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This Maple worksheet is denoted sirs3pr.

The deterministic version of the model shows damped oscillations toward an 
endemic infection level. 
The particular model dealt here has a state space with 3 variables: S, I, and R, and the
infection rate is "proper", with S+I+R-1 in the denominator. 
Two things are done here.
First we derive an (approximate) expression for the angular frequency of the 
deterministic model oscillations, and after that we give a derivation of the moments 
of a diffusion approximation. 
Ingemar Nåsell, KTH, Stockholm, 2012-10-03.  

restart;
with(LinearAlgebra,Transpose,Eigenvalues,
CharacteristicPolynomial);
with(VectorCalculus,Jacobian);
interface(imaginaryunit=II);

I

The reason for changing the notation used for the imaginary unit is that "I" will be 
used below to denote the number of infected individuals. 
The original transition rates are stored in the table transA:  

transA:=table([[1,0,0]=mu*N,[1,0,-1]=delta*R,[-1,1,0]=beta*S*I/
(S+I+R-1),[-1,0,0]=mu*S,[0,-1,1]=gamma*I,[0,-1,0]=mu*I,[0,0,-1]
=mu*R]);

The Maple procedure "scale" is used to change the transition rates: 
scale:=proc(tab)
  local xA,n,xB,xC;
  xA:=op(2,eval(tab));
  n:=nops(xA);
  xB:=subs(S=x1*N,I=x2*N,R=x3*N,beta=mu*alpha1*R0,gamma=mu*
(alpha1-1),delta=mu*(alpha2-1),xA);
  xC:=[seq(lhs(op(i,xB))=simplify(rhs(op(i,xB)/N)),i=1..n)];
  table(xC);
end proc:

Apply the scaling and reparamerization described above to get the table of transition
rates "trans":

trans:=scale(transA);
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Next is a procedure that determines the right-hand sides of the deterministic ODEs 
for the scaled variables x1, x2, x3 from the table of transition rates:

equ:=proc(i,tab)
  local x,n;
  x:=op(2,eval(tab));
  add(lhs(x[n])[i]*rhs(x[n]),n=1..nops(x));
end proc:

The 3 right-hand sides are as follows:
eq1:=equ(1,trans);
eq2:=simplify(equ(2,trans));
eq3:=equ(3,trans);

Critical points:
crit:=solve({eq1,eq2,eq3},{x1,x2,x3});

The point corresponding to an endemic infection level is termed (x10,x20,x30): 
x10:=rhs(crit[2][1]); 
x20:=rhs(crit[2][2]);
x30:=map(factor,rhs(crit[2][3]));

The Jacobian of the system of ODEs is denoted Bx:
Bx:=Jacobian([eq1,eq2,eq3],[x1,x2,x3]);
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Evaluate the Jacobian at the critical point:
B:=simplify(subs(x1=x10,x2=x20,x3=x30,Bx));



(7)(7)

(3)(3)

(8)(8)

(9)(9)

We proceed to determine the eigenvalues of the matrix B. 
We use first the command "Eigenvalues" to show that one of the eigenvalues equals -

After that, we use the command "CharacteristicPolynomial" and the knowledge that 

eigenvalues. 
eig:=Eigenvalues(B);
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Next we determine the characteristic polynomial:
p:=CharacteristicPolynomial(B,lambda);

To proceed, we derive a quadratic equation for the remaining two eigenvalues by 

p1:=map(simplify,collect(simplify(p/(lambda+mu)),lambda));

The two roots of p1 = 0, where  p1 =  +   + b, can be written - , where 

. 

, where  b1= , 

and a1=

.Thus,
a1:=op(2,p1)/mu/lambda;
b1:=op(3,p1)/mu^2;

Consider the quantity C = b1 - 

C:=b1-(a1/2)^2;
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C is seen to depend on N. 
We determine the asymptotic approximation of C as N becomes large. 
The one-term asymptotic approximation of C, denoted C1, equals the limit of C as N 
approaches infinity. 

C1:=limit(b1,N=infinity)-limit((a1/2)^2,N=infinity);

This can be written
C2:=op(1,C1)-(alpha2*R1/2)^2;

where
R1=(alpha1*R0+alpha2-1)/(alpha1+alpha2-1);

This finishes the study of the eigenvalues. 
The rest of the worksheet is used to derive approximations of the matrix of 
covariances for the diffusion approximation. 
Covariances of x[i]x[j] are determined by cov1:

cov1:=proc(i,j,tab)
  local x,n;
  x:=op(2,eval(tab));
  add(lhs(x[n])[i]*lhs(x[n])[j]*rhs(x[n]),n=1..nops(x));
end proc:

The local covariance matrix S is determined by the procedure cov:
cov:=proc(tab)
  local i,j,d,S;
  d:=nops(lhs(op(2,eval(tab))[1]));
  for i from 1 to d do
    for j from 1 to d do
      S[i,j]:=cov1(i,j,tab);
    od;
  od;
  S:=Matrix(d,S);
end proc:

By using the table of transition rates in "trans", we get
Sx:=simplify(cov(trans));
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Evaluate the local covariance matrix at the critical point:
S:=simplify(subs(x1=x10,x2=x20,x3=x30,Sx));

Now proceed to solve A=-S, where A=B*SIG+SIG*BT, and where BT=Transpose(B). 
First introduce notation for the elements of the matrix SIG:

SIG:=Matrix(3,[s11,s12,s13,s21,s22,s23,s31,s32,s33]);

Next, evaluate the matrix A: 
A:=Matrix(evalm(B&*SIG+SIG&*Transpose(B))):

Solve the 9 scalar equations that result from the matrix equation A+S=0  for the 9 
unknowns in SIG:

solve(convert(A+S,set),convert(SIG,set)):
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assign(%);

We determine the one-term asymptotic approximations of each of them as both N 

s11a:=simplify(op(1,asympt(op(1,asympt(s11,alpha1)),N)));
s12a:=simplify(op(1,asympt(op(1,asympt(s12,alpha1)),N)));
s13a:=simplify(op(1,asympt(op(1,asympt(s13,alpha1)),N)));
s21a:=simplify(op(1,asympt(op(1,asympt(s21,alpha1)),N)));
s22a:=simplify(op(1,asympt(op(1,asympt(s22,alpha1)),N)));
s23a:=simplify(op(1,asympt(op(1,asympt(s23,alpha1)),N)));
s31a:=simplify(op(1,asympt(op(1,asympt(s31,alpha1)),N)));
s32a:=simplify(op(1,asympt(op(1,asympt(s32,alpha1)),N)));
s33a:=simplify(op(1,asympt(op(1,asympt(s33,alpha1)),N)));

The Expectation of S+I+R, divided by N, is denoted Expsum:
Expsum:=simplify(x10+x20+x30);

The Variance of S+I+R, divided by N, is denotede Varsum:
Varsum:=simplify(s11+s22+s33+2*s12+2*s13+2*s23);

x20;
x20a:=op(1,asympt(op(1,asympt(x20,alpha1)),N));
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rhoI:=simplify(x20a*N/sqrt(s22a*N)) assuming R0>1;

This expression for rhoI is the same as for sirs2c and sirs3c.


