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Abstract. We formulate and analyze a stochastic version of the
Verhulst deterministic model for density dependent growth of a
single population. Three parameter regions with qualitatively dif-
ferent behaviours are identified. Explicit approximations of the
quasi-stationary distribution and of the expected time to extinc-
tion are presented in each of these regions. The quasi-stationary
distribution is approximately normal, and the time to extinction
is long, in one of these regions. Another region has a short time
to extinction and a quasi-stationary distribution that is approxi-
mately geometric. A third region is a transition region between
these two. Here the time to extinction is moderately long and the
quasi-stationary distribution has a more complicated behaviour.
Numerical illustrations are given.

1. Introduction

Early models in population biology were largely deterministic, and
serious work on stochastic models started only after the theory of sto-
chastic processes had reached some maturity. A major difference be-
tween deterministic and stochastic models lies in the state space, which
is continuous in the deterministic setting and discrete for stochastic
models. In this regard the stochastic models are more realistic than
the deterministic ones, since counts of individuals are always discrete.
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Each deterministic model can be viewed as an approximation of a cor-
responding stochastic one. A major task for a mathematical model
builder is to derive the conditions under which the deterministic model
gives an acceptable approximation of the stochastic one. A known re-
quirement is that the population size be sufficiently large; the explicit
task is to quantify what is meant by the term “sufficiently large”.

Deterministic modelling has been very successful in many areas of
population biology. The important results are qualitative in nature,
and are derived from nonlinear deterministic models. The long-term
or steady-state behaviour of the models is often important. It is related
to stationary solutions of the deterministic models.

The success of the work with nonlinear deterministic models does
however not mean that all problems of a qualitative nature can be
solved in a deterministic setting. It is noteworthy that there are prob-
lem areas where deterministic and stochastic models disagree qualita-
tively! Important examples are given by the phenomenon of persistence
and its complement extinction. There are simple examples of situations
where the deterministic model predicts that a population approaches
a positive stationary level, while the corresponding stochastic model
predicts that extinction will occur with certainty. In such a situation it
becomes important to estimate the time required for extinction. This
problem can only be handled in a stochastic framework.

Stochastic models are more difficult to handle mathematically than
deterministic ones. The difficulty is enhanced when the deterministic
model is nonlinear. An additional source of difficulty is associated with
models where extinction is possible. Extinction corresponds mathe-
matically to the existence of an absorbing state. It is natural to take
a clue from the deterministic model and study the counterpart to its
stationary solution, namely the stationary distribution of the stochas-
tic model. This distribution is however degenerate and uninformative
when the stochastic model has an absorbing state. One is therefore led
to consider the more intricate concept of quasi-stationarity. It is not
possible to find explicit expressions for the quasi-stationary distribution
or for the time to extinction of a stochastic model whose deterministic
counterpart is nonlinear. Progress with the analysis rests on finding
good approximations.

The following analysis of the stochastic logistic model shows the im-
portance of deriving approximations of interesting quantities. Approx-
imations will be derived even when explicit expressions are available.
This approach is typically taken when the explicit expressions are too
complicated to give a feeling for their behaviour. Thus, mathematical
progress is aided by the search for heuristic understanding. The approx-
imation methods that we use are analytical in character. Whenever it is
possible we shall derive approximations that have the mathematically
desirable property of being asymptotic as the population size grows
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large, but we shall not hesitate to use other types of approximation
when we are unable to find approximations that are asymptotic.

The deterministic version of the logistic model that we study in this
paper was introduced by Verhulst [37] in 1838, and later rediscovered
by Pearl and Reed (1920) [27]. It accounts for density dependence in
the growth of a single population. The model is based on the hypothesis
that the net birth rate per individual (i.e. the difference between the
birth rate and the death rate) is a linearly decreasing function of the
population size. This implies that the net population birth rate is
a quadratic function of the population size. The model is closed in
the sense that no immigration or emigration is supposed to take place.
Mathematically the deterministic model leads to a nonlinear differential
equation that can be solved explicitly.

A stochastic counterpart to the logistic model was formulated by
Feller (1939) [12] as a finite-state birth-and-death process. Our model
formulation is essentially the same as that of Feller. In particular, we
follow Feller by accounting separately for the density dependence of the
birth rate and the death rate. The origin is an absorbing state in the
model, eventual absorption at the origin is certain, all states except the
origin are transient, and the stationary distribution is degenerate with
probability one at the origin. Two qualitatively different behaviours are
possible at any given time. Either the process is extinct after having
reached the absorbing state at the origin, or the process remains in
the set of transient states. In the latter case, the distribution of the
process can be found by conditioning on the event that absorption has
not occurred. The resulting conditional distribution is approximated
by a stationary conditional distribution, the so-called quasi-stationary
distribution.

The quasi-stationary distribution poses subtle problems since it can-
not be evaluated explicitly. One goal of our study is to derive approx-
imations of this distribution. A second goal is to find out for how long
time the quasi-stationary distribution is a good approximation of the
distribution of the process. This goal is reached by studying the time
to extinction. Important roles in the study are played by two auxil-
iary processes that lack absorbing states and that have non-degenerate
stationary distributions that can be determined explicitly.

In [12], Feller derives the Kolmogorov forward equations for the state
probabilities. One of the results in his paper is that the solution of the
deterministic model does not agree with the expectation of the solution
of the stochastic model, when both are studied as functions of time.
(The difference can, however, be shown to be asymptotically small as
the maximum population size becomes large.) We claim that the long-
term behavior of the model is of considerably larger interest for the
applications than the short-term time dependence. We shall therefore
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only study the behavior of the model in the situation where the pop-
ulation has been subjected to the hypothesized birth- and death-rates
for a long time. This corresponds to a study of the counterpart in
the stochastic model to the stationary solution (the so-called carrying
capacity) in the deterministic model. This leads us to apply the very
useful concept of quasi-stationarity.

A slight variation of this stochastic model is studied by Kendall [17].
He introduces the restriction that the state space is strictly positive.
By excluding zero from the state space he establishes a related process
without an absorbing state. Thus the difficulty of dealing with an ab-
sorbing state is avoided, at the expense of being unable to deal with the
phenomenon of extinction. The resulting process has a nondegenerate
stationary distribution that is determined explicitly. The Kendall pro-
cess is closely related to the auxiliary process {X(0)} that we introduce
below.

Whittle [39] discusses an approximation method based on the as-
sumption that random variables that appear in the model are nor-
mally distributed. The method is applied to the Kendall model. Good
agreement is reached in a specific numerical example between Whit-
tle’s approximation and the explicitly known exact expression for the
stationary distribution. Our findings below indicate that Whittle’s
method can be expected to give good results in the parameter region
where the time to extinction is long, but not where the time to extinc-
tion is moderately long or short.

Another variation of the logistic model has been proposed by Pren-
diville [31]. He suggests that the population birth rate λn and the
population death rate µn, which are quadratic functions in n in the
model that we deal with, be replaced by quantities that are linear
functions of n, and where the birth rate is linearly decreasing and the
death rate linearly increasing in n. As in the Kendall case, the state
space excludes the state zero, and the phenomenon of extinction is ab-
sent also from this model. One reason for studying this process is that
explicit evaluation of state probabilities is possible when the transition
rates are linear in n. The stationary distribution is nondegenerate and
can be determined explicitly. Takashima [35] has studied this model
and found an explicit expression for the time-dependent probability
generating function. The time dependence of the solution is however
of less applied interest than the quasi-stationary distribution, which
is the limiting distribution as time becomes large, conditional on not
being absorbed.

The term “logistic process” is used by Ricciardi [33] to refer to the
Prendiville process. Like Takashima, Ricciardi derives the probability
generating function for the state of the process at time t. The station-
ary distribution is given as a special case. Bharucha-Reid [7] gives a
brief discussion of what he calls the stochastic analogue of the logistic
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law of growth. He accounts for the work on the models formulated by
Kendall and Prendiville. Iosifescu-Tautu [15] also discuss these early
contributions. Another treatment of the Prendiville process is given
in the review paper by Ricciardi [33]. Kijima [18] also refers to the
Prendiville process as a logistic process. In fact, all of the authors
mentioned after Feller analyze a stochastic process that they refer to
with some variation of the term “logistic process”, but neither of them
deals with the process that we are concerned with here. The appropri-
ate stochastic version of the Verhulst model has an absorbing state at
the origin, and its deterministic version is nonlinear.

Goel and Richter-Dyn [14] use a stochastic version of a special case
of the Verhulst model to study extinction of a colonizing species. Ex-
tinction times are studied, as well as the probability that a population
will reach a certain size M , starting from an initial size m, before going
extinct. Some conclusions are also reached for the SIS model, which
is another special case of the Verhulst model (see below), with α1 = 1
and α2 = 0. Quasi-stationarity is not studied.

An important consequence of the existence of an absorbing state is
that extinction becomes possible. The stationary distribution is then
degenerate with probability one at the origin. The interesting mathe-
matical questions for such a process are to determine the time to ex-
tinction, and the distribution of states conditional on non-extinction.
It turns out that there exists a stationary conditional distribution, the
so-called quasi-stationary distribution, which serves the role of approx-
imating the state of the process if it is known that the process has been
going on for a long time, and that extinction has not occurred. One of
the earliest uses ot the term “quasi-stationarity” was by the eminent
British mathematician Bartlett, [5] and [6]. Early theoretical papers
devoted to quasi-stationary distributions, published by Darroch and
Seneta, [9] and [10], were influenced by Bartlett. A bibliography of
papers and books on quasi-stationarity is given by Pollett on the web-
site www.maths.uq.edu.au/~pkp/papers/qsds/qsds.html. A mod-
ern presentation of the theory is given in textbook form by Kijima
[18].

The concept of quasi-stationarity is used by Pielou [28] in a study
of the stochastic logistic model. In her discussion, Pielou describes
a recursive numerical method for determining what she describes as
the quasi-stationary distribution. However, it is easy to see that the
distribution determined by her method is the stationary distribution of
the auxiliary process that we introduce below and denote by {X(0)}.

The importance of quasi-stationarity in stochastic population models
is emphasized in the book by Nisbet and Gurney [24]. They describe an
iterative numerical method for determining the quasi-stationary distri-
bution. Furthermore, they discuss the phenomenon of extinction and
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give exact, although unwieldy, expressions for the expected time to ex-
tinction from a fixed state n. This work is continued by Renshaw [32].
He also emphasizes the importance of the concept of quasi-stationarity
in modelling biological populations, and he derives relations between
the time to extinction and the quasi-stationary distribution. He uses
the stationary distribution of the auxiliary process {X(0)} to repre-
sent the quasi-stationary distribution, without noting that this is an
approximation. His results can not be used in the parameter regions
where the time to extinction is moderately long or short.

The theoretical work based on the papers by Darroch and Seneta,
and the applied work by Pielou, Nisbet-Gurney, and Renshaw appear
to have gone on independently of each other, since neither group makes
any reference to the work of the other group.

A special case of the Verhulst model is mathematically identical to a
classical model in mathematical epidemiology, the so-called SIS-model.
The stochastic version of this model was first described by Weiss and
Dishon [38]. The same mathematical model has since then appeared
in several contexts. Bartholomew [4] has applied it to study the trans-
mission of rumours, Oppenheim et al. [26] use it as a model for chem-
ical reactions, Cavender [8] uses it as an example of a birth-and-death
process, Norden [25] describes it as a stochastic logistic model, while
Kryscio and Lefèvre [19], N̊asell [21], and Andersson and Djehiche [2]
return to the epidemic context. Kryscio and Lefèvre summarize and
extend the work of the previous authors. An important contribution
of this paper is its introduction of the concept of quasi-stationarity
into the area of mathematical epidemiology. N̊asell provides further
extensions of the results of Kryscio and Lefévre. N̊asell emphasizes as-
ymptotic expansions throughout his 1996 paper as a means of deriving
useful results. He introduces the transition region (see below) into the
study.

The general approach used in N̊asell [21] is followed here. One dif-
ference is, however, that the ambition in the 1996 paper of deriving
uniformly valid asymptotic approximations is abandoned. A second
difference is that results for a general finite-state birth-and-death pro-
cess with absorbing state at the origin are here developed before they
are used to study the specific case represented by the transition rates
associated with the Verhulst model. The approximation of the quasi-
stationary distribution in the transition region that we give here is an
improvement over the corresponding results in the 1996 paper. The
corresponding improvement for the SIS model is treated by N̊asell [22].

Both the SIS model and the Verhulst model include an intriguing
phase transition phenomenon. It takes the form that there are three
parameter regions with qualitatively different behaviours. Epidemio-
logically (in the SIS model) it corresponds to a threshold phenomenon
with important epidemiological intrepretations. Ecologically (in the
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Verhulst model) it corresponds to three different orders of magnitude
for the time to extinction: long, moderately long, and short. The three
different parameter regions are identified, and an analysis of the quasi-
stationary distribution and of the time to extinction is carried out in
each of them.

The study of the Verhulst model is undertaken in Section 3. We
prepare for this study in Section 2, where we derive some general results
for a birth-death process with finite state space, and for which the
origin is an absorbing state. Two auxiliary processes are introduced,
and their stationary distributions are shown to be important for both
the quasi-stationary distribution and for the time to extinction.

Asymptotic approximations are derived throughout Section 3, both
for the quasi-stationary distribution and for the expected time to ex-
tinction. The results rest heavily on asymptotic approximations of the
stationary distributions of the two auxiliary processes. We emphasize
the importance of deriving asymptotic approximations of these two dis-
tributions even though we have exact expressions for them. Numerical
illustrations are given, and some brief comments are given on numerical
methods for evaluation of quasi-stationary distributions.

2. A univariate birth-death process with finite state
space and with absorbing state at the origin

In Subsection 2.1 we formulate a birth-death process with finite state
space, and for which the origin is an absorbing state. Two auxiliary pro-
cesses without absorbing states are then formulated in Subsection 2.2,
and their stationary distributions are determined. The quasi-stationary
distribution of the original process is studied in Subsection 2.3. It is
shown to satisfy a recursion relation where the coefficients can be in-
terpreted in terms of the stationary distributions of the two auxiliary
processes. The time to extinction is studied in Subsection 2.4 for an
arbitrary initial distribution. We show that the time to extinction from
the quasi-stationary distribution has an exponential distribution. This
distribution is completely determined by its expectation, which in turn
is determined by the quasi-stationary distribution. The expected time
to extinction from an arbitrary initial distribution is determined by an
explicit expression whose coefficients can be interpreted in terms of the
stationary distributions of the two auxiliary processes.

