The Stochastic Power Law Logistic Model: Derivations of Asymptotic Approximations of the first 3 Cumulants of the QSD, with $s=6$.

Ingemar Nåsell

The procedure cumf is used to determine the cumulant of order kk as a function of the (raw) moments of orders up to kk, while the procedure muf determines the (raw) moment of order kk as a function of the cumulants of orders up to kk. The procedure ODEcum3 derives ODEs for the first 3 cumulants.
More details are given in the Maple work-sheet DeriveODECum3.
[> restart;
> cumf:=proc (kk)
local M,K,Ks,cum;
description "Determines the cumulant of order kk as function of
the raw moments of orders up to kk";
$\mathrm{M}:=1+\operatorname{add}(\operatorname{cat}(\mathrm{mu}, \mathrm{k})$ *theta^k/k!,k=1..kk);
K:=log(M);
Ks:=convert (series (K, theta,kk+1), polynom) ;
cum: =sort (simplify (coeff (Ks,theta,kk) *kk!), [seq (cat (mu, j), j=1..
kk)],plex);
end proc:
> muf:=proc (kk)
local K,M,Ms,mu;
description "Determines the (raw) moment of order kk as function of the cumulants of orders up to kk";
$\mathrm{K}:=\operatorname{add}($ cat (kappa, k$)$ *theta^k/k!,k=1..kk) ;
M: =exp (K) ;
Ms:=convert (series (M, theta,kk+1), polynom) ;
mu:=sort (coeff (Ms, theta,kk) *kk!, [seq(cat (kappa, j), j=1..kk)],
plex);
end proc:
> ODEcum3:=proc (s)
local Dmu1,Dmu2,Dmu3,sub1,sub2,Dcum1,Dcum2,Dcum3, a, c, d,b;
description "Derive ODEs for the first 3 cumulants";
Dmu1:=a*mu1-b*cat (mu,s+1);
Dmu2: =2*a*mu2+c*mu1-d*cat (mu,s+1) -2*b*cat (mu,s+2);
Dmu3: =a* (mu1+3*mu3) +3*c*mu2-3*d*cat (mu,s+2) -b* (cat (mu, s+1) +3*
cat (mu, s+3));
sub1: =D (mu1) =Dmu1, D (mu2) =Dmu2, D (mu3) =Dmu3;
sub2: =seq (cat (mu,i)=muf(i),i=1..3+s);
Dcum1 : =map (sort, map (simplify, collect (subs (sub2, subs (sub1,D (cumf (1)))), [a, c, d,b])));

Dcum2:=map (sort, map (simplify, collect (subs (sub2, subs (sub1, D (cumf (2)))), [a, c, d, b])));

Dcum3 : =map (sort, map (simplify, collect (subs (sub2, subs (sub1, D (cumf (3)))), [a, c, d,b])));
a: =mu* (RO-1) ;
c: =mu* (R0+1) ;
$d:=m u *(R 0-a l p h a) / N^{\wedge} s$;
b: =mu* (RO+alpha) /N^s;
[eval (Dcum1), eval (Dcum2), eval (Dcum3)];
end proc:
[Put $s=6$ and denote the derivatives of the first 3 cumulants by A, B, C.
[> s:=6;

