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Abstract— For nonlinear systems in general, the observabil-
ity does not only depend on the initial conditions, but also on
the control. This presents an interesting issue: how to design
an observer together with the exciting control. In this paper a
subproblem in the so called SLAM problem-the relocalization
problem is studied, namely, observing the state of a mobile
system based on distance sensor readings. An observer is
proposed for a car-like robotic system.

I. INTRODUCTION

For nonlinear systems in general, the observability does
not only depend on the initial conditions, but also on the
control. This presents an interesting issue: how to design
an observer together with the exciting control. This has
been a very important issue in the field of active perception
in robotics and computer vision [1]. However, study from
the systems and control point of view is still lacking [3],
[4]. This is witnessed in [5] where it is pointed out that
one of the key questions in nonlinear control is “how to
design a nonlinear observer for nonlinear systems whose
linearization is neither observable nor detectable”.

In mobile robotic systems, one typically uses sensors
that interact with the environment, such as lasers and
video. Based on this background, we consider the following
system:

ẋ = f(x) + g(x)u (1)
y = h(x, s) (2)

xe(s) = φ(s), (3)

where x ∈ R
n, y ∈ R

p, u ∈ R
m and s ∈ R

q . xe(s) = φ(s)
defines manifolds in R

n that model terrains (walls) in the
environment.

In robotics one of the most important problems is the so-
called SLAM (simultaneous localization and map building)
problem, namely, to reconstruct the map φ(s) and the state
x at the same time. There is a vast literature on it, see for
example [2] and the references therein. However, methods
for dealing with non-feature based environment and for
feedback control design are still lacking.

In this paper we study a subproblem in SLAM: the
relocalization problem. Namely, we assume that the map
φ(s) is already given, and we would like to observe the
state of the system based on distance sensor readings.
Although we will use a specific system model for the
problem, the discussion would nevertheless concern some of
the fundamental issues about nonlinear observers as afore-
mentioned.

II. THE SYSTEM SETUP

We consider an oriented robot in the plane, using the
so-called unicycle model. Namely, the state of the system
is described by ( (x1, x2) , θ) ∈ R

2 × S1 and it has two
control inputs, the translational velocity v and the angular
velocity ω. The governing dynamics are

ẋ1 = v cos θ (4)
ẋ2 = v sin θ (5)

θ̇ = ω. (6)

Furthermore, we assume that the robot is equipped with
two range-measuring sensors, oriented at angles ϕ1, ϕ2 with
respect to θ. These sensors measure the distances ρ1, ρ2, to
some smooth curve r : S1 → R

2 or r : R → R
2, along the

ray originating at the robot and making an angle θ + ϕi,
i = 1, 2, with the x1-axis. Thus we have two outputs for
the system

y1 = ρ1 (7)
y2 = ρ2 (8)
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Fig. 1. The system setup

In this paper we assume that the curve r is closed, i.e.
r : S1 → R

2, and that it encircles a convex domain D. The
robot is restricted to move in the interior of this domain,
and thus the outputs ρ1, ρ2 are well defined.

Our problem is to construct an observer for the full state
of the robot. It is easy to see that this problem is equivalent
to the reconstruction of orientation θ and the two parameter
values s1, s2 ∈ S1 corresponding to the points on the curve



measured against. In order to do this we define a (new)
state variable p = (s1, s2, θ) ∈ S ⊂ T 3, which we call the
parameter configuration. Since we will be concerned with
local properties only, we can consider p as an element of
R

3.
For the configuration (x, θ) ∈ R

2 × S1, the distances
ρ ∈ R

2 and the parameters s ∈ R
2, we have the basic

geometrical relationship

x + ρiRθRϕi
e1 = r(si), (9)

and differentiating,

vRθe1 + ρ̇iRθRϕi
e1 + ρiωRθRϕi

e2 = r′(si)ṡi. (10)

Here we use the notation e1 = (1, 0)T , e2 = (0, 1)T , and

Rα =

[

cos α − sin α
sinα cos α

]

.

For future use, we also define M = Rπ/2, and note that
∂Rα/∂α = MRα = RαM , Me1 = e2, Me2 = −e1.