Several of the results that we give are known before for the special
case of the SIS model; see N̊asell [21], [22]. The importance of the
stationary distributions of the two auxiliary processes was pointed out
in the context of the SIS model by Kryscio and Lefèvre [19]. Recogni-
tion of this importance allows a useful structuring of the approximation
problem for any specific case. The way this is done is exemplified by
the Verhulst model treated in Section 3.
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2.1. Formulation of the birth-death process. We study a birth-
death process {X(t), t ≥ 0} with finite state space {0, 1, . . . , N} and
where the origin is an absorbing state. Transitions in the process are
only allowed to neighboring states. The rate of transition from state n
to state n + 1 (the population birth rate) is denoted λn, and the rate
of transition from the state n to the state n− 1 (the population death
rate) is denoted by µn. It is convenient to also have notation for the
sum of λn and µn: we put κn = λn + µn. We assume that µ0 and λN

are equal to zero, to be consistent with the assumption that the state
space is limited to {0, 1, . . . , N}. Furthermore, we assume that λ0 also
equals zero, to be consistent with the assumption that the origin is an
absorbing state. All other transition rates are assumed to be strictly
positive.

The Kolmogorov forward equations for the state probabilities pn(t) =
P{X(t) = n} can be written

(2.1) p′n(t) = µn+1pn+1(t)− κnpn(t) + λn−1pn−1(t), n = 0, 1, . . . , N.

(Put µN+1 = λ−1 = pN+1(t) = p−1(t) = 0, so that (2.1) makes sense
formally for all n-values indicated.) The state probabilities depend on
the initial distribution pn(0).

An alternative way of writing this system of equations is in the form

(2.2) p′ = pA,

where p(t) = (p0(t), p1(t), . . . , pN(t)) is the row vector of state proba-
bilities and the matrix A contains the transition rates as follows: The
nondiagonal element amn of this matrix equals the rate of transition
from state m to state n, and the diagonal element ann equals the rate
κn multiplied by -1. The matrix A can be written as follows:

A =




−κ0 λ0 0 . . . 0
µ1 −κ1 λ1 . . . 0
0 µ2 −κ2 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . −κN




Note that A is a tridiagonal matrix with all row sums equal to 0. Thus
the determinant of A equals zero, so A is noninvertible. Note also that
λ0 = κ0 = 0, so the first row of A is a row of zeros.

A stationary distribution is found by putting the time derivative
equal to zero, i.e. by solving pA = 0. It is readily shown that the process
{X(t)} has a degenerate stationary distribution p = (1, 0, . . . , 0). The
distribution of {X(t)} approaches the stationary distribution as time
t approaches infinity. This says that ultimate absorption is certain. In
many cases, the time to absorption is long. It is therefore of interest
to study the distribution of {X(t)} before absorption has taken place.
This is done via the concept of quasi-stationarity, which is introduced
in Subsection 2.3.
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2.2. Two auxiliary processes. In this subsection we study two birth-
death processes {X(0)(t)} and {X(1)(t)} that both are close to the orig-
inal process {X(t)}, but lack absorbing states. The state space of each
of the two auxiliary processes concides with the set of transient states
{1, 2, . . . , N} for the original process. We determine the stationary
distribution of each of the two auxiliary processes.

The process {X(0)(t)} can be described as the original process with

the origin removed. Its death rate µ
(0)
1 from the state 1 to the state 0 is

equal to 0, while all other transition rates are equal to the corresponding
rates for the original process.

The process {X(1)(t)} is found from the original process by allowing
for one immortal individual. Here, each death-rate µn is replaced by

µ
(1)
n = µn−1, while each of the birth rates λ

(1)
n equals the corresponding

birth rate for the original process.
The state probabilities for the two processes are denoted by p(0)(t) =

(p
(0)
1 (t), p

(0)
2 (t), . . . , p

(0)
N (t)) and p(1)(t) = (p

(1)
1 (t), p

(1)
2 (t), . . . , p

(1)
N (t)), re-

spectively.
Stationary distributions are easy to determine explicitly for both of

the auxiliary processes. In order to describe them we introduce two
sequencies ρn and πn as follows:

ρ1 = 1, ρn =
λ1λ2 · · ·λn−1

µ1µ2 · · ·µn−1

, n = 2, 3, . . . , N,(2.3)

πn =
µ1

µn

ρn, n = 1, 2, . . . , N.(2.4)

The two stationary distributions can be simply expressed in terms of
these sequencies. The stationary distribution of the process {X(0)(t)}
equals

(2.5) p(0)
n = πnp

(0)
1 , n = 1, 2, . . . , N, where p

(0)
1 =

1∑N
n=1 πn

,

while the stationary distribution of the process {X(1)(t)} equals

(2.6) p(1)
n = ρnp

(1)
1 , n = 1, 2, . . . , N, where p

(1)
1 =

1∑N
n=1 ρn

.

Both of these stationary distributions will serve as approximations of
the quasi-stationary distribution defined in the next subsection. Fur-
thermore, the related sequencies ρn and πn play important roles in a
recursion relation for the quasi-stationary distribution, and in an ex-
plicit expression for the expected time to extinction from an arbitrary
inital distribution.

2.3. The quasi-stationary distribution q. We define and study the
quasi-stationary distribution q of the process {X(t)}.

We partition the state space into two subsets, one containing the
absorbing state 0, and the other equal to the set of transient states



10 INGEMAR NÅSELL

{1, 2, . . . , N}. Corresponding to this partition, we write the equation
(2.2) in block form. The vector p(t) is expressed as p(t) = (p0(t), pQ(t)),
where pQ(t) = (p1(t), . . . , pN(t)) is the row vector of state probabilities
in the set of transient states. The corresponding block form of the
matrix A contains four blocks. The first row of A gives rise to two
blocks of row vectors of zeroes. The remaining two blocks contain a
column vector a of length N and a square matrix AQ of order N . The
first entry of a equals µ1, while all other entries are equal to 0. The
matrix AQ is formed be deleting the first row and the first column from
A. With this notation one can rewrite (2.2) in the form

(p′0(t), p
′
Q(t)) = (p0(t), pQ(t))

(
0 0
a AQ

)
.

By carrying out the product on the right-hand side and equating the
block components of the two sides of the equation, we are led to the
following two differential equations:

(2.7) p′0(t) = pQ(t)a = µ1p1(t)

and

(2.8) p′Q(t) = pQ(t)AQ.

Before absorption, the process takes values in the set of transient
states. The state of the process at time t is restricted to this set if two
conditions are fulfilled. One is that the initial distribution is supported
on this set, i.e. that P{X(0) > 0} = 1. The second condition is that
absorption at the origin has not occurred at time t, i.e. that X(t) > 0.
The corresponding conditional state probabilities are denoted q̃n(t). It
is also useful to put q̃(t) = (q̃1(t), . . . , q̃N(t)) to denote the row vector
of conditional state probabilities. We note that q̃(t) depends on the
initial distribution q̃(0). The conditioning on non-absorption at time t
leads to the relation

(2.9) q̃n(t) = P{X(t) = n|X(t) > 0} =
pn(t)

1− p0(t)
.

Hence the vector of conditional state probabilities q̃(t) can be deter-
mined from the vector pQ(t) of state probabilities on the set of transient
states via the relation

(2.10) q̃(t) =
pQ(t)

1− p0(t)
.

By differentiating this relation and using expressions (2.7) and (2.9)
we get

(2.11) q̃′(t) =
p′Q(t)

1− p0(t)
+ µ1q̃1(t)

pQ(t)

1− p0(t)
.
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By using (2.8) and (2.10) we get the following differential equation for
the vector of conditional state probabilities q̃:

q̃′(t) = q̃(t)AQ + µ1q̃1(t)q̃(t).

The quasi-stationary distribution q can now be defined. It is the sta-
tionary solution of this equation. Thus, it satisfies the equation

(2.12) qAQ = −µ1q1q.

This shows that the quasi-stationary distribution q is a left eigenvector
of the matrix AQ corresponding to the eigenvalue −µ1q1. This result
is useful for numerical evaluations. One can show that the eigenvalue
−µ1q1 is the maximum eigenvalue of the matrix AQ.

We show that the probabilities qn that determine the quasi-stationary
distribution satisfy the following relation:

(2.13) qn = πn

n∑

k=1

1−∑k−1
j=1 qj

ρk

q1, n = 1, 2 . . . , N,

N∑
n=1

qn = 1.

Note that the sequencies πn and ρn are known explicitly in terms of
the transition rates λn and µn. It is useful to note that they are related
to the two stationary distributions of the previous section, since πn =

p
(0)
n /p

(0)
1 and ρn = p

(1)
n /p

(1)
1 .

In order to derive this result we note from relation (2.12) that the
probabilities qn satisfy the following difference equation of order two:

(2.14) µn+1qn+1 − κnqn + λn−1qn−1 = −µ1q1qn, n = 1, 2, . . . , N.

Furthermore, boundary conditions are given by

(2.15) q0 = 0 and qN+1 = 0.

We derive two difference equations of order 1. Put

(2.16) fn = µnqn − λn−1qn−1, n = 1, 2, . . . , N + 1.

Then (2.14) can be written

fn+1 − fn = −µ1q1qn, n = 1, 2, . . . , N,

with the final condition
fN+1 = 0.

By solving for fn we find that

fn = µ1q1

N∑
i=n

qi, n = 1, 2, . . . , N + 1.

The second difference equation of order one is given by

µnqn = λn−1qn−1 + µ1q1

N∑
i=n

qi, n = 1, 2, . . . , N + 1.

with the initial condition
q0 = 0.
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It is straightforward to verify (2.13) from this initial value problem.
We emphasize that the relation in (2.13) is not an explicit solution.

It can be used to successively determine the values of q2, q3 etc. if q1

is known. But the crux is that q1 can only be determined from the
relation

∑N
n=1 qn = 1, which requires knowledge of all the qn.

Two iteration methods for determining the quasi-stationary distri-
bution can be based on (2.13). One of these methods uses iteration
for determining q1. It starts with an initial guess for q1, determines
successively all the qn from (2.13), computes the sum of the qn, and
determines the result of the first iteration as the initial guess divided
by this sum. The process is repeated until successive iterates are suf-
ficiently close. Nisbet and Gurney [24] describe essentially the same
iteration method, based on the recurrence relation (2.14), and use it
for numerical evaluations.

The second method uses iteration on the whole distribution. It starts
with an initial guess for the quasi-stationary distribution (p(0) and p(1)

discussed in the previous subsection are candidates), uses this distri-
bution as input in the numerators of the terms that are summed over
k, and solves (2.13) for the qn, under recognition of the requirement

that
∑N

n=1 qn = 1. The process is repeated until successive iterates are
sufficiently close. The iteration of the second numerical method can be
formally described as follows:

(2.17) q(i+1)
n = πn

n∑

k=1

1−∑k−1
j=1 q

(i)
j

ρk

q
(i+1)
1 ,

where the quasi-stationary distribution of iteration number i is denoted
q(i). Both numerical evaluations and analytical approximations of the
quasi-stationary distribution for the Verhulst model in Section 3 are
based on this method.

The quasi-stationary distribution for a birth-death process can be de-
termined explicitly in a few cases. Thus, the linear birth-death process
determined by λn = nλ and µn = nµ has its quasi-stationary distri-
bution equal to the geometric distribution qn = (1 − R)Rn−1 when
R = λ/µ < 1. Furthermore, the random walk in continuous time with
absorbing barrier at the origin, determined by λn = λ and µn = µ
for n ≥ 1 and λ0 = µ0 = 0, has the quasi-stationary distribution
qn = (1 − √R)2n(

√
R)n−1, n = 1, 2, . . . , again under the assumption

that R < 1. These results have been derived by a number of authors
with different methods; see Seneta [34], Cavender [8], Pollett [29, 30],
van Doorn [36]. It is straightforward to verify these results from (2.13).

These examples of explicit expressions for quasi-stationary distribu-
tions have two limitations. One is that they deal with birth-death pro-
cesses where the transition rates λn and µn are at most linear functions
of the state n, and another one is that they are confined to a parameter
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region where the time to extinction is short. The main applied interest
in quasi-stationarity is, however, with models that account for density
dependence so that one (or both) of the transition rates λn and µn

depends nonlinearly on n. Furthermore, the parameter regions where
the time to extinction is very long and moderately long are more in-
teresting than the region where the time to extinction is short. It does
not appear possible to determine the quasi-stationary distribution in
explicit form in these cases. A fruitful strategy is then to search for ap-
proximations. The two stationary distributions p(0) and p(1) both serve
as approximations of the quasi-stationary distribution q. Actually, p(0)

provides the better approximation when the time to extinction is long,
while p(1) does better when the time to extinction is short, as noted
for the SIS model by Kryscio and Lefèvre [19]. The approximations
are claimed to hold in the body of the distribution but not in its tails.
This has important consequences with regard to time to extinction.

We show in the next subsection that the probabilities q1 and p
(0)
1 are

important for determining the times to extinction from different initial
conditions. These probabilities lie in the left tail of the corresponding
distribution when the time to extinction is very long, but in the body
of the distribution when the time to extinction is moderately long or
short.

The processes {X(t)} and {X(0)(t)} have the same transition rates
as long as the first process has not gone extinct. This is probably the
reason why several authors, as mentioned above, refer to the stationary
distribution p(0) of the second of the processes as the quasi-stationary
distribution q of the first one.

2.4. The time to extinction. The time to extinction τ is a random
variable that clearly depends on the initial distribution. We denote
this random variable by τQ when the initial distribution p(0) equals
the quasi-stationary distribution q, and by τn when X(0) = n.

If absorption has occurred at time t, then clearly the waiting time to
extinction τ is at most equal to t and also the state of the process X(t)
is equal to 0. Hence the events {τ ≤ t} and {X(t) = 0} are identical.
By computing the probabilities of these events we get

(2.18) P{τ ≤ t} = P{X(t) = 0} = p0(t).

We study first τQ. The reason why this is interesting is as follows.
One can show that the distribution of the process, conditioned on
non-extinction, approaches the quasi-stationary distribution as time
increases, see van Doorn [36]. This holds for arbitrary initial distribu-
tions that are supported on the set of transient states. If the process
has been going on for a long time, and it is known that it has not been
absorbed, then its distribution is approximated by the quasi-stationary
distribution.
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It turns out to be possible to get a simple form for the state proba-
bilities p in this case. To derive this we note from (2.11) that

(2.19) p′Q(t) = −µ1q1pQ(t), pQ(0) = q.