$$
\begin{equation*}
s:=6 \tag{1}
\end{equation*}
$$

$\begin{aligned}>\mathrm{A}: & =O D E \operatorname{cum} 3(\mathrm{~s})[1] ; \\ \mathrm{B} & =\mathrm{ODEcum} 3(\mathrm{~s})[2] ; \\ \mathrm{C}: & =O D E \operatorname{cum} 3(\mathrm{~s})[3] ;\end{aligned}$
$A:=\mu(R O-1) \kappa 1-\frac{1}{N^{6}}\left(\left(\kappa 1^{7}+21 \kappa 1^{5} \kappa 2+35 \kappa 1^{4} \kappa 3+\left(105 \kappa 2^{2}+35 \kappa 4\right) \kappa 1^{3}\right.\right.$
$+105 \kappa 2^{2} \kappa 3+(210 \kappa 2 \kappa 3+21 \kappa 5) \kappa 1^{2}+21 \kappa 2 \kappa 5+35 \kappa 3 \kappa 4+\left(105 \kappa 2^{3}\right.$
$\left.\left.\left.+105 \kappa 2 \kappa 4+70 \kappa 3^{2}+7 \kappa 6\right) \kappa 1+\kappa 7\right) \mu(R 0+\alpha)\right)$
$B:=2 \mu(R O-1) \kappa 2+\mu(R O+1) \kappa 1-\frac{1}{N^{6}}\left(\left(\kappa 1^{7}+21 \kappa 1^{5} \kappa 2+35 \kappa 1^{4} \kappa 3\right.\right.$
$+\left(105 \kappa 2^{2}+35 \kappa 4\right) \kappa 1^{3}+105 \kappa 2^{2} \kappa 3+(210 \kappa 2 \kappa 3+21 \kappa 5) \kappa 1^{2}+21 \kappa 2 \kappa 5$
$\left.\left.+35 \kappa 3 \kappa 4+\left(105 \kappa 2^{3}+105 \kappa 2 \kappa 4+70 \kappa 3^{2}+7 \kappa 6\right) \kappa 1+\kappa 7\right) \mu(R 0-\alpha)\right)$
$-\frac{1}{N^{6}}\left(14\left(\kappa 1^{6} \kappa 2+3 \kappa 1^{5} \kappa 3+\left(15 \kappa 2^{2}+5 \kappa 4\right) \kappa 1^{4}+15 \kappa 2^{4}+(50 \kappa 2 \kappa 3\right.\right.$
$+5 \kappa 5) \kappa 1^{3}+30 \kappa 2^{2} \kappa 4+\left(45 \kappa 2^{3}+45 \kappa 2 \kappa 4+30 \kappa 3^{2}+3 \kappa 6\right) \kappa 1^{2}+8 \kappa 3 \kappa 5$
$+5 \kappa 4^{2}+\left(105 \kappa 2^{2} \kappa 3+21 \kappa 2 \kappa 5+35 \kappa 3 \kappa 4+\kappa 7\right) \kappa 1+\left(40 \kappa 3^{2}+4 \kappa 6\right) \kappa 2$
$\left.\left.+\frac{\kappa 8}{7}\right) \mu(R 0+\alpha)\right)$
$C:=(\kappa 1+3 \kappa 3) \mu(R O-1)+3 \mu(R 0+1) \kappa 2-\frac{1}{N^{6}}\left(21\left(\kappa l^{6} \kappa 2+3 \kappa l^{5} \kappa 3\right.\right.$
$+\left(15 \kappa 2^{2}+5 \kappa 4\right) \kappa 1^{4}+15 \kappa 2^{4}+(50 \kappa 2 \kappa 3+5 \kappa 5) \kappa 1^{3}+30 \kappa 2^{2} \kappa 4+\left(45 \kappa 2^{3}\right.$
$\left.+45 \kappa 2 \kappa 4+30 \kappa 3^{2}+3 \kappa 6\right) \kappa 1^{2}+8 \kappa 3 \kappa 5+5 \kappa 4^{2}+\left(105 \kappa 2^{2} \kappa 3+21 \kappa 2 \kappa 5\right.$
$\left.\left.+35 \kappa 3 \kappa 4+\kappa 7) \kappa 1+\left(40 \kappa 3^{2}+4 \kappa 6\right) \kappa 2+\frac{\kappa 8}{7}\right) \mu(R 0-\alpha)\right)$

$$
\begin{aligned}
& -\frac{1}{N^{6}}\left(3 \left(\frac{\kappa 1^{7}}{3}+7 \kappa 1^{6} \kappa 3+\left(42 \kappa 2^{2}+7 \kappa 2+21 \kappa 4\right) \kappa 1^{5}+(315 \kappa 2 \kappa 3\right.\right. \\
& \left.+\frac{35}{3} \kappa 3+35 \kappa 5\right) \kappa 1^{4}+1155 \kappa 2^{3} \kappa 3+\left(420 \kappa 2^{3}+35 \kappa 2^{2}+490 \kappa 2 \kappa 4\right. \\
& \left.+350 \kappa 3^{2}+\frac{35}{3} \kappa 4+35 \kappa 6\right) \kappa 1^{3}+280 \kappa 3^{3}+\left(1995 \kappa 2^{2} \kappa 3+735 \kappa 3 \kappa 4\right. \\
& +(70 \kappa 3+420 \kappa 5) \kappa 2+7 \kappa 5+21 \kappa 7) \kappa 1^{2}+(35 \kappa 3+357 \kappa 5) \kappa 2^{2} \\
& +126 \kappa 4 \kappa 5+\left(630 \kappa 2^{4}+35 \kappa 2^{3}+1365 \kappa 2^{2} \kappa 4+\frac{70 \kappa 3^{2}}{3}+392 \kappa 3 \kappa 5\right. \\
& \left.+245 \kappa 4^{2}+\left(1890 \kappa 3^{2}+35 \kappa 4+189 \kappa 6\right) \kappa 2+\frac{7 \kappa 6}{3}+7 \kappa 8\right) \kappa 1 \\
& \left.+(1225 \kappa 3 \kappa 4+7 \kappa 5+35 \kappa 7) \kappa 2+\left(\frac{35 \kappa 4}{3}+84 \kappa 6\right) \kappa 3+\frac{\kappa 7}{3}+\kappa 9\right) \mu(R 0 \\
& +\alpha))
\end{aligned}
$$

