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Abstract— In this paper we study the output consensus
problem for systems of agents with linear continuous time
invariant dynamics, and derive control laws that minimize a
conical combination of the energies of the agents control signals,
while only using local information. We show that the optimal
control requires the connectivity graph to be complete and in
general requires measurements of the state errors. We identify
the cases where the optimal control is only based on output
errors, and show that in the infinite time horizon case, the
optimal control can always be expressed as a dynamic control
that is only based on the output errors. We also give a Lemma
for the position of the equilibrium point for a large class of
agent dynamics. As a second part of this paper we consider
the problem of outlier detection, in which an agent wants to
deduce if an other agent is using the consensus controller, or
if it is an outlier that uses a different controller. We introduce
the outlier detection equation.

I. INTRODUCTION

There has been a very extensive study on the consen-
sus problem in the past few years [3], [4], [5], [8], [10].
Apparently among all the collective behaviors of multiple
agents, consensus is one of the simplest, while still important
behaviors. So far the consensus problem that has been studied
widely concerns agents with first or second order dynamics.
For example, a pioneer work is the famous Vicsek model
[9], in which a consensus scheme was proposed based on a
simple discrete-time model for the headings of n autonomous
agents moving in a plane. Then some theoretical explanations
for the consensus behavior of the Vicsek model were given in
[3], [5], [11], etc. [4] solved the average-consensus problem
of first order multi-agent system with strongly connected and
balanced digraph. In [8], [10], [12], [13], to name a few, the
consensus of second order multi-agent system is discussed.
Various connectivity conditions are assumed to assure the
consensus. A survey on consensus problem was given in [14],
[15].

Recently, more general linear models have been used in
for example [6], [16], [17], [18], [19]. However, in [16],
[17], [18], it is assumed that the relative state errors are
available for the local control design. In [6] a necessary
and sufficient condition is given for the solvability of the
consensus problem based on local dynamic output feedback
control with fixed connection topology. But how to design
the local dynamic output feedback remains a very difficult
problem and it seems that at present no general answer is
available. In [19] the consensusability of linear time-invariant
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multi-agent systems is studied, where the admissible con-
sensus protocol is based on static output feedback. In [1] a
more general linear model is considered, where the dynamics
of each agent can be of any order. Different from [16],
[17], [18], the case where only the output error with the
neighbors can be measured is studied there. In this paper
we study the output consensus problem for general linear
systems. We formulate the consensus problem as an optimal
control problem and show that the optimal control can be
expressed as a consensus protocol where the connectivity
graph is completely connected. Not surprisingly, the optimal
control requires the measurement of state errors in general.
In this paper we identify the cases where the optimal control
is only based on the output errors. We also show that in the
infinite time horizon case, the optimal control can always
be expressed as a dynamic control that is only based on
the output errors. Based on the optimal consensus protocol
we have designed we also discuss the problem of outlier
detection in the paper.

The rest of the paper is organized as follows. Section II is
our problem formulation. Section III considers the optimal
consensus problem in finite time. In Section IV the infinite
time case is studied. In Section V, an outlier detection
algorithm is presented.

II. PROBLEM FORMULATION

In this paper we consider a system of N agents, where
each agent i has the dynamics

ẋi = Axi(t) + Bui(t), (1)
yi = Cxi, (2)

where xi(t0) = x0, xi(t) : R → Rn, ui(t) : R → Rm

and yi(t) : R → Rp, A ∈ Rnxn, B ∈ Rnxm and C ∈
Rpxn. It is assumed that B and C are full rank matrices. Let
us define X(t) = [x1(t)T , x2(t)T , ...., xN (t)T ]T ∈ RnN ,
U(t) = [u1(t)T , u2(t)T , ..., uN (t)T ]T ∈ RmN and Y (t) =
[y1(t)T , y2(t)T , ..., yN (t)T ]T ∈ RpN . In this setting we will
consider the following problem.

Problem 2.1: For any T > t0, construct a control U(t) for
the system of agents such that the agents reach consensus in
yi at time T , while minimizing the following cost functional∫ T

t0

N∑
i=1

aiu
T
i uidt (3)

where ai ∈ R+, i = 1, 2, ..., N .
In this problem the agents, e.g. mobile robots, reach

consensus in yi while minimizing a weighted sum of the
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energies of the input control signals, where the weights are
positive constants.

Before we proceed let us define a = [a1, a2, ..., aN ] and
define the matrix

R(a) = (
N∑

i=1

ai)−1(a1T
N − diag(

N∑
i=1

ai)), (4)

where 1N is a vector of dimension N with all entries equal
to zero.

III. CONSENSUS IN FINITE TIME

Let us define

W (t) =
∫ T

t

CeA(T−s)BBT eAT (T−s)CT ds (5)

and

G(t) =
∫ T−t

0

Ce−ArBBT e−AT rCT dr. (6)

Theorem 3.1: For T < ∞ the solution to Problem 2.1 is

U(X, t) = R(a)⊗(BT eAT (T−t)CT W (t)−1CeA(T−t))X(t).
(7)

The optimal control in general requires knowledge of state
errors, unless some special condition is imposed:

Theorem 3.2: Suppose ker(C) is A-invariant. For T < ∞
the solution to Problem 2.1 is

U(Y, t) = R(a)⊗BT CT G(t)−1Y (t). (8)
Remark 3.1: Even though the feedback controllers in (7)

and (8) are bounded for t ∈ [t0, T ), computational difficulties
arise as t → T , since W (T ), and G(T ) are not invertible.