This says essentially that probability is leaking from each transient
state with the same rate. This equation has the solution

(2.20) pQ(t) = q exp(−µ1q1t).

From this solution one can also determine p0(t), since (2.7) gives a
differential equation for p0 in terms of p1, and the initial value is p0(0) =
0. Thus p0 satisfies the initial value problem

p′0(t) = µ1p1(t), p0(0) = 0,

with solution

(2.21) p0(t) = 1− exp(−µ1q1t).

The expressions in (2.20) and (2.21) combine to give the solution of the
Kolmogorov forward equations in this case. It is noteworthy that it is
possible to get such a simple expression for this solution. The solution
is, however, not explicit, since we have no explicit expression for q1.

We conclude, using (2.18), that the time to extinction from the quasi-
stationary distribution, τQ, has an exponential distribution with the
expectation

(2.22) EτQ =
1

µ1q1

.

The distribution of τQ is thus completely determined from the proba-
bility q1.

The distribution of the time to extinction τ from an arbitrary initial
distribution is more complicated. Some insight into its behaviour may
be gained by considering its expectation. It is a standard result for
birth-death processes that this expectation can be determined explicitly
when X(0) = n. Expressions for the result are given e.g. by Karlin and
Taylor [16], Gardiner [13], Nisbet and Gurney [24], and Renshaw [32].
We show below that the result can be expressed as follows in terms of
the notation that we have introduced above:

(2.23) Eτn =
1

µ1

n∑

k=1

1

ρk

N∑

j=k

πj =
1

µ1

N∑
j=1

πj

min(n,j)∑

k=1

1

ρk

.

The second expression follows from the first one by changing the or-
der of summation. Note that the two parameter sequencies ρn and πn

that appear here are related to the stationary distributions p(1) and
p(0) of the two auxiliary processes {X(0)(t)} and {X(1)(t)}. Approxi-
mations of these stationary distributions can hence be used to derive
approximations of Eτn.



THE STOCHASTIC LOGISTIC MODEL 15

By putting n = 1 in the above formula we find that the expected
time to extinction from the state 1 can be written as follows:

(2.24) Eτ1 =
1

µ1

N∑
j=1

πj =
1

µ1p
(0)
1

.

The expected time to extinction from state n can therefore be written
in the alternative form

(2.25) Eτn = Eτ1

n∑

k=1

1

ρk

N∑

j=k

p
(0)
j .

The expected time to extinction from an arbitrary initial distribution
{pn(0)} can be derived from the above expression for Eτn. The result
can be written

(2.26) Eτ =
1

µ1

N∑
j=1

πj

j∑

k=1

1

ρk

N∑

n=k

pn(0).

This assumes that the initial distribution is supported on the set of
transient states, i.e. that

∑N
n=1 pn(0) = 1.

Both Nisbet and Gurney [24] and Renshaw [32] describe the exact
analytic expression that they give for Eτn as cumbersome and claim
that it does not allow an intuitive understanding. Our different no-
tation and our interpretation of ρn and πn in terms of the stationary
distributions p(1) and p(0) improves this situation. Additional improve-
ment will be reached when we have derived approximations of ρn and
πn for the Verhulst process, as is done in the next section of the paper.

It is useful to note that our expressions for expected times to ex-
tinction are dimensionally correct. Each expectation is proportional to
1/µ1, which is a natural time constant for the process.

We proceed to derive the first expression for Eτn in (2.23). The
derivation is based on the recurrence relation of order two

(2.27) Eτn =
1

κn

+
λn

κn

Eτn+1 +
µn

κn

Eτn−1, n = 1, 2, . . . , N,

with boundary values

(2.28) Eτ0 = 0 and EτN =
1

µN

+ EτN−1.

To solve this recursion relation we put gn = ρn(Eτn − Eτn−1). It
follows then that gn satisfies the recursion relation of order one

(2.29) gn − gn+1 =
ρn

µn

=
πn

µ1

, n = 1, 2, . . . , N,

with final value

(2.30) gN =
ρN

µN

=
πN

µ1

,
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and solution

(2.31) gn =
1

µ1

N∑
j=n

πj.

By solving the recursion of order one

(2.32) Eτn − Eτn−1 =
1

µ1

1

ρn

N∑
j=n

πj, n = 1, 2, . . . , N,

with initial value

(2.33) Eτ0 = 0,

we establish the first expression for Eτn in (2.23).
It remains for us to derive the expression (2.26) for Eτ for an ar-

bitrary initial distribution supported on the set of transient states.
Clearly we have

(2.34) Eτ =
N∑

n=1

pn(0)Eτn.

By using the second expression for Eτn in (2.23) and interchanging the
order of summation between n and j we get

(2.35) Eτ =
1

µ1

N∑
j=1

πj

N∑
n=1

pn(0)

min(n,j)∑

k=1

1

ρk

.

The result follows by interchanging the order of summation between n
and k.

It is instructive to confirm that the results in (2.22) and (2.23) can
be derived from (2.26). The derivation of (2.22) from (2.26) makes use
of the relation (2.13) for the proabilities qn in terms of the sequencies
πn and ρn.

3. The Verhulst logistic model

This section is devoted to an analysis of the Verhulst logistic model
for population growth. The deterministic version of the model leads
to a nonlinear differential equation that commonly is expressed in the
form

(3.1) Y ′ = r

(
1− Y

K

)
Y.

Here the state variable Y can be interpreted as the population size. Its
time development Y (t) depends on its initial value Y (0) and on the
two parameters r and K, where r is called the intrinsic growth rate
of the population and K is referred to as the carrying capacity of the
environment.



THE STOCHASTIC LOGISTIC MODEL 17

A stochastic version of the model is formulated in Subsection 3.1. It
takes the form of a finite-state birth-death process with an absorbing
state at the origin.

The deterministic version of the model is briefly analysed in Subsec-
tion 3.2. The most important property is a bifurcation phenomenon. It
defines a partition of the parameter space into two subsets with quali-
tatively different behaviours. The model predicts that the population
size will in one of the parameter sets approach a positive level as time
increases, and that it will approach zero in the other one.

A counterpart to this qualitative behaviour is established for the
stochastic version of the model analyzed in this paper. It is shown
to exhibit three qualitatively different behaviours in three subsets of
parameter space. We identify these subsets and analyze both the quasi-
stationary distribution and the time to extinction in each of them.
Briefly, the time to extinction is long, moderately long, and short in
each of these subsets.

The analysis of the stochastic version of the model proceeds by ap-
plying the results derived in the previous section for a finite-state birth-
death process with an absorbing state at the origin. Notation that is
used in this analysis is summarized in Subsection 3.3. Asymptotic ap-
proximations for the parameter sequences ρn and πn are derived in
Subsections 3.4 and 3.5. Approximations of the stationary distribu-
tions p(1) and p(0) of the two auxiliary processes when the time to
extinction is long are derived in Subsections 3.6 and 3.7. Correspond-
ing approximations of the quasi-stationary distribution and of the time
to extinction are derived in Subsections 3.8 and 3.9. Approximations
of the same quantities when the time to extinction is short are given
in Subsection 3.10.

The remainder of the section is devoted to an analysis in the so-called
transition region where the time to extinction is moderately long. This
case is the most intricate of the three. Its treatment requires a rescal-
ing of the parameters that is derived in Subsection 3.11. Approxima-
tions of the parameter sequencies ρn and πn are given in Subsection
3.12. Approximations of the stationary distributions p(1) and p(0) of
the two auxiliary processes are derived in Subsections 3.13 and 3.15,
respectively. The derivation of the approximation of the latter of these
two distributions requires a uniform approximation that is derived in
Subsection 3.14. Finally, approximations of the quasi-stationary dis-
tribution and of the time to extinction are derived in Subsections 3.16
and 3.17.

Numerical illustrations of our results are given in each of the three
subsets of the parameter space.

3.1. Formulation of the stochastic Verhulst model. The formu-
lation of a stochastic version of the Verhulst model requires us to define
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transition rates λn and µn as functions of n. We note that the right-
hand side of (3.1) divided by Y can be interpreted as the net birth rate
per individual, i.e. as the difference between the birth rate per indi-
vidual and the death rate per individual. Furthermore, the net birth
rate per individual is seen to be a linearly decreasing function of the
population size. This is the way in which the model acounts for density
dependence.

In a stochastic setting we can achieve this dependence on the pop-
ulation size of the net birth rate per individual by assuming either
that the birth rate per individual is a linearly decreasing function of
the population size, or that the death rate per individual is a linearly
increasing function of the population size, or that both of these rates
depend on the population size in the postulated way. We are therefore
led to the following specification of the two transition rates λn and µn:

(3.2) λn =

{
λ

(
1− α1

n

N

)
n, n = 0, 1, . . . , N − 1,

0, n = N,

and

(3.3) µn = µ
(
1 + α2

n

N

)
n, n = 0, 1, . . . , N.

This definition of λn and µn defines implicitly five parameters N, λ,
µ, α1, and α2. Among these, the maximum population size N is a
large positive integer, the rates λ and µ are strictly positive, while the
parameters α1 and α2 obey the following inequalities: 0 ≤ α1 ≤ 1 and
α2 ≥ max{0, (1−α1)R0− 1}, with R0 = λ/µ. The upper bound for α1

is necessary to ensure that the transition rate λn is nonnegative, while
the second lower bound for α2 guarantees that the quantity K defined
in the next subsection is smaller than or at most equal to N . In order
to assure density dependence we assume that at least one of α1 and α2

is strictly positive. Norden [25] analyzes this model with α1 = 1. Note
that the SIS model corresponds to α1 = 1 and α2 = 0. The sum of α1

and α2 is denoted α:

(3.4) α = α1 + α2.

The ratio λ/µ is important in what follows. As already noted above
we denote it by

R0 = λ/µ

and refer to it as the basic reproduction ratio. The parameter region
where the time to extinction is long (short), is identified by the condi-
tion that R0 > 1 is fixed (R0 < 1 is fixed) as N →∞. We refer to the
corresponding parameter region by saying that R0 is distinctly above
(distinctly below) the deterministic threshold value 1. The third pa-
rameter region where the time to extinction is moderately long is char-
acterized by values of R0 close to 1. This region is a transition region
between the other two. The R0-values that determine the boundaries
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between the three parameter regions depend on N , α1, and α2. They
are derived in Subsection 3.11.

3.2. The deterministic version of the Verhulst model. One can
gather some useful information about the stochastic model formulated
in the previous subsection by studying its deterministic approximation.
We let Y (t) denote the population size at time t. It follows then that
Y satisfies the following differential equation:

Y ′ = λ

(
1− α1

Y

N

)
Y − µ

(
1 + α2

Y

N

)
Y.

This equation can be rewritten in the form

Y ′ = µ

(
R0 − 1− (α1R0 + α2)

Y

N

)
Y.

For R0 = 1 this equation can be written

Y ′ = −µα

N
Y 2, R0 = 1,

while it takes the well-known form

Y ′ = r

(
1− Y

K

)
Y, R0 6= 1,

for R0 different from 1. Here,

(3.5) r = µ(R0 − 1)

is the intrinsic growth rate per individual at low population density,
and

(3.6) K =
(R0 − 1)N

α1R0 + α2

is referred to as carrying capacity when it is positive. Note that both
K and r are negative if R0 < 1.

We study the asymptotic behaviour of the solution Y (t) of the dif-
ferential equation for Y as t → ∞ with the initial value Y (0) ≥ 0. It
is straightforward to show that Y (t) approaches the positive carrying
capacity K as t → ∞ if Y (0) > 0 and R0 > 1, while Y (t) approaches
0 as t → ∞ for all nonnegative initial values if R0 ≤ 1. Thus, a pos-
itive population size is predicted for R0 > 1 if Y (0) > 0, while the
population size approaches 0 for large t if R0 ≤ 1. This constitutes the
bifurcation result for the deterministic version of the model.

The deterministic version of the model can be viewed as an approx-
imation of the stochastic one as N → ∞. With finite N we shall find
that the time to extinction is always finite and that it can be studied
in the stochastic model, while extinction in finite time is impossible for
the deterministic model.

It is customary to study the deterministic version of the Verhulst
model only for the case R0 > 1, but this has the disadvantage that
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it will hide the interesting bifurcation phenomenon. We study the
stochastic version of the model without this restriction.

3.3. Notation. For ease of reference we summarize here some of the
notation that is used in the rest of the paper. Several quantities are
defined as functions of the four basic parameters N , R0, α1, and α2.

The first four quantities, K1, σ̄1, γ1, and β1, are important for
describing the results when the time to extinction is long, i.e. when
R0 > 1. The quantities K1 and σ̄1 then serve as mean and standard
deviation, respectively, of the approximation of the quasi-stationary
distribution, while γ1 appears in approximating expressions for the ex-
pected time to extinction, and β1 appears in an expression that ap-
proximates the left tail of the quasi-stationary distribution. Note that
K1 equals the carrying capacity.

The quantities K1 and σ̄1 are defined as follows:

K1 =
R0 − 1

α1R0 + α2

N,(3.7)

σ̄1 =

√
αR0

α1R0 + α2

√
N,(3.8)

When both α1 and α2 are strictly positive we define γ1 as follows:

(3.9) γ1 =
1

α2

(
α

α1

log
α1R0 + α2

α
− log R0

)

=
1

α1

(
log R0 − α

α2

log
αR0

α1R0 + α2

)
,

0 < α1 ≤ 1, 0 < α2.

In case one of α1 and α2 is equal to zero, the definition of γ1 is instead
given by the following expressions:

(3.10) γ1 =





1

α2

(
R0 − 1− log R0

)
, α1 = 0,

1

α1

(
log R0 − R0 − 1

R0

)
, α2 = 0.

Furthermore, β1 is defined in terms of γ1 as follows:

(3.11) β1 = sign(R0 − 1)
√

2Nγ1.

It is straightforward to show that the two expressions given for γ1

when α1 and α2 both are positive are equal. Furthermore, γ1 is a
continuous function of α1 and α2; it is decreasing in both of these
arguments; it is nonnegative so β1 is well defined. Both γ1 and β1 are
equal to zero when R0 = 1.
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In showing these properties of the function γ1, it is useful to define
six auxiliary functions as follows:

f1(R0) =
R0 − 1

R0

,

f2(R0, α1, α2) =
α1 + α2

α2

log
(α1 + α2)R0

α1R0 + α2

,

f3(R0) = log R0,

f4(R0, α1, α2) =
α1 + α2

α1

log
α1R0 + α2

α1 + α2

,

f5(R0) = R0 − 1,

f(R0, α1, α2) =
(α1 + α2)(R0 − 1)

α1R0 + α2

.