Multiplying (10) with eT
2 R−ϕi−θ from the left gives

ṡi =
−v sin ϕi + ρiω

r′(si)T RθRϕi
e2

, (11)

and multiplying (2) with r′(si)
T M , one obtains

ρ̇i =
−vr′(si)

T Rθe2 + ρiωr′(si)
T RθRϕi

e1

r′(si)T RθRϕi
e2

. (12)

The above expressions are well-defined except when
r′(si)

T RθRϕi
e2 = 0, which occurs when a sensor mea-

sures tangentially to the wall. In the convex setting we
have assumed, this will not happen.

Using only the values of ρ1 and ρ2 it is easy to see
that we will, in general, only be able to determine the
configuration of the robot up to some curve in R

2 × S1.
One can picture this by following a planar curve with the
tips of two extended fingers. We call this curve the statically
unobservable submanifold. This fact in particular suggests
that the nonlinear system defined by (4) and (7) is not
always observable.

By also taking ρ̇ into account, we find a similarly
unobservable submanifold, also one–dimensional. The
theoretical basis for active nonlinear observer design as
we will show later is that under certain conditions the
two different submanifolds are not parallel at the actual
parameter configuration of the robot, and hence the system
ought to be locally observable.

III. THE STATICALLY UNOBSERVABLE SUBMANIFOLD

For a general parameter vector p = (s1, s2, θ) and two
distances ρ1, ρ2, we define

z1(p) = r(s1) − ρ1RθRϕ1
e1, (13)

z2(p) = r(s2) − ρ2RθRϕ2
e1, (14)

z(p) = z1(p) − z2(p), (15)

Vz = zT z. (16)

Clearly, if ρ1 and ρ2 are measured distances and p the actual
parameter configuration of the robot, then z1 = z2 = x,
and z and Vz vanish. Consider the differential of the map
z : p 7→ R

2,

∂pz =

[

∂zx

∂s1

∂zx

∂s2

∂zx

∂θ
∂zy

∂s1

∂zy

∂s2

∂zy

∂θ

]

=
[

r′(s1) − r′(s2) M(r(s2) − r(s1)) + Mz].

We see that if z = 0, this is onto (as a linear map from
R

3 to R
2) as long as the slope of the curve is not parallel

at r(s1) and r(s2) and simultaneously perpendicular to the
line between these two points. By the Implicit Function
Theorem, we then have the following,

Proposition 1: Assume that at a configuration (x, θ),
where x lies in the interior of D, the robot measures
distances ρ1, ρ2 against parameters s1, s2. Also assume
that r′(s1) and r′(s2) are not parallel or, if they are,
not perpendicular to the vector r(s1) − r(s2). Then,
locally around (s1, s2, θ), the equation z(ŝ1, ŝ2, θ̂) = 0
defines a one-dimensional surface (a curve) which passes
through (s1, s2, θ). This is called the statically unobservable
submanifold.

If we define d = r(s2)− r(s1), then the kernel of ∂pz is
spanned by

νz =





−r′(s2)
T (d + z)

−r′(s1)
T (d + z)

r′(s1)
T Mr′(s2)



 , (17)

which vanishes as the rows of ∂pz become linearly de-
pendent. In general, it might still be possible to find a
continuation of the curve on which V = 0 through higher
order terms. A clear case of when this is not possible would
be when the sensors measures points on the boundary where
there simply is no room to move the robot to a nearby point
that would give the same measurements (e.g. measuring
along the major axis of an ellipse).

It is also clear that if Vz = 0 (i.e. z = 0) for some
(ρ1, ρ2, ŝ1, ŝ2, θ̂) and z1 = z2 ∈ D, then in the config-
uration (z1, θ̂), the robot measures precisely the distances
ρ1, ρ2 against the parameters ŝ1, ŝ2. That is, continuation of
the level curves from Proposition 1 gives curves of feasible
configurations which, from the information given by the
measured distances, the robot could occupy.

Then it is clear that the gradient flow

dp̂

dt
= −ks(∂p̂z)T z(p̂), ks > 0

should be included in the observer design. It serves to
localize the parameter configuration to the submanifold of
feasible configurations.

Next, we will discuss what can be done in the statically
unobservable direction.



IV. ACTIVE RELOCALIZATION AND NONLINEAR
OBSERVERS

It is clear that with any pair of fixed measurements
(ρ1, ρ2), the system will have a one dimensional unobserv-
able submanifold. Thus it is necessary to design controls
such that the outputs do not remain constant. In this section
we will first discuss what are the constraints we need impose
on the motion in order to make the system observable.

