
Path Planning and Navigation of Mobile Robots
in Unknown Environments

Torvald Ersson and Xiaoming Hu
Optimization and Systems Theory / Centre for Autonomous Systems

Royal Institute of Technology, SE 100 44 Stockholm Sweden
(ersson@math.kth.se, hu@math.kth.se)

Abstract

For a robot trying to reach places in at least partially
unknown environments there is often a need to replan
paths online based on information extracted from the
surroundings. In this paper is is assumed that the sens-
ing range of the robot is short compared to the length
of the paths it plans and the environment is modeled as
a graph consisting of nodes and arcs. The replanning
problem is solved using the network simplex method .
The applicability of the planner is demonstrated by inte-
grating it with a navigation control strategy. Simulation
results show that the approach works well.

1 Introduction

Path planning and navigation for mobile robots, in par-
ticular the case where the environment is known, is a
well studied problem, see, for example, the book by
Latombe [4] and the references therein. In practice,
however, one problem is that often no complete knowl-
edge about the environment is available. Having a de-
tailed map with all the obstacles marked seems to be
unrealistic for most situations. In many outdoor appli-
cations the robots can determine their coordinates by
using, for example, GPS. However the knowledge about
the surroundings may often be very limited. Under such
conditions there is too much uncertainty for a very de-
tailed plan to make sense. For preplanning purposes a
coarser choice is probably good enough. Additionally it
is important to be able to replan the path online based
on new information obtained by sensors while navigat-
ing.

A natural way of updating plans is to first select a path
based on the present knowledge, then move along that
path for a short time while collecting new information.
Based on the new findings the path is then replanned.
This methodology is often used in the literature for path
planning in unknown areas. One of the original moti-

vations for studying this problem was the terrain acqui-
sition problem, where a robot is required to produce a
complete map of an unknown terrain. In many publica-
tions graph methods are used for solving the task. For
example, [6] considers disjoint convex polygonal obsta-
cles and presents proofs on convergence. [5] does not use
any constraint on the shape of the obstacles and tries to
minimize the length of the path during the operation.
In [7] results for more general graphs are presented.

In this paper an online path planning algorithm, based
on the so-called network simplex method, is proposed.
Compared with the aforementioned graph methods, the
information stored about the environment is strictly in-
tended for path planning and less details about the ob-
stacles are needed. Although the algorithm of this pa-
per to some extent is similar to the D? algorithm [8, 9],
the two strategies differ in a number of ways. Firstly,
here a different discretization scheme is used. Instead of
modeling the environment as a set of squares this paper
uses a graph representation. Secondly, while producing
a path from the start to the goal D? has to solve the
shortest path problem for every possible starting point.
The algorithm of this paper does not require these ex-
tra solutions. Here the shortest path problem is thought
of as a minimum cost flow problem and solved by the
network simplex method. Furthermore, in this paper
the feasibility of the algorithm is justified by integrat-
ing it with a generic navigation control strategy, since
the topic here is online path planning.

It is worth to mention that as a contrast a completely
different online path planning approach is presented in
[11]. There a path is computed using steepest gradient
descent on an updated harmonic function.

It should be emphasized that in this paper the range of
the sensors is assumed to be limited. A requirement for
the method to work is that the sensing range is longer
than the length of the longest arcs of the graph. I.e. the
lower the sensing range the closer the nodes need to be



placed. In [10] the sensing constraint is relaxed and an
extension of [8, 9] with special box patterns for sparse
environments is presented.

This paper is organized as follows. First the path plan-
ning approach, using network simplex, is presented. A
more general description of the planning approach is
followed by an example where parameter values have
been chosen. Then a navigation controller is described
and integrated with the path planning. Finally simula-
tion results illustrate the performance of the combined
strategy.

2 Path Planning

Three basic assumptions used in this approach are:
• The robot has a short sensing range compared to the
size of the region of interest.
• It senses radially from its position. I.e. obstacles can
block the sensing in some directions.
• It knows its coordinates and orientation (for example,
via GPS).