The domains of definition of these functions are R0 > 0, 0 < α1 < 1,
and α2 > 0. One can then show that the following inequalities hold:

f1(R0) ≤ f2(R0, α1, α2) ≤ f3(R0) ≤ f4(R0, α1, α2) ≤ f5(R0),

f2(R0, α1, α2) ≤ f(R0, α1, α2) ≤ f4(R0, α1, α2).

These inequalities are strict except when R0 = 1. All six functions
are increasing in R0. In addition, f2(R0, α1, α2) approaches f3(R0)
and f4(R0, α1, α2) approaches f5(R0) as α1 → 0, while f4(R0, α1, α2)
approaches f3(R0) and f2(R0, α1, α2) approaches f1(R0) as α2 → 0.

The next three quantities appear at several places in the paper. In
particular, they serve a role in describing the approximations of the
left tails of the stationary distributions p(0) and p(1) with R0 distinctly
above the threshold value one. These quantities carry the subscript 2.
The definitions are as follows:

µ̄2 = log R0
N

α
,

σ̄2 =

√
N

α
,

β2 =
µ̄2

σ̄2

= log R0

√
N

α
.

The study of the transition region requires a rescaling of R0 in terms
of N and α. The rescaling is derived in Subsection 3.11. It leads to an
alternate parameter ρ defined by

(3.12) ρ = (R0 − 1)

√
N

α
.

This parameter is used to identify the three parameter regions. The
transition region is characterized by finite values of ρ as N → ∞.
Clearly, this means that R0 approaches the value 1 as N → ∞. For
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practical purposes we note the rule of thumb that sets the boundary
between the transition region and the region where R0 is distinctly
larger than one at ρ = 3. This choice of value of ρ is related to the fact
that a normally distributed random variable takes values smaller than
three standard deviations below its mean with small probability.

The next three quantities are used to describe the approximation of
the quasi-stationary distribution in the transition region. The defini-
tions are

µ̄3 = ρ

√
N

α
,

σ̄3 = σ̄2 =

√
N

α
,

β3 =
1√
R0

K1

σ̄1

=
R0 − 1

R0

√
N

α
.

The description of the results in the transition region makes use of
the three functions H, H0, and H1. The first two of these functions are
defined in (3.55) and (3.50), respectively, while the last one is defined
by

(3.13) H1(x) =
Φ(x)

ϕ(x)
,

where ϕ denotes the normal density function ϕ(x) = exp(−x2/2)/
√

2π,
and Φ denotes the normal distribution function Φ(x) =

∫ x

−∞ ϕ(x) dx.
Finally, it is useful to define the following three functions of n, one

corresponding to each of the three subscripts 1, 2 and 3:

y1(n) =
n−K1

σ̄1

,

y2(n) =
n− µ̄2

σ̄2

,

y3(n) =
n− µ̄3

σ̄3

.

3.4. Approximations of ρn. By inserting the expressions (3.2) for
the transition rates λn and µn into (2.3) and (2.4) we arrive at explicit
expressions for the sequencies ρn and πn in terms of n and the four pa-
rameters N , R0, α1, and α2. Our method for deriving approximations
of the quasi-stationary distribution and of the time to extinction starts
with deriving approximations of these explicit expressions for ρn and
πn.



THE STOCHASTIC LOGISTIC MODEL 23

Three approximations of ρn, n = 1, 2, . . . , N , are derived in this
subsection. The results are as follows:

ρn ∼ 1√
R0

ϕ(y1(n))

ϕ(β1)
, y1(n) = O(1), 1 ≤ n ≤ N, N →∞,(3.14)

ρn ∼ 1

R 0

ϕ(y2(n))

ϕ(β2)
, n = O(

√
N), 1 ≤ n, N →∞,(3.15)

ρn ∼ Rn−1
0 , n = o(

√
N), 1 ≤ n, N →∞.(3.16)

Here, ϕ(x) = exp(−x2/2)/
√

2π denotes the normal density function.
Note that the first approximation of ρn is proportional to a normal

density function with the argument y1(n). The definition y1(n) = (n−
K1)/σ̄1 shows that the corresponding distribution has its mean equal
to the carrying capacity K1, and its standard deviation equal to σ̄1.
The condition that y1(n) is O(1) describes the body of this normal
distribution, but excludes its tails. The restriction of n to positive
integer values has the consequence that the range of n-values for which
the first approximation is valid varies strongly with the parameter R0.
Thus, if R0 has a fixed value larger than 1, then K1 is of the order of N
and actually equal to a fixed proportion of N . Since σ̄1 is of the order
of
√

N we conclude that the n-values of the body of the distribution
belong to the interval from 1 to N . Thus, the first approximation
holds throughout the body of the normal distribution. However, if R0

is fixed at a value in the interval from 0 to 1, then K1 is negative, and
the body of the distribution has negative n-values. In this case, the
first approximation does not hold for any value of n. In the transition
region, finally, K1 = ρ

√
N/α is of the order of

√
N , and K1/σ̄1 = ρ is

finite as N →∞. The body of the distribution will then contain both
positive and negative values of n. The first approximation is then valid
for that portion of the body of the distribution where n is positive.

The second approximation of ρn is seen to be proportional to a nor-
mal density function with the argument y2(n). In this case, the corre-
sponding distribution has its mean equal to µ̄2 and its standard devi-
ation equal to σ̄2. The range of n-values for which this approximation
is valid lies in the left tail of the normal distribution if R0 > 1, in the
right tail if R0 < 1, and in the body for the transition region. The
third approximation is a special case of the second one. It holds for a
smaller range of n-values. This approximation is of value in deriving
an approximation of the quasi-stationary distribution in the transition
region.

In order to derive these results we note first that ρn can be expressed
in the following explicit form:
(3.17)

ρn =
(N − α1)(N − 2α1) · · · (N − (n− 1)α1)

(N + α2)(N + 2α2) · · · (N + (n− 1)α2)
Rn−1

0 , n = 2, 3, . . . , N.
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For α1 > 0 we express the numerator of the fraction on the right hand
side as αn−1

1 (N/α1 − (n − 1))n−1 = αn−1
1 Γ(N/α1)/Γ(N/α1 − (n − 1)).

Similarly, for α2 > 0 the denominator equals αn−1
2 (N/α2 + 1)n−1 =

αn−1
2 Γ(N/α2 +n)/Γ(N/α2 +1). The expression for ρn can therefore be

rewritten as follows when both α1 and α2 are positive:

ρn =
1

R0

1

1− α1n/N

Γ(N/α1)Γ(N/α2)

Γ(N/α1 − n)Γ(N/α2 + n)

(
α1R0

α2

)n

,

0 < α1 ≤ 1, α2 > 0.

On the other hand, if either α1 or α2 is equal to zero, the expressions
for ρn are as follows:

ρn =





1

R0

Γ(N/α2)

Γ(N/α2 + n)

(
R0N

α2

)n

, α1 = 0,

1

R0

1

1− α1n/N

Γ(N/α1)

Γ(N/α1 − n)

(
α1R0

N

)n

, α2 = 0.

We proceed to approximate the gamma functions in these expressions
with Stirling’s formula: Γ(x) ∼ (x/e)x

√
2π/x as x → ∞. We require

that α2 = O(1) as N → ∞ if α2 > 0. The conditions for applying
Stirling’s formula are then satisfied as N − n → ∞ if 0 < α1 ≤ 1 and
as N → ∞ if α2 > 0. The resulting asymptotic approximation of ρn

can be expressed as follows:

(3.18) ρn ∼ g(n) exp(h(n)), n = 1, 2, . . . , N, N →∞,

and N − n →∞ if 0 < α1 ≤ 1,

where

(3.19) g(n) =
1

R0

√
1 + α2n/N√
1− α1n/N

,

and where the expression for h(n) takes different forms depending on
whether α1 or α2 equals zero. When both of these parameters are
positive we get

(3.20) h(n) = n log R0 −
(

N

α2

+ n

)
log

(
1 +

α2n

N

)

−
(

N

α1

− n

)
log

(
1− α1n

N

)
, 0 < α1 ≤ 1, α2 > 0.

When α2 = 0 the expression for h(n) takes the form

(3.21) h(n) = n log R0 − n−
(

N

α1

− n

)
log

(
1− α1n

N

)
,

0 < α1 ≤ 1, α2 = 0.
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Finally, h(n) takes the following form when α1 = 0:

(3.22) h(n) = n + n log R0 −
(

N

α2

+ n

)
log

(
1 +

α2n

N

)
,

α1 = 0, α2 > 0.

We shall use the approximation of ρn given in (3.18) to derive the
three asymptotic approximations given in (3.14)-(3.16) by making fur-
ther restrictions on n. The first approximation is derived for n-values
in the vicinity of the n-value where h(n) is maximum, while the other
two hold for small n-values.

We determine the n-value for which h(n) is maximum. In carrying
out this step we allow n to be real-valued. By differentiation we find
that

h′(n) = log
(1− α1n/N)R0

1 + α2n/N
.

This expression holds for all three forms of h(n) above. It is readily
seen that derivative of h equals 0 for n = K1. An evaluation of the
second derivative shows that this corresponds to a maximum for the
function h.

The approximation of ρn given in (3.14) is based on Taylor expan-
sions of g(n) and h(n) about n = K1, while the approximations in
(3.15) and (3.16) are based on Taylor expansions about n = 0. We
include one term in the expansions of g(n) and three terms in the ex-
pansions of h(n).

The sum of the first three terms of the Taylor expansion of h(n) about
K1 gives the following asymptotic result, using the notation introduced
in the previous subsection:

(3.23) h(n) ∼ 1

2
β2

1 −
1

2
y2

1(n), y1(n) = O(1), N →∞.

The linear term in the expansion equals 0 since h(n) has maximum at
n = K1. Note that β1 and σ̄1 are defined from the relations h(K1) =
β2

1/2 and h′′(K1) = −1/σ̄2
1.

The first (constant) term in the Taylor expansion of g(n) about K1

gives

g(n) ∼ 1√
R0

, y1(n) = O(1), N →∞.

These approximations of h(n) and g(n) are asymptotic since succeeding
terms in each Taylor expansion are of decreasing order in N when
y1(n) = O(1). By inserting these two approximations for h(n) and
g(n) into the asymptotic approximation (3.18) for ρn we conclude that
(3.14) holds.
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The sum of the first three terms in the Taylor expansion of h(n)
about 0 gives the following result:

h(n) ∼ n log R0 − α

2N
n2 =

1

2
β2

2 −
1

2
y2

2(n),

n = O(
√

N), N →∞.

The constant term h(0) equals 0 in this case. The parameters µ̄2, σ̄2,
and β2 are determined by µ̄2 = −h′(0)/h′′(0), σ̄2

2 = −1/h′′(0), and
β2

2/2 = h(0) − (h′(0))2/(2h′′(0)). The constant term in the Taylor
expansion of g(n) about 0 gives

g(n) ∼ 1

R0

, n = O(
√

N), N →∞.

Both of these approximations of h(n) and g(n) are asymptotic since
succeeding terms in each of the Taylor expansions are of decreasing
order in N when n = O(

√
N). By inserting these two approximations

of h(n) and g(n) into the asymptotic approximation (3.18) for ρn we
find that (3.15) holds. If we impose the further restriction on n that it

is asymptotically smaller than
√

N we are led to the simpler result in
(3.16).

3.5. Approximations of πn. In this subsection we derive the follow-
ing three asymptotic approximations of πn:

(3.24) πn ∼ 1

(R0 − 1)
√

R0 σ̄2
1

ϕ(y1(n))

ϕ(β1)
,

R0 > 1, y1(n) = O(1), N →∞,

(3.25) πn ∼ 1

nR0

ϕ(y2(n))

ϕ(β2)
, n = O(

√
N), N →∞,

(3.26) πn ∼ 1

n
Rn−1

0 , n = o(
√

N), N →∞.

In addition, we show that πn is asymptotically equal to an integral
of ρn with respect to R0. We emphasize the functional dependencies of
ρn and πn on R0 by writing ρn(R0) and πn(R0) instead of ρn and πn.
The relation to be established can then be written

(3.27) πn(R0) ∼ 1

R0

∫ R0

0

ρn(x) dx, n = O(
√

N), N →∞.

By using the definition (2.4) of πn, the asymptotic expression (3.18)
for ρn, and the expression (3.19) for g(n), we find that πn can be
approximated as follows:
(3.28)

πn ∼ g0(n) exp(h(n)), n = 1, 2, . . . , N, N →∞, N − n →∞,
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where

g0(n) =
1

R0

1 + α2/N

n
√

(1− α1n/N)(1 + α2n/N)
,

while h(n) is given by (3.20)-(3.22).
The constant term in the Taylor expansion of g0(n) about K1 gives

the following approximation:

g0(n) ∼ 1

(R0 − 1)
√

R0 σ̄2
1

, R0 > 1, y1(n) = O(1), N →∞.

This approximation is asymptotic since succeeding terms in the Taylor
expansion are of decreasing order in N for y1(n) = O(1). By inserting
this approximation of g0(n) and the approximation (3.23) of h(n) into
the asymptotic approximation (3.28) for πn we conclude that (3.24)
holds.

For small values of n we find from (2.4) that

(3.29) πn ∼ 1

n
ρn, n = O(

√
N), N →∞.

Combining this result with the approximations of ρn in (3.15) and
(3.16) establishes (3.25) and (3.26).

The remaining relation to be established is based on the expression
(3.17) for ρn. This expression has the important feature that the de-
pendence on R0 is simple. We write ρn = ρn(R0) = CRn−1

0 , where
C depends on N , n, α1, and α2, but not on R0. By using (3.29) we

find that R0πn(R0) ∼ CRn
0/n for n = O(

√
N). It follows that πn(R0)

satisfies asymptotically the differential equation

d

dR0

(R0πn(R0)) ∼ CRn−1
0 = ρn(R0), n = O(

√
N), N →∞.

The relation (3.27) follows since R0πn(R0) takes the value 0 if R0 = 0.

3.6. Approximation of the stationary distribution p(1) when
R0 is distinctly larger than the deterministic threshold value
one. In this and the following three subsections we study the Verhulst
model under the condition that R0 > 1 is fixed as N →∞. The scaling
introduced in Subsection 3.11 will allow us to judge for any fixed value
of R0 larger than one how large N has to be in order for this condition
to hold.

