocessor systems. Proceed-
ings of 13th International Symposium on High-Performance Computer Architecture (HPCA),
2007.

[13] Chunhua Chen, Gaoming Du, Duoli Zhang, Yukun Song, and Ning Hou. Communication
synchronous scheme for MPSoC. In Anti-Counterfeiting Security and Identification in Com-
munication (ASID ’10), pages 310–313, July 2010.

[14] Altera Corporation. Nios Development Board - Reference Manual, Stratix II Edition, 2004.

[15] Altera Corporation. Stratix II Device Family Data Sheet, 2007.

[16] Altera Corporation. Nios II Processor Reference Handbook, 2008.

[17] Altera Corporation. Nios II Custom Instruction - User Guide, 2008.

[18] Altera Corporation. Altera Avalon Interface Specifications, 2008.

[19] Altera Corporation. Quartus II Handbook: Version 10.0 - Volume 4: SOPC Builder, 2010.

[20] Altera Corporation. Embedded Design Handbook - Avalon Memory-Mapped Design Opti-
mizations, 2008.

[21] Altera Corporation. Quartus II Handbook: Version 8.1 - Volume 5: Embedded Peripherals,
2008.

[22] Altera Corporation. Using Tightly Coupled Memory with the Nios II Processor, 2009.

[23] Frank Schirrmeister. Multi-core processors: Fundamentals, trends, and challenges. Embed-
ded Systems Conference (ESC351), 2007.

[24] Jean J. Labrosse. MicroC/OS-II - The Real-Time Kernel. CMP Books, Second edition, 2002.

[25] Micrium. microC/OS-II product datasheet.

[26] OSCI Open SystemC Initiative. System C, October 2010. http://www.systemc.org/
home/.

[27] Hajer Chtioui, Rabie Ben Atitallah, Smail Niar, Jean-Luc Dekeyser, and Mohamed Abid.
A dynamic hybrid cache coherency protocol for shared-memory MPSoC. 12th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools, pages 3–10, August
2009.

[28] John von Neumann. Various techniques used in connection with random digits. Applied
Mathematics Series, no. 12, pages 36–38, 1951.

[29] Computational Science Education Project. Introduction to Monte Carlo methods, 1995. Re-
trieved from http://www.phy.ornl.gov/csep/CSEP/MC/MC.html.

[30] riskglossary.com Glossary, Encyclopedia & Resource Locator. Monte Carlo Method. Re-
trieved from http://www.riskglossary.com/link/monte_carlo_method.htm.

http://www.systemc.org/home/
http://www.systemc.org/home/
http://www.phy.ornl.gov/csep/CSEP/MC/MC.html
http://www.riskglossary.com/link/monte_carlo_method.htm

	Front Page
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Document Layout

	2 FPGA based MPSoC
	2.1 Introduction
	2.2 Hardware
	2.2.1 Nios II
	2.2.2 Custom Instructions
	2.2.3 Avalon Switch Fabric
	2.2.4 Performance Counter
	2.2.5 Timer
	2.2.6 Mailbox
	2.2.7 Tightly Coupled Memory
	2.2.8 IRQ Mailbox Core

	2.3 MPSoC Platform
	2.3.1 Introduction
	2.3.2 Architecture

	2.4 Software
	2.4.1 Introduction
	2.4.2 C/OS-II
	2.4.3 FIFO
	2.4.4 Pseudo-Random Generator

	3 Generic MPSoC Application
	3.1 Introduction
	3.1.1 Basic Concepts

	3.2 Mailbox + IRQ Synchronization
	3.2.1 Test Application
	3.2.2 Workers Random Delay

	3.3 FIFO + IRQ Synchronization
	3.4 FIFO Synchronization
	3.4.1 Ordered FIFO

	3.5 Concluding Remarks

	4 Monte Carlo Generator
	4.1 Introduction
	4.1.1 Monte Carlo Method
	4.1.2 Pseudo-Random Generator

	4.2 Software Application
	4.3 Concluding Remarks

	5 Conclusions and Future Work
	5.1 Future Work

	References