Determine asymptotic approximations of the first 3 cumulants of the following forms. Assume also that kappa4 - kappa9 are O(N).

```
> kappa1: \(=\mathrm{x} 1 \mathrm{*}_{\mathrm{N}}+\mathrm{x} 2+\mathrm{x} 3 / \mathrm{N}\) :
    kappa2: \(=\mathrm{y} 1 * \mathrm{~N}+\mathrm{y} 2\) :
    kappa3:=z1*N:
    kappa4:=u1*N:
    kappa5:=u2*N:
    kappa6:=u3*N:
    kappa7:=u4*N:
    kappa8:=u5*N:
    kappa9:=u6*N:
```

 Asymptotic expressions for \(A, B, C\) are written \(A=A 1 * N+A 2+A 3 / N, B=B 1 * N+B 2\),
 C \(=\mathrm{C} 1 * \mathrm{~N}\), where
 \(\left[\begin{array}{c}>\operatorname{A1}:=\operatorname{coeff}(\mathbf{A}, \mathbf{N}, 1) ; \mathrm{A} 2:=\operatorname{coeff}(\mathbf{A}, \mathbf{N}, 0) ; \mathrm{A} 3:=\operatorname{coeff}(\mathbf{A}, \mathbf{N},-1) ; \\ \mathrm{B} 1:=\operatorname{coeff}(\mathbf{B}, \mathbf{N}, 1) ; \mathrm{B} 2:=\operatorname{coeff}(\mathrm{B}, \mathbf{N}, 0) ; \\ \mathrm{C} 1:=\operatorname{coeff}(\mathbf{C}, \mathbf{N}, 1) ; \\ A 1:=\mu(R 0-1) x 1-x 1^{7} \mu(R 0+\alpha) \\ A 2:=\mu(R 0-1) x 2-\left(7 x 2 x 1^{6}+21 x 1^{5} y 1\right) \mu(R 0+\alpha) \\ A 3:=\mu(R 0-1) x 3-\left(x 3 x 1^{6}+6 x 2^{2} x 1^{5}+x 1\left(2\left(x 3 x 1^{2}+2 x 2^{2} x 1+x 1(2 x 3 x 1\right.\right.\right. \\ \left.\left.\left.\quad+x 2^{2}\right)\right) x 1^{3}+9 x 2^{2} x 1^{4}\right)+21 x 1^{5} y 2+105 x 2 x 1^{4} y 1+35 x 1^{4} z 1 \\ \left.\quad+105 y 1^{2} x 1^{3}\right) \mu(R 0+\alpha) \\ B 1:=2 \mu(R 0-1) y 1+\mu(R 0+1) x 1-x 1^{7} \mu(R 0-\alpha)-14 x 1^{6} y 1 \mu(R 0+\alpha) \\ B 2:=2 \mu(R O-1) y 2+\mu(R 0+1) x 2-\left(7 x 2 x 1^{6}+21 x 1^{5} y 1\right) \mu(R 0-\alpha)\end{array}\right.\)
 $$
-14\left(x 1^{6} y 2+6 x 2 x 1^{5} y 1+3 x 1^{5} z 1+15 y 1^{2} x 1^{4}\right) \mu(R 0+\alpha)
$$

$$
\begin{align*}
C 1 & :=(x 1+3 z 1) \mu(R O-1)+3 \mu(R 0+1) y 1-21 x 1^{6} y 1 \mu(R O-\alpha)-3\left(\frac{1}{3} x 1^{7}\right. \tag{3}\\
& \left.+7 x 1^{6} z 1+42 y 1^{2} x 1^{5}\right) \mu(R 0+\alpha)
\end{align*}
$$