We derive three approximations of the distribution p(1) in this sub-
section. The first one is valid in the body of the distribution, and the
other two in the left tail. The third one is valid for a smaller range of
n-values than the second one.

The three approximations can be expressed as follows:
(3.30)

p(1)
n ∼ 1

σ̄1

ϕ(y1(n)), R0 > 1, R0 fixed, y1(n) = O(1), N →∞,
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(3.31) p(1)
n ∼ α1R0 + α2

R0

√
αN

ϕ(β1)

ϕ(β2)
ϕ(y2(n)),

R0 > 1, R0 fixed, n = O(
√

N), N →∞,

and

(3.32) p(1)
n ∼ α1R0 + α2√

αN
ϕ(β1) Rn−1

0 ,

R0 > 1, R0 fixed, n = o(
√

N), N →∞.

The first of these results shows that the distribution p(1) is approxi-
mately normal in its body. The second result shows that the left tail of
the same distribution is approximated by the left tail of another normal
distribution, multiplied by a known constant.

The derivations of these results are based on the expression (2.6)

for the probability p
(1)
n . Since ρn is approximated in Subsection 3.4,

it remains to find an approximation of p
(1)
1 = 1/

∑N
n=1 ρn. The ap-

proximation (3.14) shows that ρn is proportional to the probability
ϕ(y1(n))/σ̄1 for a normally distributed random variable with mean K1

and standard deviation σ̄1 to take the value n. This approximation
is valid in the body of the distribution, where the argument of the
function ϕ is O(1). Now the sum of all these probabilities over n from
1 to N is asymptotically equal to 1. The reason is that this range
of n-values covers the body of the distribution. This follows since for
R0 > 1 we have y1(1) < 0 and y1(N) > 0 and furthermore K1 = O(N)

and σ̄1 = O(
√

N), and therefore y1(1) = O(
√

N) and y1(N) = O(
√

N).

We can therefore approximate the sum
∑N

n=1 ρn as follows:

N∑
n=1

ρn ∼ 1√
R0

1

ϕ(β1)

N∑
n=1

ϕ(y1(n)) ∼ σ̄1√
R0ϕ(β1)

.

Hence we find that

p
(1)
1 =

1∑n=N
n=1 ρn

∼
√

R0ϕ(β1)

σ̄1

=
α1R0 + α2√

αN
ϕ(β1),

R0 > 1, R0 fixed, N →∞.

This result and the approximation (3.14) of ρn inserted into the expres-

sion (2.6) for p
(1)
n establishes (3.30). If instead we use the approximation

(3.15) or (3.16) of ρn we are led to (3.31) and (3.32), respectively.

3.7. Approximation of the stationary distribution p(0) when
R0 is distinctly larger than the deterministic threshold value
one. We derive three approximations of the stationary distribution
p(0), one in the body of the distribution, and two in the left tail. These
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approximations can be written as follows:

(3.33) p(0)
n ∼ 1

σ̄1

ϕ(y1(n)),

R0 > 1, R0 fixed, y1(n) = O(1), N →∞,

(3.34) p(0)
n ∼ (R0 − 1)

√
αN

α1R0 + α2

ϕ(β1)

ϕ(β2)

ϕ(y2(n))

n
,

R0 > 1, R0 fixed, n = O(
√

N), N →∞,

and

(3.35) p(0)
n ∼ (R0 − 1)

√
αN

α1R0 + α2

ϕ(β1)
Rn

0

n
,

R0 > 1, R0 fixed, n = o(
√

N), N →∞.

A comparison of the first of these expressions with (3.30) shows that
the bodies of the two distributions p(1) and p(0) are approximated by
the same normal distribution. The last of the expressions shows an
unusual feature of the left tail of the distribution p(0). The probabilities

p
(0)
n will not all increase monotonically with n in the left tail of the

distribution unless R0 > 2. With R0 < 2 we find from the asymptotic

approximation above that p
(0)
n < p

(0)
n−1 holds (asymptotically) if n <

R0/(R0 − 1).
The derivation is based on the expression (2.5) for the probability

p
(0)
n . We use the approximation (3.24) of πn. As in the previous sub-

section we use the result
∑N

n=1 ϕ(y1(n))/σ̄1 ∼ 1 to evaluate the sum∑N
n=1 πn. It follows that p

(0)
1 = 1/

∑N
n=1 πn is approximated as follows:

(3.36) p
(0)
1 ∼ R0(R0 − 1)

√
αN

α1R0 + α2

ϕ(β1),

R0 > 1, R0 fixed, N →∞.

Insertion of this approximation of p
(0)
1 and the approximation (3.24) of

πn into the expression (2.5) for p
(0)
n establishes (3.33). If instead we

use the approximation (3.25) or (3.26) of πn we are led to (3.34) and
(3.35), respectively.

3.8. Approximation of the quasi-stationary distribution q for
R0 distinctly larger than the deterministic threshold value one.
It is a larger challenge to find an approximation of the quasi-stationary
distribution q than to find approximations of the stationary distribu-
tions p(1) and p(0). The reason is of course that we have explicit expres-
sions for the latter, but not for the former. The approximations that
we derive for the quasi-stationary distribution q are weaker than those
for the stationary distributions p(1) and p(0) in two ways. One weakness
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is that they are not claimed to be asymptotic. A second weakness is
that the approximation of the left tail of q is valid for a shorter range
of n-values than the corresponding approximations for p(1) and p(0).

The following results are derived:
(3.37)

qn ≈ 1

σ̄1

ϕ(y1(n)), R0 > 1, R0 fixed, y1(n) = O(1), N →∞,

and

(3.38) qn ≈ (R0 − 1)
√

αN

α1R0 + α2

ϕ(β1)
Rn

0 − 1

n
,

R0 > 1, R0 fixed, n = o(
√

N), N →∞.

Our derivation is based on the relation (2.13). A basic problem is to
determine the sum over k in (2.13). We note that the numerator in each
term of this sum is a decreasing function of k, and that the denominator
is an increasing function of k up to k = [K1], since the quantity ρk

is proportional to the probability p
(1)
k , and these probabilities increase

monotonically with k over this range of k-values. Thus we can conclude
that the terms in the sum over k decrease monotonically in k at least
up to k = [K1]. Furthermore, the first term in the sum is equal to 1,
while the term that corresponds to k = [K1] is very much smaller than
1. It may then be expected that the sum is dominated by the sum of
the first several terms.

We consider k-values up to a value that grows toward infinity as
N → ∞, but for which the growth is slower than

√
N . For such

k-values we make the assumption that qk = o(1) as N → ∞ for k =

o(
√

N). This implies that the numerator of each term is asymptotically
equal to 1. We are therefore led to consider the problem of finding
an approximation of the sum

∑n
k=1 1/ρk. We note from (3.16) that

ρk ∼ Rk−1
0 if k = o(

√
N) as N → ∞. By using this approximation of

each term, the sum itself is found to be approximated by

n∑

k=1

1−∑k−1
j=1 q

(0)
j

ρk

∼
n∑

k=1

1

Rk−1
0

=
R0

R0 − 1

(
1− 1

Rn
0

)
,

R0 > 1, R0 fixed, n = o(
√

N), N →∞.

We note that the sum increases toward the constant value R0/(R0− 1)
as n becomes large. We assume that the sum is approximated by this
constant value for all larger n-values. From this assumption we get the
following simple approximation of the quasi-stationary distribution:
(3.39)

qn ≈ R0

R0 − 1

(
1− 1

Rn
0

)
πnq1, R0 > 1, R0 fixed, N →∞.

Note that the factor 1− 1/Rn
0 is asymptotic to 1 as n →∞.
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It remains to determine an approximation of q1. We use the re-
quirement that the sum of the probabilities qn equals 1. This sum is
approximated as follows:

N∑
n=1

qn ≈ R0

R0 − 1

N∑
n=1

(
1− 1

Rn
0

)
πnq1 ∼ R0

R0 − 1

N∑
n=1

πnq1

=
R0

R0 − 1

q1

p
(0)
1

, R0 > 1, R0 fixed, N →∞.

Here we have used the fact that the terms πn that lie in the tail of the
distribution p(0) are asymptotically small. By putting this approxima-
tion of the sum equal to 1 and applying the approximation (3.36) of

p
(0)
1 we are led to the following approximation of the probability q1:

(3.40) q1 ≈ R0 − 1

R0

p
(0)
1 ∼ (R0 − 1)2

√
αN

α1R0 + α2

ϕ(β1),

R0 > 1, R0 fixed, N →∞.

The approximation (3.37) follows by inserting this approximation of
q1 and the approximation (3.24) of πn into (3.39), and using the fact

that n = O(
√

N) when y1(n) = O(1) and R0 > 1. The approximation
(3.38) follows if instead we insert the approximation (3.26) of πn.

The tail probabilities are exponentially small as N →∞ because of
the factor ϕ(β1). Hence the assumption made earlier that they are o(1)
as N →∞ is satisfied.

In summary we note that the bodies of all three distributions p(1), p(0)

and q are approximately normal with the mean equal to the carrying
capacity K1 and with standard deviation σ̄1 in the parameter region
where R0 > 1 is fixed as N →∞. We note also that the important left
tails of these distributions are all different.

In this parameter region we find that K1 is of the order O(N) and

that σ̄1 is of the order O(
√

N). The coefficient of variation of the

quasi-stationary distribution is therefore of the order O(1/
√

N). This
supports the arguments by May [20] as a justification for using deter-
ministic modelling for large populations in this parameter region.

A plot of the three distributions is shown in Figure 1. The stationary
distributions p(0) and p(1) are computed from the exact expressions in
(2.5) and (2.6) with the transition rates λn and µn given by (3.2).
The quasi-stationary distribution q is computed by using the iteration
procedure (2.17). We note that the quasi-stationary distribution is
closer to p(0) than to p(1). The same observation was made by Kryscio
and Lefèvre [19] for the SIS model with α1 = 1 and α2 = 0. The feature

that the probabilities p
(0)
n decrease as a function of n for small n-values

when R0 < 2 is evident from the figure. The left tails of the three
distributions are shown in Figure 2, together with their approximations.
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For p(0) and p(1) the figure shows the approximations that are valid for
n = O(

√
N), while the approximation for q is only valid for n = o(

√
N).

It is straightforward to show that the mean of the quasi-stationary
distribution K1 is a decreasing function of α1 and α2, and that the
standard deviation σ̄1 is a decreasing function of α1, while it decreases
as a function of α2 only if α2 > (R0 − 2)/α1. A possibly more inter-
esting situation concerns the influence of the parameters α1 and α2 on
the standard deviation σ̄1 when the carrying capacity K1 is constant.
To study this, we allow R0 to be a function of α1 and α2 with the
property that the ratio K1/N is constant and equal to A. Thus, we get
R0(α1, α2) = (1 + Aα2)/(1− Aα1). The standard deviation σ̄1 is then
determined as a function of α1 and α2 from the expression

(3.41) σ̄1(α1, α2) =

√
(1− Aα1)(1 + Aα2)√

α1 + α2

√
N.

It is straightforward to show that the standard deviation σ̄1(α1, α2) is
a decreasing function of α1 and α2. Norden [25] has studied the same
question in the special case with α1 = 1. We conclude that a stronger
density dependence in the situation where the carrying capacity K1 is
constant leads to a smaller standard deviation of the quasi-stationary
distribution.

3.9. Approximation of the time to extinction when R0 is dis-
tinctly above the deterministic threshold value one. We noted
in Subsection 2.4 that the time to extinction τQ from quasi-stationarity
for a birth-death process with finite state space and with absorbing
state at the origin has an exponential distribution with expectation
equal to EτQ = 1/(µ1q1). An approximation for this expectation is
found by inserting the approximation (3.40) for q1 into this expression
for EτQ. This approximation takes the following form:

(3.42) EτQ ≈
√

2π

µ

α1R0 + α2

(R0 − 1)2

exp(γ1N)√
αN

R0 > 1, R0 fixed, N →∞.

Note that this approximation of the expected time to extinction from
quasi-stationarity grows exponentially with N .

The expected time to extinction from the state 1 can be expressed
as follows, using the expression (2.24) for E(τ1) and the approximation

(3.36) of p
(0)
1 :

Eτ1 =
1

µ1p
(0)
1

∼
√

2π

µ

α1R0 + α2

R0(R0 − 1)

exp(γ1N)√
αN

R0 > 1, R0 fixed, N →∞.

Finally, we approximate the expected time to extinction from the
state n. By using arguments similar to those of the previous subsection
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we can approximate the sum appearing in the expression (2.25) for Eτn.
The result is

Eτn ≈
√

2π

µ

α1R0 + α2

(R0 − 1)2

(
1− 1

Rn
0

)
exp(γ1N)√

αN

R0 > 1, R0 fixed, n = o(
√

N), N →∞.

Note that this approximation of the expected time to extinction from
the state n increases monotonically with n from the approximation of
Eτ1 toward the approximation of EτQ. Note also that the approxima-
tion of the ratio EτQ/Eτ1 ≈ R0/(R0 − 1) for R0 > 1 is bounded as
N →∞.

It should be noted that the time to extinction from state n, τn, is a
random variable whose location is poorly measured by its expectation
Eτn for small values of n when R0 > 1. The reason for this is that its
distribution is bimodal. In fact, τn can be seen as a mixture of two ran-
dom variables with widely different expectations. After starting in the
state n, the process will either reach the absorbing state 0 very quickly,
with probability 1/Rn

0 , or it will with the complementary probability
reach the set of states where the quasi-stationary distribution describes
its behaviour, and where the time to extinction is equal to τQ.

The approximations of the expected times to extinction EτQ and Eτn

are increasing functions of α1 and α2 when the ratio K1/N is constant
and equal to A. To prove this we insert R0(α1, α2) = (1 + Aα2)/(1 −
Aα1) into the expression (3.9) for γ1. We find that

γ1 = − 1

α1

log(1− Aα1)− 1

α2

log(1 + Aα2), 0 < α1 ≤ 1, 0 < α2.

It is straightforward to show that the partial derivatives of this expres-
sion with respect to α1 and α2 are positive. This proves that a stronger
density dependence implies that the expected times to extinction EτQ

and Eτn become larger, since these expectations grow exponentially
with N .