Remark 3.2: An open loop version of (7) is presented in
the text.

Proposition 3.1: The controller defined in (8) uses only
local information, i.e. differences of the outputs of the agents.

Proof: From (8) we get that

ui(t, Y ) = BT CT G(t)−1(
n∑

i=1

ai)−1
n∑

j=1

aj(yj − yi) (9)

Let us define yc = 1PN
i=1 ai

∑N
i=1 aiyi,and Yc which is a

pN dimensional vector of N stacked yc.
Lemma 3.1: Suppose A has not full rank, and that xi(0) ∈

ker(A), i = 1, ..., N , then the consensus point or equilibrium
for the system of agents using the controller (7) or (8) is
yc(0).

IV. CONSENSUS IN INFINITE TIME

Theorem 4.1: When the time horizon T = ∞, the optimal
control

U = R(a)⊗ (BT P0)X
where P0 is the positive semi-definite solution to

AT P0 + P0A = −P0BBT P0.

When only the output y = Cx is available for control
action, an observer has to be designed. If we require such
an observer should minimize in some average sense the
estimation error ‖y − Cx̂‖, then under the assumption that
(A,C) is detectable and A does not have any eigenvalue on
the imaginary axis we have

˙̂x = Ax̂−BBT P0x̂−Q(y − Cx̂), (10)

where
AQ + QAT = −QCT CQ.

Let us now get back to the optimal consensus problem.
As the above discussion shows in the case of infinite time
the optimal solution is

U = R(a)⊗ (BT P0)X. (11)

On the other hand, it is easy to see that the control (11) can
be written as

ui = −BT P0(xi − xc)

where xc = 1PN
i=1 ai

∑N
i=1 aixi satisfies the free drift equa-

tion
ẋc = Axc.

Let δi = xi − xc, then

δ̇i = Aδi + Bui.

Similar to the case discussed in [1], we can design the
following optimal observer for δi:

˙̂
δi = (A−BBT P0)δ̂i −Q(

1∑N
i=1 ai

N∑
j=1

aj(yi − yj)−Cδ̂i)

Proposition 4.1: Suppose (A,B) is stabilizable and
(A,C) is detectable, and A has no eigenvalue on the imag-
inary axis. Then the following dynamic output control

ui = −BT P0δ̂i (12)
˙̂
δi = (A−BBT P0)δ̂i − (13)

Q(
1∑N

i=1 ai

N∑
j=1

aj(yi − yj)− Cδ̂i),

solves the optimal consensus problem in infinite time.

V. OUTLIER DETECTION

Consider a system of N agents each with the dynamics
(1), and each agent i is supposed to use the controller ui

in (9). In this setting we define an outlier at t ∈ [0, T ] and
Y ∈ RpN as an agent i that use a controller ûi such that

B(ûi(t, Y )− ui(t, Y )) 6= 0. (14)

Now suppose agent i is using (9) and wants to find out
if agent j is an outlier (i 6= j). To use the controller (9)
agent i has to be able to measure the differences between its
output and all other agents outputs. Now let ui, uj denote the
controller for agents i and j respectively, defined according
to (9). Agent i can construct both ui and uj . Let ûi and ûj
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be the actual controllers that the agents use. Now we have
that

B(ûi − ûj) = ẋi − ẋj + A(xi − xj) (15)

We assume B and C have full rank and CB is invertible,
i.e. a square system with relative degree [1, ..., 1]. We also
assume that ker(C) is A-invariant. We get that

CB(ûi − ûj) = ẏi − ẏj + P (yi − yj), (16)

where P ∈ Rpxp.
Now we have that

CB(ui − uj)− CB(ûi − ûj) = (17)
CB(ui − uj)− ẏi + ẏj − P (yi − yj) = (18)

CB(ûj − uj), (19)

since we know that ûi = ui. From this we get that agent i
is not an outlier if and only if

CB(ui − uj)− ẏi + ẏj − P (yi − yj) = 0, (20)

or equivalently

ẏi − ẏj = CB(ui − uj)− P (yi − yj). (21)

Now let us define the outlier detection equation

żij = CB(ui − uj)− P (yi − yj) (22)

where zij(t0) = yi(t0)−yj(t0). Now if there is a t ∈ [t0, T ]
such that zij(t) 6= yi(t)−yj(t), then j is an outlier. However
due to measurement noise a more suitable way to measure
if j is an outlier is to check whether

||zij(t)− (yi(t)− yj(t))|| > α, (23)

and if so j is an outlier, where α is a positive constant and
||.|| is a suitable norm.

Remark 5.1: For the general case where ker(C) is not
necessarily A-invariant, a dynamic detection scheme that
requires the estimation of relative state errors would be
needed.
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