6 equations can now be formed by setting each of $A 1, A 2, A 3, B 1, B 2, C 1$ equal to zero. These equations can be solved for the 6 unknowns $x 1, x 2, x 3, y 1, y 2, z 1$. The solutions are found sequentially, as follows:
First we solve $A 1=0$ for $x 1$. This equation has $s+1=7$ solutions. Among them, we exclude $s=6$ spurious solution.
After this, $B 1=0$ is solved for for $y 1, A 2=0$ is solved for $x 2, C 1=0$ is solved for $z 1$, $B 2=0$ is solved for $y 2$, and $A 3=0$ is solved for $x 3$.
> x1a:=solve (A1, x1);
x1:=((R0-1)/(R0+alpha))^(1/6);
$x 1 a:=0, \frac{\left((R 0-1)(R 0+\alpha)^{5}\right)^{1 / 6}}{R 0+\alpha}, \frac{\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\left((R 0-1)(R 0+\alpha)^{5}\right)^{1 / 6}}{R 0+\alpha}$,

$$
\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\left((R O-1)(R O+\alpha)^{5}\right)^{1 / 6}}{R O+\alpha},-\frac{\left((R O-1)(R O+\alpha)^{5}\right)^{1 / 6}}{R O+\alpha}
$$

$$
\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)\left((R 0-1)(R 0+\alpha)^{5}\right)^{1 / 6}}{R 0+\alpha}
$$

$$
\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)\left((R 0-1)(R 0+\alpha)^{5}\right)^{1 / 6}
$$

$$
R 0+\alpha
$$

$$
\begin{equation*}
x 1:=\left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6} \tag{4}
\end{equation*}
$$

> $\mathrm{y} 1:=$ factor (solve $(\mathrm{B} 1, \mathrm{y} 1))$;

$$
\begin{equation*}
y 1:=\frac{\left(\frac{R 0-1}{R 0+\alpha}\right)^{1 / 6} R 0(\alpha+1)}{6(R 0+\alpha)(R 0-1)} \tag{5}
\end{equation*}
$$

> x2:=solve (A2,x2);

$$
\begin{equation*}
x 2:=-\frac{7 R 0(\alpha+1)}{12(R 0+\alpha)(R 0-1)} \tag{6}
\end{equation*}
$$

> z1:=factor(solve (C1, z1));

$$
z 1:=-\frac{\left(\frac{R 0-1}{R O+\alpha}\right)^{1 / 6} R 0(\alpha+1)\left(6 R 0^{2}-R 0 \alpha-R 0+6 \alpha\right)}{36(R 0+\alpha)^{2}(R 0-1)^{2}}
$$

$$
\begin{align*}
& \text { > } \mathrm{y}^{2}:=\text { solve }\left(\mathrm{B} 2, \mathrm{y}^{2}\right) \text {; } \\
& y 2:=\frac{7\left(R O^{2}+\alpha\right) R O(\alpha+1)}{12(R O+\alpha)^{2}(R O-1)^{2}} \tag{8}\\
& \text { > x3:=factor (solve (A3, x3)); } \\
& x 3:=-\frac{7 R 0(\alpha+1)\left(132 R 0^{2}+17 R 0 \alpha+17 R 0+132 \alpha\right)}{864\left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6}(R O-1)^{2}(R O+\alpha)^{2}} \tag{9}
\end{align*}
$$

Summarize the results for $s=6$:

$$
\begin{align*}
& >\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{y} 1, \mathrm{y} 2, \mathrm{z} 1 \text {; } \\
& \left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6},-\frac{7 R O(\alpha+1)}{12(R O+\alpha)(R O-1)}, \tag{10}\\
& -\frac{7 R 0(\alpha+1)\left(132 R O^{2}+17 R 0 \alpha+17 R 0+132 \alpha\right)}{864\left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6}(R O-1)^{2}(R O+\alpha)^{2}}, \\
& \frac{\left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6} R O(\alpha+1)}{6(R O+\alpha)(R O-1)}, \frac{7\left(R O^{2}+\alpha\right) R O(\alpha+1)}{12(R O+\alpha)^{2}(R O-1)^{2}}, \\
& -\frac{\left(\frac{R O-1}{R O+\alpha}\right)^{1 / 6} R O(\alpha+1)\left(6 R O^{2}-R 0 \alpha-R O+6 \alpha\right)}{36(R O+\alpha)^{2}(R O-1)^{2}} \\
& \text { [}
\end{align*}
$$