The approximation (3.42) is not new; it was essentially given by
Barbour [3]. Indeed, Barbour’s result shows that if TN denotes the
time to extinction, then

lim
N→∞

P [kNTN ≥ x] = exp(−x),

where

kN =
(ᾱ1 − ᾱ2)

2

γ̄1 + γ̄2

√(
γ̄1

ᾱ1

+
γ̄2

ᾱ2

)
N

2π

·
(

ᾱ1γ̄2 + ᾱ2γ̄1

ᾱ1(γ̄1 + γ̄2)

)Nᾱ1/γ̄1
(

ᾱ1γ̄2 + ᾱ2γ̄1

ᾱ2(γ̄1 + γ̄2)

)Nᾱ2/γ̄2

.
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Here, the parameters ᾱ1, γ̄1, ᾱ2, and γ̄2 are related to our transition
rates λn and µn as follows:

λn = ᾱ1n− γ̄1
n2

N
, µn = ᾱ2n + γ̄2

n2

N
.

Barbour’s parameters can therefore be expressed in ours by the rela-
tions

ᾱ1 = λ, γ̄1 = λα1, ᾱ2 = µ, γ̄2 = µα2.

Barbour’s result for finite N is that the distribution of the time to
extinction TN is approximately exponential with the expected value
1/kN . This can be compared with our result that if the initial distri-
bution equals the quasi-stationary distribution, then the distribution
of TN = τQ is exactly exponential with expectation approximated by
(3.42). It is straightforward to use the above relations between Bar-
bour’s parameters and ours to show that Barbour’s expression for 1/kN

is equal to our approximation (3.42) for EτQ. Our parametrization has
the advantage of giving a better heuristic understanding for the N -
dependence of EτQ.

3.10. Approximations when R0 is distinctly below the deter-
ministic threshold value one. The time to extinction decreases
drastically for large N if R0 is lowered from a fixed value larger than
one to a fixed value smaller than one. We give approximations of the
time to extinction and of the quasi-stationary distribution in the latter
case.

It follows from (3.16) that the stationary distribution p(1) is approx-
imated as follows:

p(1)
n ∼ (1−R0)R

n−1
0 , R0 < 1, R0 fixed,

1 ≤ n, n = o(
√

N), N →∞.

Thus, p(1) has a truncated geometric distribution. The expected num-
ber of individuals in stationarity is

EX(1) ∼ 1

1−R0

, R0 < 1, R0 fixed, N →∞.

Similarly it follows from (3.26) that the stationary distribution p(0)

is approximated by the log series distribution:

p(0)
n ∼ R0

log(1/(1−R0))

1

n
Rn−1

0 , R0 < 1, R0 fixed,

1 ≤ n, n = o(
√

N), N →∞,

and that the expected number of individuals in stationarity is

EX(0) ∼ R0

(1−R0) log(1/(1−R0))
, R0 < 1, R0 fixed, N →∞.
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The quasi-stationary distribution in this case has the same approxi-
mation as the stationary distribution p(1):

qn ≈ (1−R0)R
n−1
0 , R0 < 1, R0 fixed,

1 ≤ n, n = o(
√

N), N →∞.

The expected number of individuals in quasi-stationarity is therefore
approximated by

EX(Q) ≈ 1

1−R0

, R0 < 1, R0 fixed, N →∞.

To derive this result we assume that qn ∼ (1−R0)R
n−1
0 for n = o(

√
N)

as N → ∞. By applying (3.16) we find that each term in the sum
over k in (2.13) is asymptotic to 1. We conclude that qn ∼ nπnq1 for

n = o(
√

N). The result follows by application of (3.26).
The expected time to extinction from quasi-stationarity is found to

be asymptotically approximated as follows:

EτQ =
1

µ1q1

∼ 1

µ

1

1−R0

, R0 < 1, R0 fixed, N →∞.

Similarly, we find that the expected time to extinction from the state
1 is asymptotically approximated by

Eτ1 =
1

µ1p
(0)
1

∼ 1

µ

log(1/(1−R0))

R0

, R0 < 1, R0 fixed, N →∞.

Note that these approximations of expectations of time to extinction
are independent of N , while the results in Subsection 3.9 show that the
corresponding approximations grow exponentially with N . Note also
that these results are all independent of α1 and α2. This means that
the approximations of both the quasi-stationary distribution and of the
expected time to extinction are independent of the density dependence.

The three distributions p(1), p(0), and q are illustrated for R0 dis-
tinctly below the deterministic threshold value one in Figure 3. Here,
p(1) is seen to give a closer approximation of the quasi-stationary dis-
tribution than p(0), in line with our results above.

3.11. Scaling of R0 in the transition region. We recall that the
quasi-stationary distribution q is for R0 > 1 and N sufficiently large
approximated in its body by a normal distribution with mean K1 and
standard deviation σ̄1. The random variable having q as its distribution
takes only positive values. The normal approximation can therefore be
expected to be acceptable only if the ratio of K1 to σ̄1 is large. We find
from (3.7) and (3.8) that this ratio equals

K1

σ̄1

=
R0 − 1√

αR0

√
N.
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The normal distribution is a good approximation if the ratio approaches
infinity as N →∞, as it does in the parameter region defined by R0 > 1
being constant as N → ∞, but a poor approximation if the ratio is
small. Smallness in an asymptotic analysis context is interpreted as
not approaching infinity as N → ∞, or, equivalently, as the condi-
tion K1/σ̄1 = O(1). The expression for the ratio K1/σ̄1 above shows
that this ratio remains bounded if the quantity ρ defined by (3.12)
remains bounded. The introduction of ρ represents a rescaling of R0

that makes R0 a function of N . If ρ remains bounded as N →∞ then
R0 approaches one. The parameter region described by the condition
ρ = O(1) defines the transition region that will be studied in the fol-
lowing subsections. A natural condition that guarantees boundedness
of ρ is that ρ is fixed. We note the rule of thumb that the boundary be-
tween the transition region and the region where R0 is distinctly larger
than one is for practical purposes approximately given by ρ = 3.

It is also useful to note that the quantities introduced in Subsection
3.3 obey the following simple asymptotic relations in the transition
region:

K1 ∼ µ̄3, σ̄1 ∼ σ̄3, β1 ∼ ρ, ρ fixed, N →∞,(3.43)

µ̄2 ∼ µ̄3, σ̄2 = σ̄3, β3 ∼ ρ, β2 ∼ ρ, ρ fixed, N →∞.(3.44)

Furthermore, the functions y1 and y2 are asymptotically equivalent to
the function y3 in the sense that

(3.45) y1(n) ∼ y3(n), y2(n) ∼ y3(n), ρ fixed, N →∞.

3.12. Approximations of ρn and πn in the transition region.
The following simple asymptotic approximations of ρn and πn hold in
the transition region:

ρn ∼ ϕ(y3(n))

ϕ(ρ)
, ρ fixed, n = O(

√
N), N →∞,(3.46)

πn ∼ ϕ(y3(n))

nϕ(ρ)
, ρ fixed, n = O(

√
N), N →∞.(3.47)

To derive these expressions we note first that in the transition region
the condition y3(n) = O(1) is equivalent to n = O(

√
N). By applying

the asymptotic expressions for β1 in (3.43) and for y1 in (3.45) to the
asymptotic expression (3.14) for ρn, (3.46) follows. An alternate way
of deriving the same result is to apply the asymptotic expressions for
β2 in (3.44) and for y2 in (3.45) to the asymptotic expression (3.15) for
ρn. The same asymptotic approximations of β2 and y2 applied to the
asymptotic expression for πn in (3.25) establishes (3.47).

3.13. Approximation of the stationary distribution p(1) in the
transition region. We show in this subsection that the stationary
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distribution p(1) is approximated by a truncated normal distribution in
the transition region. The approximation can be expressed as follows:

(3.48) p(1)
n ∼ ϕ(y3(n))

σ̄3Φ(ρ)
, ρ fixed, n = O(

√
N), N →∞,

where Φ denotes the normal distribution function. The probability p
(1)
1

is approximated by

(3.49) p
(1)
1 ∼ ϕ(ρ)

σ̄3Φ(ρ)
=

1

H1(ρ)

√
α

N
, ρ fixed, N →∞,

where the function H1 = Φ/ϕ was defined in (3.13).
In order to derive the results in (3.48) and (3.49) we evaluate the

sum
∑N

n=1 ρn, using the approximation (3.46) of ρn. We get

N∑
n=1

ρn ∼ 1

ϕ(ρ)

N∑
n=1

ϕ(y3(n)) ∼ σ̄3(1− Φ(y3(
1
2
))

ϕ(ρ)
∼ σ̄3Φ(ρ)

ϕ(ρ)
,

ρ fixed, n = O(
√

N), N →∞.

The argument y3(1/2) of the function Φ results from the well-known
continuity correction in the body of the normal distribution. In the last
step we use the fact that y3(1/2) ∼ −ρ. By using (2.6) we conclude

that the approximation of p
(1)
1 in (3.49) holds. The approximation of

p
(1)
n in (3.48) follows by inserting this approximation of p

(1)
1 and the

approximation (3.46) of ρn into the expression (2.6) for p
(1)
n .

3.14. Approximation of the stationary distribution p(0) in the
transition region. The results in this subsection are based on a func-
tion H0, defined as follows:

(3.50) H0(ρ) =





Ha(ρ), ρ ≤ −3,

Ha(−3) +

∫ ρ

−3

Φ(y)

ϕ(y)
dy, ρ > −3,

where the auxiliary function Ha is given by

Ha(ρ) = − log |ρ| − 1

2ρ2
+

3

4ρ4
− 5

2ρ6
, ρ ≤ −3.

The dependence of H0 on ρ is illustrated in Figures 4 and 5. Note that
the vertical scale is linear in Figure 4 and logarithmic in Figure 5.

We show in this subsection that the stationary distribution p(0) can
be approximated as follows in the transition region:

(3.51) p(0)
n ≈ 1

1
2
log(N/α) + H0(ρ)

1

ϕ(ρ)

ϕ(y3(n))

n
,

ρ fixed, n = O(
√

N), N →∞.
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and the probability p
(0)
1 by

(3.52) p
(0)
1 ≈ 1

1
2
log(N/α) + H0(ρ)

, ρ fixed, N →∞.

The approximations are not claimed to be asymptotic. Note that
the expression 1

2
log(N/α) + H0(ρ) is asymptotically approximated by

its first term for N sufficiently large. But the slow growth of the first
term with N makes this one-term approximation useless for reasonable
values of N , and necessitates the inclusion of both terms.

Two steps are needed to derive the approximation of the distribution
above. The first one is taken by inserting the approximation (3.47) for

πn into the expression (2.5) for p
(0)
n , to get

(3.53) p(0)
n ∼ 1

n

ϕ(y3(n))

ϕ(ρ)
p

(0)
1 , ρ fixed, n = O(

√
N), N →∞.

The second step is taken in Appendix B. It consists in deriving the
following approximation of

∑N
n=1 πn:

(3.54)
N∑

n=1

πn ≈ 1

2
log

N

α
+ H0(ρ), ρ fixed, N →∞.

This establishes the approximation (3.52), since (2.5) shows that p
(0)
1

is equal to the inverse of
∑N

n=1 πn. The approximation (3.51) of p
(0)
n

follows by inserting this approximation of p
(0)
1 into (3.53).

3.15. Approximation of the quasi-stationary distribution q in
the transition region. In this subsection the function H defined im-
plicitly by the relation

(3.55) H(ρ, α) =
1

ρ
√

α + 1/H(ρ, α)

∫ ρ

−1/H(ρ,α)

Φ(y)

ϕ(y)
dy

plays an important role. Note that H(ρ, 1) is the average of the function
H1(ρ) = Φ(ρ)/ϕ(ρ) over the interval (−1/H(ρ, 1), ρ), whose left end-
point depends on H(ρ, 1). We show in Appendix D that H(ρ, α) > 0
is well defined by the requirement that it satisfy the above relation if
one of the following two conditions holds: 1) ρ ≥ 0 and α ≥ 0; 2) ρ < 0
and 0 ≤ α ≤ 1 and H(ρ, α) < −1/ρ. The dependence of H(ρ, α) on ρ
is illustrated in Figures 4 and 5.

It is convenient in what follows to introduce ρ̃ to denote the following
function of ρ and α:

(3.56) ρ̃ =
1√

αH(ρ, α)
.

The domain of definition of the function H identifies a restricted
parameter domain on which the quasi-stationary distribution q can be
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approximated as follows:

(3.57) qn ≈ 1

ϕ(ρ)

ρ̃

ρ + ρ̃

1

n

(
1− 1

Rn
1

)
ϕ(y3(n)),

ρ fixed, ρ ≥ 0 if α > 1, n = O(
√

N), N →∞,

where we use R1 to denote a function of N , ρ, and α defined by

(3.58) R1 = 1 +

√
α(ρ + ρ̃)√

N
.

The important probability q1 is approximated by

(3.59) q1 ≈ 1√
NH(ρ, α)

, ρ fixed, ρ ≥ 0 if α > 1, N →∞.

The quasi-stationary distribution q is shown in the transition region
together with the two stationary distributions p(0) and p(1) in Figure 6.
The figure also shows the approximation (3.57) of the quasi-stationary
distribution and the approximations (3.51) and (3.48) of the two sta-
tionary distributions. All three approximations appear to be accept-
able. The expectations of the three distributions are shown as functions
of ρ in Figure 7 together with their approximations. The approxima-
tions get poorer as ρ increases, and improve as N increases. We note
that the expectation of the quasi-stationary distribution EX(Q) is bet-
ter approximated by the expectation EX(1) than by the expectation
EX(0) when ρ is small, but that the roles of these two approximat-
ing expectations are reversed as ρ becomes large. This is in line with
our earlier observation that the quasi-stationary distribution is best
approximated by the stationary distribution p(1) when R0 is distinctly
less than one, but by p(0) when R0 is distinctly larger than one.

The derivation of the approximation for the distribution is given in
Appendix C.

3.16. Approximation of the time to extinction in the transition
region. By inserting the approximation (3.59) of q1 into the expression
(2.22) for the expected time to extinction from quasi-stationarity, EτQ,
we find that

(3.60) EτQ =
1

µ1q1

≈
√

NH(ρ, α)

µ
,

ρ fixed, ρ ≥ 0 if α > 1, N →∞.