Assuming that we have obtained a point on the curve of
feasible configurations by some optimization method, we
would now like to localize the actual configuration of the
robot by finding a point on the curve where the estimated
output flow (time derivatives of the measured distances)
coincide with the actual output flow.

From the basic relationship

x + ρiRθRϕi
e1 = r(si),

we obtain

r′(si)
T Rθ(ve2 + ρ̇iRϕi

e2 − ρiωRϕi
e1) = 0 (18)

by first differentiating with respect to time and then multi-
plying by r′(si)

T M from the left. Now define F : R
3 →

R
2, for given v, ω, ρi, ρ̇i, by

F (s1, s2, θ) =

[

r′(s1)
T u1

r′(s2)
T u2,

]

. (19)

where u1, u2 are given by

ui = Rθ(ve2 + ρ̇iRϕi
e2 − ρiωRϕi

e1). (20)

Naturally one can use (12) to replace ρ̇i.

The differential of F with respect to the parameter vector
is given by

∂pF =

[

r′′(s1)
T u1 0 r′(s1)

T Mu1

0 r′′(s2)
T u2 r′(s2)

T Mu2

]

, (21)

The kernel of ∂pF , as long as this has full rank, is spanned
by

νF =





−(r′′(s2)
T u2)(r

′(s1)
T Mu1)

−(r′′(s1)
T u1)(r

′(s2)
T Mu2)

(r′′(s1)
T u1)(r

′′(s2)
T u2)



 . (22)

Assume now F = 0 and p0 = (s1, s2, θ) are the true
parameters and state, then we have

ui(p0) = RθRϕi

[

v sinϕi − ωρi

v cosϕi + ρ̇i

]

= (v sinϕi − ωρi)RθRϕi

[

1

−
r′(si)

T RθRϕi
e1

r′(si)T RθRϕi
e2

]

,

or

Mui(p0) =
(v sin ϕi − ωρi)

r′(si)T RθRϕi
e2

r′(si). (23)

Hence, we have

νF (p0) =
(v sinϕ1 − ωρ1)(v sin ϕ2 − ωρ2)

(r′(s1)T RθRϕ1
e2)(r′(s2)T RθRϕ2

e2)
×

×





(r′′(s2)
T Mr′(s2))(r

′(s1)
T r′(s1))

(r′′(s1)
T Mr′(s1))(r

′(s2)
T r′(s2))

(r′′(s1)
T Mr′(s1))(r

′′(s2)
T Mr′(s2))



 .

What we should consider, though, is

∂pFνz|p0
=

[

v sin ϕ1−ωρ1

r′(s1)T RθRϕ1
e2

D1

v sin ϕ2−ωρ2

r′(s2)T RθRϕ2
e2

D2,

]

(24)

where

D1 = ((r′′(s1)
T Mr′(s1))(r

′(s2)
T d) +

(r′(s1)
T r′(s1))(r

′(s1)
T Mr′(s2))),

D2 = ((r′′(s2)
T Mr′(s2))(r

′(s1)
T d) +

(r′(s2)
T r′(s2))(r

′(s1)
T Mr′(s2))).

As long as this is non-zero, the statically unobservable sub-
manifold crosses the dynamically unobservable submanifold
transversely. Which implies that we are bound to have at
least local observability through ρ and ρ̇ or the output flow.

We discuss now what constraints we have to impose on
the environment and the control so that ∂pFνz|p0

does not
vanish.

We will assume that ∂pz has full rank, so that νz can be
expressed as (17) , which is equivalent to assume

H 1: Denote the range of the sensors by Rs. There are
no two points s1 and s2 on the curve with ‖r(s2)−r(s1)‖ ≤

2Rs sin (φ1+φ2)
2 , such that r′(s1) and r′(s2) are parallel and

at the same time perpendicular to r(s2) − r(s1).
Should it happen that

[

sin ϕ1 −ρ1

sin ϕ2 −ρ2

] [

v
ω

]

= 0,

then ∂pFνz|p0
vanishes completely. Thus we need the

following assumption on the control design:
H 2: The exciting control v, ω should be designed such

that v sinϕi − ωρi 6= 0, for i = 1, 2.
Having one of the components zero corresponds to moving
in such a way that ṡi = 0 for that sensor. If the sensors are
directed to different sides of the steering direction and the
control input is not zero, this cannot happen since ρ1 and
ρ2 both are positive.