Furthermore, insertion of the approximation (3.52) of p
(0)
1 into the

expression (2.24) for the expected time to extinction from the state 1,
Eτ1, gives the approximation

Eτ1 =
1

µ1p
(0)
1

≈ 1

µ

(
1

2
log

N

α
+ H0(ρ)

)
, ρ fixed, N →∞.
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We note that the expected time to extinction from the state n, Eτn,
grows quite strongly with n in the transition region. The reason is
based on our results that EτQ is of the order

√
N , while Eτ1 is of the

order log N . Hence the relation EτQ =
∑N

n=1 qnEτn implies that there

are n-values for which Eτn is at least of the order
√

N . This is turn
implies that the ratio Eτn/Eτ1 is at least of the order

√
N/ log N for

these values of n.
A numerical evaluation of the expected time to extinction from quasi-

stationarity shows that it grows slowly with ρ when ρ is negative, and
that it grows much faster with ρ when ρ is positive. An illustration
with N = 1000 and α1 = α2 = 0.5 is given in Figure 8. The figure
also shows two approximations, namely (3.42) and (3.60). The former
of these is valid when R0 is distinctly larger than one, while the latter
one happens to be uniformly valid in the two parameter regions where
R0 is distinctly smaller than one, and in the transition region. This
uniformity is valid in the special case α = α1 + α2 = 1, but not for
other values of the sum of the two parameters α1 and α2.

4. Concluding Comments

We have carried out a careful analysis of the quasi-stationary dis-
tribution and of the time to extinction in the three parameter regions
that give qualitatively different results. The transition region presented
the largest mathematical challenge. It is hoped that the insight that
this has given will be of value in studying more realistic and more
complicated population models.

One of the main outstanding problems in mathematical epidemiol-
ogy is to understand the mechanisms that cause the combination of
extinction and recurrence that has been observed in transmission of
such infections as measles; see the discussion of critical community
size by Dietz [11]. A model suited for the study of these questions
takes the form of a bivariate birth-and-death process with absorbing
states. It is shown by N̊asell [23] that this model exhibits qualitative
behaviour similar to what we have derived for the Verhulst model. A
notable difference is, however, that the transition region is very much
wider for this model than for the Verhulst model. This has the conse-
quence that the transition region is needed for the analysis of this model
for a large range of reasonable parameter values and population sizes.
There is therefore a very definite need to understand the behaviour of
the quasi-stationary distribution in the transition region. This need is
further emphasized by the fact that the study of the quasi-stationary
distribution in this bivariate birth-and-death model presents apprecia-
ble mathematical difficulties in addition to those that are encountered
in dealing with the univariate Verhulst model.
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Appendix A. A uniform approximation of
∑N

n=1 ρn

An approximation of the stationary distribution p(0) in the transi-
tion region is derived in Subsection 3.14. An important ingredient in
this derivation is the approximation of

∑N
n=1 πn in the transition region

derived in Appendix B, since by (2.5) p
(0)
1 = 1/

∑N
n=1 πn. The develop-

ment in Appendix B is based on an approximation of the sum
∑N

n=1 ρn

that is uniformly valid in two adjoining parameter regions, namely the
region where R0 is fixed at a value between 0 and 1 and the transition
region where ρ is fixed. This is derived in the present appendix. We
derive the following result:
(A.1)

N∑
n=1

ρn ∼ σ̄2

R0

Φ(β3)

ϕ(β3)
, R0 < 1 and R0 fixed, or ρ fixed, N →∞.

The first step in the derivation is to insert the approximation (3.15)

for ρn into the sum
∑N

n=1 ρn. We note that this approximation of ρn is
valid without restriction on R0. Thus we get

N∑
n=1

ρn ∼ 1

R0ϕ(β2)

N∑
n=1

ϕ(y2(n)), N →∞.

The evaluation of the sum
∑N

n=1 ϕ(y2(n)) requires an extension of
the continuity correction for the normal distribution from the body to
the tails of the distribution. A result to this effect is established by
N̊asell [21]. This result gives an asymptotic approximation of a sum

of the form
∑N

n=1 ϕ(y(n)), where y(n) = (n − µ)/σ, and where it is

assumed that σ = O(
√

N). The result can be written in the form

N∑
n=1

ϕ(y(n)) ∼ σ

(
Φ

(
N + G(z(N))− µ

σ

)
− Φ

(
G(z(1))− µ

σ

))
,

N →∞.

where z(n) = y(n)/σ = (n−µ)/σ2, and where the function G is defined
by

G(z) =





1

z
log

exp(z)− 1

z
, z 6= 0,

1

2
, z = 0.

The function G is continuous, monotonically increasing, takes values
in the open interval (0, 1), and satisfies the relation G(z) + G(−z) =
1. It takes the value 1/2 (corresponding to the well-known continuity
correction in the body of a normal distribution) when its argument is
equal to 0. Note that the result that the continuity correction equals
1/2 actually holds asymptotically also in those parts of the tails of the
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distribution (where |y(n)| → ∞) that lie so close to the body that

y(n) = o(
√

N).
By applying the continuity correction result we find that

N∑
n=1

ϕ(y2(n))

∼ σ̄2

(
Φ

(
N + G(z2(N))− µ̄2

σ̄2

)
− Φ

(
G(z2(1))− µ̄2

σ̄2

))

∼ σ̄2Φ(B2), N →∞,

where z2(n) = y2(n)/σ̄2 and where we use B2 as short-hand notation
for the following expression:

B2 = β2 − G(z2(1))

σ̄2

.

Hence we get
N∑

n=1

ρn ∼ σ̄2Φ(B2)

R0ϕ(β2)
, N →∞.

In order to prove that
∑N

n=1 ρn has the asymptotic approximation
(A.1), it suffices to show that

(A.2)
Φ(B2)

ϕ(β2)
∼ Φ(β3)

ϕ(β3)
, R0 < 1 and R0 fixed, or ρ fixed, N →∞.

In the transition region where ρ = O(1) this follows from the results
that all three arguments β2, β3, and B2 are asymptotic to ρ.

The function Φ(y)/ϕ(y) is of importance at several places in this
paper. A well-known asymptotic approximation as y → −∞, which is
actually an upper bound for y < 0, will be used repeatedly. It can be
stated as follows:

(A.3)
Φ(y)

ϕ(y)
∼ −1

y
, y → −∞.

The result can be derived through integration by parts of ϕ(t). Addi-
tional asymptotic approximations are given below by (B.3).

In the region where R0 is fixed at a value smaller than 1 we note
that B2 → −∞ as N → ∞. By using the asymptotic approximation
of Φ(x)/ϕ(x) given above we find that

Φ(B2)

ϕ(β2)
∼ − 1

β2

ϕ(B2)

ϕ(β2)
, R0 < 1 R0 fixed, N →∞.

Here,

ϕ(B2)

ϕ(β2)
= exp

(
β2

2 −B2
2

2

)
∼ exp

(
β2G(z2(1))

σ̄2

)

= exp(− log(1/R0)G(z2(1))), R0 < 1 R0 fixed, N →∞.
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Now

z2(1) =
1− µ̄2

σ̄2
2

∼ log
1

R 0
, R0 < 1 R0 fixed, N →∞.

By using the definition of the function G we find that

log
1

R0

G(log
1

R0

) = log

(
1−R0

R0 log(1/R0)

)
.

Hence we get

ϕ(B2)

ϕ(β2)
∼ R0 log(1/R0)

1−R0

, R0 < 1, R0 fixed, N →∞.

We conclude therefore that the left-hand side of (A.2) is approximated
by

Φ(B2)

ϕ(β2)
∼ R0

√
α

(1−R0)
√

N
= − 1

β3

,

R0 < 1, R0 fixed, N →∞.

This completes the derivation since the right-hand side of (A.2) is as-
ymptotic to the same expression.

Appendix B. Approximation of
∑N

n=1 πn in the transition
region

In this appendix we derive an approximation of the sum
∑N

n=1 πn

in the transition region. The approximation is not asymptotic, and
we shall therefore be concerned with the error involved in using this
approximation. The approximation given in (3.54) is a special case of
the results derived here.

By using the relation between πn and ρn in (3.27) and the uniform

approximation of
∑N

n=1 ρn in (A.1) we find that

N∑
n=1

πn ∼ 1

R0

∫ R0

0

N∑
n=1

ρn(x) dx ∼ σ̄2

R0

∫ R0

0

1

x

Φ(y(x))

ϕ(y(x))
dx,

ρ fixed, N →∞.

Here, the argument of Φ and ϕ in the integrand is β2

√
N = σ̄2(R0 −

1)/R0 with R0 replaced by x. Hence y(x) = σ̄2(x − 1)/x. The uni-

formity of the approximation of
∑N

n=1 ρn derived in Appendix A is
important here, since the integration interval covers both the parame-
ter region where R0 < 1 is fixed and the one where ρ is fixed as N →∞.
The integral in the right-hand side of this expression can be rearranged



44 INGEMAR NÅSELL

by a change of integration variable. We get

(B.1)
N∑

n=1

πn ∼ 1

R0

∫ ρ/R0

−∞

1

1− y/σ̄2

Φ(y)

ϕ(y)
dy,∼

∫ ρ

−∞

1

1− y/σ̄2

Φ(y)

ϕ(y)
dy,

ρ fixed, N →∞.

Here we have used the facts that the integrand is O(1) at the right end
of the integration interval, that R0 ∼ 1, and that ρ/R0 ∼ ρ.

It remains to establish the following approximation:

(B.2)

∫ ρ

−∞

1

1− y/σ̄2

Φ(y)

ϕ(y)
dy ≈ 1

2
log

N

α
+H0(ρ), ρ fixed, N →∞,

where the function H0 is defined below.
The derivation of the approximation given by the right-hand side

of (B.2) is based on a partitioning of the integration interval (−∞, ρ)
into the union of the two subintervals (−∞, ρb) and (ρb, ρ). Different
approximations of the integrand are used in these two subintervals.
In the first one, the function Φ(y)/ϕ(y) is replaced by its asymptotic
approximation as y → −∞, while the factor 1/(1 − y/σ̄2) is replaced
by its asymptotic approximation 1 in the second subinterval.

We choose ρb to be a negative constant, independent of N . The
approximation of the integrand in the first subinterval will then be
asymptotic in part of the interval, but it will fail to be asymptotic at
the right-hand end, since y is finite there. The resulting approximation
of the corresponding integral will therefore also fail to be asymptotic.
The error introduced in this way can however be kept acceptably small,
as shown below.

The sum of the first m terms of the asymptotic approximation of the
ratio Φ(y)/ϕ(y) as y → −∞ is denoted Sm(y). It is defined by
(B.3)

Sm(y) =
m∑

k=1

ak

y2k−1
= −1

y
+

1

y3
− 1 · 3

y5
+ · · ·+ am

y2m−1
, m = 1, 2, . . . ,

where

(B.4) ak = (−1)k (2k − 2)!

2k−1(k − 1)!
, k = 1, 2, . . . .

The result that Sm(y) gives an asymptotic approximation of Φ(y)/ϕ(y)
as y → −∞ extends (A.3), and can be established by integration by
parts of ϕ(t). The result is quoted by Abramowitz and Stegun [1],
formula 26.2.12. The sum Sm(y) also gives an upper bound (lower
bound) of the ratio Φ(y)/ϕ(y) for y < 0 if m is odd (even). By applying
the bounds one finds that

(B.5)

∣∣∣∣
Φ(y)

ϕ(y)
− Sm(y)

∣∣∣∣ < −|am+1|
y2m+1

, y < 0.
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We proceed to define the function H0. Let ρb be a negative constant,
independent of N , and put

(B.6) H0(ρ) =





Ha(ρ), ρ ≤ ρb,

Ha(ρb) +

∫ ρ

ρb

Φ(y)

ϕ(y)
dy, ρ > ρb,

where the auxiliary function Ha is defined by

Ha(ρ) = − log |ρ| −
mb∑

k=2

ak

2k − 2

1

ρ2k−2
, ρ < 0.

Here, mb is an integer given by

(B.7) mb(ρb) =

[
ρ2

b − 1 +
√

(ρ2
b + 1)2 + 4ρ2

b

4

]
.

where the brackets denote the largest integer less than or equal to
the quantity inside the brackets. Note that mb(ρb) is positive if ρb ≤
−

√
3/2. The definition of H0 is complete after we specify ρb. The

recommendation is to take ρb in the interval from -6 to -3. Further
comments on the choice of ρb and on the corresponding value of mb(ρb)
are given below.

Note that the definition of the function H0 given in Subsection 3.14
corresponds to the choice ρb = −3.

With this preparation we turn to the derivation of the approximation
(B.2). Assume first that ρ > ρb. The interval of integration in the
integral in the left-hand side of (B.2) is written as the union of the two
subintervals (−∞, ρb) and (ρb, ρ). The integral can then be written as
a sum of three integrals as follows:

(B.8)

∫ ρ

−∞

1

1− y/σ̄2

Φ(y)

ϕ(y)
dy = I1 + I2 + I3,

where

I1 =

∫ ρb

−∞

1

1− y/σ̄2

Sm(y) dy,

I2 =

∫ ρb

−∞

1

1− y/σ̄2

(
Φ(y)

ϕ(y)
− Sm(y)

)
dy,

I3 =

∫ ρ

ρb

1

1− y/σ̄2

Φ(y)

ϕ(y)
dy.

Here, m is a positive integer that depends on ρb and that will be de-
termined later.

Among the three integrals above, the first one can be evaluated ex-
plicitly since the integrand is rational, the absolute value of the second
one can be bounded with the help of the inequality (B.5), and the third
one can be approximated since the factor 1/(1−y/σ̄2) is asymptotically
equal to 1.



46 INGEMAR NÅSELL

By applying the inequality (B.5) we find the following bound for the
absolute value of I2:

|I2| < −|am+1|
∫ ρb

−∞

1

1− y/σ̄2

1

y2m+1
dy.

By partial fraction expansion, integration, substitution of the integra-
tion bounds, and leaving out the terms that are o(1) as N → ∞, we
find that the upper bound of |I2| is asymptotically approximated by

bm =
|am+1|
2mρ2m

b

.

We determine m so that this asymptotic approximation of the upper
bound is minimized. By using the definition of ak we find that

bm+1

bm

=
(2m + 1)m

(m + 1)ρ2
b

.

The value of m that minimizes bm is the largest integer mb = mb(ρb)
that is smaller than or equal to the positive root of the equation in
m that results by putting bm+1 = bm. This establishes the expression
(B.7) for mb(ρb). The resulting asymptotic approximation of the error
bound of |I2| is bmb

.
Our results depend on the value of ρb. A guide to the choice of ρb

is given by the following table. It lists the number of terms mb and
the asymptotic approximation bmb

of the error bound for some possible
values of ρb.

ρb mb bmb

-3 4 2 · 10−3

-4 8 3 · 10−5

-5 12 2 · 10−7

-6 18 6 · 10−10

The table shows that the asymptotic approximation of the error
bound for I2 can be made acceptably small by choosing the absolute
value of ρb sufficiently large.