Assumption H2 has actually suggested a way for design-
ing the active control. Namely, the following criterion can
be used:

max
|v|,|ω|≤k

‖

[

sin ϕ1 −ρ1

sin ϕ2 −ρ2

] [

v
ω

]

‖.

Under the above assumptions, ∂pF |p0
will still not have

full rank if r has zero curvature (r′′(s) = 0) at both these
points, and ∂pFνz|p0

will vanish if furthermore r′(s1) and
r′(s2) are parallel.



The final way ∂pFνz|p0
can vanish is if

D1 = 0 and D2 = 0.

To give a geometrical interpretation of this, consider
when r is the unit circle, i.e. r(α) = Rαe1. Then we
have

(r′′(α1)
T Mr′(α1))(r

′(α2)
T d)+

(r′(α1)
T r′(α1))(r

′(α1)
T Mr′(α2))

= eT
2 RT

α2
(Rα2

e1 − Rα1
e1) + eT

2 RT
α1

MRα2
e2

= 0,

This corresponds to the observation that in a circular
symmetry, neither the measured distances nor the time
derivatives thereof change if we displace the robot in the
”symmetric direction”.

Based on the above discussion, we need to make the last
assumption:

H 3: There are no two points s1 and s2 on the curve
with ‖r(s2) − r(s1)‖ ≤ 2Rs sin (φ1+φ2)

2 , such that
1. r′′(s1)

2 + r′′(s2)
2 = 0,

or,
2. D1 = 0, D2 = 0.

Design of observer

Under the above assumptions, we propose the following
observer

dp̂

dt
= −ks(∂p̂z)T z(p̂) − ka(∂p̂F )T F (p̂), (25)

where ks, ka > 0 are some suitably chosen feedback gains.

V. CONVERGENCE ANALYSIS

In this section we show that (25) has locally bounded
error around p0(t), namely the true parameters and state
trajectory.

Proposition 2: Under Assumptions H1-3, by using the
observer (25), the estimation error is bounded locally and
the bound can be made arbitrarily small by tuning k = ks =
ka, provided the control and its rate of change are bounded.

Proof
It is easy to see that the true parameters and state

trajectory p0(t) is indeed an equilibrium for (25), since
z(p0(t)) = 0 and F (p0(t)) = 0.

Now we define a candidate Liapunov function as

V (p̂, t) = zT (p̂)z(p̂) + F T (p̂)F (p̂).

Obviously V is locally positive definite around p0(t) if H1-
3 are satisfied.

It is straight forward that

V̇ =
∂V

∂p̂

dp̂

dt
+

∂V

∂t

= −2k‖(∂p̂z)T z + (∂p̂F )T F‖2 + fs(t) + fa(t).

By our assumptions the first item in the above equation
is locally negative definite, otherwise the two submanifold

would not intersect transversely. And both fs(t) and fa(t)
are bounded. Therefore one can tune the error by tuning ks

and ka.

VI. SIMULATION

In this section we show some Matlab simulation results.
In the simulation setup, the robot is placed inside an ellipse
shaped closed wall.

Fig. 2. The initial estimation

Figure 2 shows the initial guess of the state versus the
true state. Figure 3 shows the estimation of the state is

Fig. 3. The final estimation

converging to the true state. Figure 4 shows the history of
estimation errors.
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REFERENCES

[1] J.-O. Eklundh, T. Uhlin, P. Nordlund, and A. Maki, Active vision and
seeing robots, in The 7th Symp. on Robotics Res. (G. Giralt and G.
Hirzinger, eds.), Lecture Notes in Computer Science, pp. 416–427,
Springer Verlag, Berlin, 1996.

[2] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte and M.
Csorba, A solution to the simultaneous localization and map building
(SLAM) problem, IEEE Transactions on Robotics and Automation,
Vol: 17 (3) , Jun 2001.

[3] T. Ersson and X. Hu, Implicit Observers and Active Perception, in
the proc. of IROS 2001.

[4] X. Hu and T. Ersson, Active state estimation of nonlinear systems,
submitted to Automatica.

[5] Wei Lin, John Baillieul and A. Bloch, “Call for papers for the special
issue on new directions in nonlinear control”, IEEE Transactions on
Automatic Control 47, no.3, 2002, 543-544.