We now turn to the integral I1, with m = mb. After partial frac-
tion expansion, integration, substitution of the integration bounds, and
leaving out the terms that are o(1) as N →∞ we find that

I1 ∼ log
σ̄2

|ρb| −
mb∑

k=2

ak

2k − 2

1

ρ2k−2
b

=
1

2
log

N

α
+ Ha(ρb).

The integral I3, finally, is found to have the following asymptotic
approximation:

I3 ∼
∫ ρ

ρb

Φ(y)

ϕ(y)
dy, ρ fixed, N →∞.
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It follows that

I1 + I3 ∼ 1

2
log

N

α
+ H0(ρ)

for ρ > ρb. This establishes the approximation in (B.2) since I2 is
approximated by 0.

The development so far is based on the assumption that ρb < ρ.
The treatment of the case ρ ≤ ρb is closely similar. In this case the
integral in the left-hand side of (B.8) is equal to the sum of two integrals
corresponding to I1 and I2. These integrals are found from I1 and I2,
respectively, by replacing the upper bounds of integration ρb by ρ. The
integral corresponding to I2 is, as above, approximated by 0, while the
integral corresponding to I1 is asymptotically equal to

1

2
log

N

α
+ Ha(ρ),

consistent with the definition of H0 in (B.6).

Appendix C. Derivation of the approximation of the
quasi-stationary distribution in the

transition region

The derivation of the results in this appendix is based on the relation
(2.13). We start with the assumption that

qj ∼ 1

H(ρ, α)
√

N
, j = o(

√
N), ρ fixed, N →∞,

where H(ρ, α) remains to be determined. This means that we are
assuming that the j-dependence of qj is determined by terms of smaller
order of magnitude for the indicated range of j-values. By using our
assumption and the approximation (3.16) of ρn we find that the terms

in the sum in (2.13) are approximated as follows for k = o(
√

N):

1−∑k−1
j=1 qj

ρk

∼ 1− (k − 1)/(H(ρ, α)
√

N)

1 + (k − 1)ρ
√

α/
√

N
∼ 1

Rk−1
1

,

k = o(
√

N), ρ fixed, N →∞,

where R1 is given by (3.58). Evaluation of the sum over k in (2.13) for

n = o(
√

N) leads to the expression
(C.1)

qn ∼ R1

R1 − 1

(
1− 1

Rn
1

)
πnq1, n = o(

√
N), ρ fixed, N →∞.

By using the approximation (3.26) of πn and noting that Rn
1 − 1 ∼

n(ρ
√

α + 1/H(ρ, α))/
√

N , Rn
1 ∼ 1, and Rn−1

0 ∼ 1 for n = o(
√

N) we
find that

qn ∼ q1, n = o(
√

N), ρ fixed, N →∞.
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This result is consistent with our assumption above in the sense that
the approximation is asymptotically independent of n for the indicated
range of n-values.

The next step is to determine q1 from the condition
∑N

n=1 qn = 1.
This step introduces an approximation that cannot be claimed to be
asymptotic since we use our above approximation of qn, and this ap-
proximation is not asymptotic for all n-values that satisfy n = O(

√
N),

but only for n = o(
√

N). Inserting the approximation (C.1) of qn into

the sum
∑N

n=1 qn gives

(C.2)
N∑

n=1

qn ≈ R1

R1 − 1
q1

N∑
n=1

πn

(
1− 1

Rn
1

)
, ρ fixed, N →∞.

The sum over n is written as a sum of two sums. The first of these is
approximated by the use of the approximation (3.54) of

∑N
n=1 πn. For

emphasis, we write πn(R0) instead of πn. The result is

N∑
n=1

πn(R0) ≈ 1

2
log

N

α
+ H0(ρ), ρ fixed, N →∞.

The terms in the second sum can be approximated for n = o(
√

N) by
using the approximation (3.26) of πn. We get

N∑
n=1

πn(R0)

Rn
1

≈ 1

R1

N∑
n=1

πn(R0/R1), ρ fixed, N →∞.

Now

R0

R1

∼ 1− 1/H(ρ, α)√
N

, ρ fixed, N →∞.

Since R1 ∼ 1 we conclude, again using the approximation (3.54) of∑N
n=1 πn, that

N∑
n=1

πn(R0)

Rn
1

≈ 1

2
log

N

α
+ H0(−1/H(ρ, α)),

ρ fixed, N →∞.

By adding the approximations of the two sums we get

N∑
n=1

πn

(
1− 1

Rn
1

)
≈ H0(ρ)−H0(−1/H(ρ, β))

=

∫ ρ

−1/H(ρ,α)

Φ(y)

ϕ(y)
dy, ρ fixed, N →∞.
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We next insert this approximation into the approximation (C.2) of∑N
n=1 qn, put

∑N
n=1 qn = 1, and solve for q1. The result is

q1 ≈ R1 − 1

R1

1∫ ρ

−1/H(ρ,α)
Φ(y)
ϕ(y)

dy
, ρ fixed, N →∞.

We insert the expression for R1 from (3.58) and use the fact that
R1 ∼ 1. By equating the resulting expression with the assumed form
for qn we find that H satisfies the relation (3.55), and that q1 is ap-
proximated by (3.59). The approximation of qn in (3.57) follows from
the approximation (C.1) by using the approximation (3.59) of q1 and
the approximation (3.47) of πn.

Appendix D. Proof that the function H is well defined

In this appendix we show that the function H defined implicitly by
the relation

(D.1) H(ρ, α) =
1

ρ
√

α + 1/H(ρ, α)

∫ ρ

−1/H(ρ,α)

Φ(y)

ϕ(y)
dy,

given in (3.55), is well defined for ρ ≥ 0 and α ≥ 0, and also for ρ < 0
if 0 ≤ α ≤ 1. In both cases we require H(ρ, α) > 0, and in the latter
case we add the requirement that H(ρ, α) < −1/ρ if 0 < α < 1.

For brevity put H1(y) = Φ(y)/ϕ(y). The function H1 is important
for the arguments in this appendix. We show that both H1 and the
function f1 defined by f1(y) = yH1(y) are completely monotonic, mean-
ing that their derivatives of all orders are positive for all real values of
their arguments.

To show this, note that the Laplace transform of the function which
equals ϕ(t)

√
2π = exp(−t2/2) for t > 0 is

G1(s) =

∫ ∞

0

exp(−st) exp(−t2/2) dt = H1(−s).

It follows that the function G1 is completely monotonic for all real val-

ues of the argument s, meaning that (−1)nG
(n)
1 (s) > 0. We conclude

that the function H1 is absolutely monotonic. See Widder [40] for fur-
ther discussion of the concepts of complete and absolute monotonicity.
Differentiation shows that H ′

1(x) = 1+xH1(x) and that f ′1(x) = H ′′
1 (x).

We conclude that also f1 is absolutely monotonic.
Define the function g as follows:

g(v) =





v

v + ρ
√

α

∫ ρ

−v

H1(y) dy, v ≥ 0, α ≥ 0, v 6= −ρ
√

α,

− ρH1(ρ), v = −ρ, α = 1, ρ < 0,

0, ρ = 0.
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Clearly, g depends also on ρ and α, but this dependence is omitted
in the notation. It follows from its definition that g is a continuous
function and that H(ρ, α) satisfies g(1/H(ρ, α)) = 1.

The derivative of g with respect to v is equal to

(D.2) g′(v) =
1

v + ρ
√

α

(
ρ
√

α

v + ρ
√

α

∫ ρ

−v

H1(y) dy + vH1(−v)

)
,

v > 0, α ≥ 0, v 6= −ρ
√

α.

We study first g(v) for ρ ≥ 0 and α ≥ 0. We get g(0) = 0 and
g(∞) = ∞, since

∫ ρ

−∞ H1(y) dy = ∞. Furthermore, g′(v) > 0. We
conclude that g(v) increases monotonically from 0 toward∞ as v grows
from 0 to ∞. Thus the equation g(v) = 1 has a unique solution, and
H(ρ, β) is well defined for ρ ≥ 0 and α ≥ 0.

Next consider ρ < 0. The function g will then have a singularity at
v = −ρ

√
α and zeroes at v = 0 and at v = −ρ. Exceptions occur for

α = 0 and for α = 1, when the singularity is absorbed by one of the
zeroes.

Thus, with α = 0 we get

g(v) =

∫ ρ

−v

H1(y) dy, v ≥ 0, ρ < 0, α = 0.

Then g(−ρ) = 0, g(∞) = ∞, and g′(v) = H1(−v) > 0. Hence the
equation g(v) = 1 has a unique solution, and H(ρ, 0) is well defined for
ρ < 0.

Next we consider α = 1. Note that g(v)/v is the average of H1(y)
over the interval (−v, ρ) if −v < ρ and over the interval (ρ,−v) if
ρ < −v. Since H1 is an increasing function we conclude that H1(−v) <
g(v)/v < H1(ρ) in the first case and that H1(ρ) < g(v)/v < H1(−v)
in the second case. We show that g(v) < 1 for 0 < v ≤ −ρ, and that
therefore the v-value where g equals one is larger than −ρ.

The function H1 satsfies the inequalities yH1(−y) < 1 if y > 0 and
−ρH1(ρ) < 1 for ρ < 0. This follows from the inequality Φ(y)/ϕ(y) <
S1(y) = −1/y for y < 0 noted after (B.4).

By applying the inequality yH1(−y) < 1 for y > 0 we get g(v) ≤
vH1(−v) < 1 for 0 < v ≤ −ρ. We conclude that g(v) < 1 for 0 <
v ≤ −ρ. This means that the equation g(v) = 1 has no solution in this
case.

Consider therefore v ≥ −ρ with ρ < 0. We then have g(−ρ) =
−ρH1(ρ) < 1 and g(∞) = ∞. We show below that g′(v) > 0 for
v > −ρ. It follows that the equation g(v) = 1 has a unique solution
with v > −ρ, and that therefore the function H(ρ, β) is well defined
for ρ < 0 and α = 1.

It remains to prove that g′(v) > 0 for v > −ρ when ρ < 0 and
α = 1. Since g(v)/v < H1(ρ), we find from (D.2) that the derivative
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g′(v) satisfies

g′(v) >
1

v + ρ
(ρH1(ρ) + vH1(−v)) =

1

v + ρ
(f1(ρ)− f1(−v)) > 0,

v > −ρ, ρ < 0, α = 1.

Here we have used the result established above that f ′1(x) > 0.
Now consider the case 0 < α < 1 and ρ < 0 with v ≥ 0. The

function g then has a singularity at v = −ρ
√

α, and zeroes at v = 0
and at v = −ρ. Furthermore, g(v) approaches ∞ as v → ρ

√
α from

the left, and also as v → ∞. We show below that g′(v) > 0 both for
0 < v < −ρ

√
α and for v > −ρ. It follows that there are two solutions

to the equation g(v) = 1, but that only one of them satisfies v > −ρ.
Note that g(v) is positive only for 0 < v < −ρ

√
α and for v > −ρ,

so it is only in these two intervals that it is possible for g(v) to take
the value one. Note furthermore that

√
α/(v + ρ

√
α) is an increasing

function of α. Hence
√

α/(v + ρ
√

α) < 1/(v + ρ) for 0 < α < 1.
Applying this inequality in the expression (D.2) for g′(v) gives

g′(v) >
1

v + ρ
√

α

(
ρ

v + ρ

∫ ρ

−v

H1(y) dy + vH1(−v)

)
.

This inequality holds both for 0 < v < −ρ
√

α and for v > −ρ with
ρ < 0 and 0 < α < 1. Now

1

v + ρ

∫ ρ

−v

H1(y) dy < H1(y) − ρ < v, ρ < 0, 0 < α < 1,

while the inequality is reversed if v < −ρ. In either case we find that

g′(v) >
1

v + ρ
√

α
(f1(ρ)− f1(−v)) > 0.
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Figure 1. Numerical evaluations of the two stationary
distributions p(0) and p(1) and of the quasi-stationary
distribution qs are shown for R0 distinctly above the
deterministic threshold value 1. The parameters are
N = 1000, R0 = 1.17, and α1 = α2 = 1. The bodies
of all three distributions are approximated by a normal
distribution, shown dashed, that is practically indistin-
guishable from p(1). The approximations improve as N
and/or R0 are increased.
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Figure 2. Numerical evaluations of the left tails of the
two stationary distributions p(0) and p(1) and of the quasi-
stationary distribution qs are shown for R0 distinctly
above the deterministic threshold value 1. The parame-
ters are N = 1000, R0 = 1.17, and α1 = α2 = 1 (same as
in Figure 1). The approximations of the respective tails
are shown dotted. The tail of the normal distribution
that approximates the bodies of all three distributions is
also shown.
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Figure 3. Numerical evaluations of the two stationary
distributions p(0) and p(1) and of the quasi-stationary
distribution qs are shown for R0 distinctly below the
deterministic threshold value 1. The parameters are
N = 1000, R0 = 0.83, and α1 = α2 = 1. The trun-
cated geometric distribution that approximates p(1) and
qs and the log series distribution that approximates p(0)

are shown dotted.
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Figure 4. The functions H(ρ, α), H0(ρ), and H1(ρ) =
Φ(ρ)/ϕ(ρ) are shown as functions of ρ for negative values
of ρ. The second argument of H is α = 1.
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Figure 5. The functions H(ρ, α), H0(ρ), and H1(ρ) =
Φ(ρ)/ϕ(ρ) are shown as functions of ρ for positive values
of ρ. The second argument of H is α = 1. Note that the
vertical scale is logarithmic.
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Figure 6. Numerical evaluations of the two stationary
distributions p(0) and p(1) and of the quasi-stationary dis-
tribution qs are shown for R0 in the transition region
near 1. The parameters are N = 1000, ρ = 2, and
α1 = α2 = 1. The approximations of the three distri-
butions are shown dotted.
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Figure 7. Numerical evaluations of the expectations of
the two stationary distributions p(0) and p(1) and of the
quasi-stationarity distribution qs are shown as functions
of ρ for R0 in the transition region near 1, together with
the carrying capacity K1. The parameters are N = 1000
and α1 = α2 = 0.5. The corresponding approximations
are shown dotted.
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Figure 8. The expected time to extinction from quasi-
stationarity is shown as a function of ρ with N = 1000
and α1 = α2 = 0.5, and µ = 1. Two approximations
are shown dotted. One of them holds for R0 distinctly
larger than 1, and the other one holds uniformly for R0

distinctly smaller than 1, and for R0 in the transition
region.