2.1 Discretization
For our modeling it is necessary that the local region be-
ing considered is discretized. Discretizing the problem
obviously excludes lots of solutions. However in many
cases no exact path following is needed and a coarse plan
is satisfactory. Another concern might be that in some
cases the planning can result in a non-smooth path. For-
tunately this matter can be dealt with using a control
algorithm that smoothens the motion.

In this paper the terrain is described by nodes connected
by arcs. Each arc has a specified cost for moving along
it. Another straight forward approach, used by [8], is to
split the environment into squares/rectangles of equal
size. Then one assigns a cost for a transition between
two neighboring squares.

A similar description of the environment is to first place
nodes in a grid pattern, then introduce arcs between
neighboring nodes and assign costs to these arcs. (Natu-
rally the positions of the nodes need to be known.) Two
obvious representations are shown in figure 1 a) and b).
(An arc drawn between two nodes in the pictures should
be interpreted as two arcs, one in each direction.) The
two patterns in figure 1 a) and b) are, as can be seen in
figure 2, almost equivalent to the approach using squares
in a regular pattern. The node-arc representation can
however easily be extended to more advanced patterns
such as the one in figure 1 c). This structure allows
more planning options and makes shorter and smoother

a) b) c)

Figure 1: a) ”4-star” b) ”8-star” c) “16-star”.

paths possible. Note that some of the arcs would corre-
spond to moving between non neighboring squares. For

Figure 2: ”4-star” and ”8-star” mapped onto a square pat-
tern.

a node arc approach to be interesting one, as previously
mentioned, needs to have a sensing range that is longer
than the length of the longest arcs. Apart from that
restriction any kind of node arc network can be used.

The cost of an arc is naturally dependent on the dis-
tance between the nodes, but other aspects need to be
taken into consideration as well. It is easy to include
knowledge about the environment as e.g. lower costs of
arcs in “friendly” terrain and very high costs for arcs af-
fected by obstacles such as rocks, steep descents, creeks,
fences, walls etc.. Of course this very high cost is ideally
infinity, but in a world of computers infinity is replaced
by a value much greater than the costs of the arcs that
can be used.

This scheme for discretizing the surroundings makes
it really easy to use the well known network simplex
method for the path planning.

2.2 Minimum Cost Flow
For the sake of completeness this linear optimization
problem is described.

Consider a network consisting of n nodes plus arcs con-
necting them. The unit cost for using the arc going
from node i to node j is cij . The flow going that way
is denoted xij . At node i there can be a flow supply or
demand denoted bi (supply:bi > 0,demand:bi < 0).



The problem is balanced if
n∑

i=1

bi = 0. For every node

inflow minus outflow equals demand/supply. The prob-
lem of minimizing the total flow cost of this network can
be stated as the following linear optimization problem:

minimize

n∑

i=1

n∑

j=1

cijxij (1)

s.t.

n∑

i=1

xij −
n∑

i=1

xki = bi, i = 1..n (2)

xki ≥ 0 (3)

Only node-pairs (ij) corresponding to arcs need to be
considered.

Network simplex [2] is a well known efficient method for
solving such a problem. It works with so called basic
solutions of the problem. Such a solution corresponds
to a spanning tree. (A graph of arcs that connects all
nodes of the network and does not include cycles.) The
three steps of the method can be summarized as follows:

Step1. Start with a given basic feasible solution. Such
a solution can be created by constructing a spanning
tree.

Step 2. Compute node prices λi for each node i. This
is done by solving

λi − λj = cij (4)

for each i, j corresponding to a basic arc. For the above
equation to have a unique solution one node price has
to be assigned a value, e.g. λn = 0. The reduced costs
rij for non basic arcs are computed using

rij = cij − (λi − λj). (5)

If all rij are nonnegative the solution is optimal. Oth-
erwise go to step 3.

Step 3. A new spanning tree is created by adding an
arc to form a cycle and then eliminating another arc
from the cycle. Select a non basic arc with negative
reduced cost rij to enter the basis. Addition of this arc
to the spanning tree will produce a cycle. Introduce a
flow of value θ around this cycle. As θ is increased some
old basic flows will decrease. θ is chosen as the smallest
value that makes the flow in a basic arc zero. That
zeroed arc now goes out of the basis. The new solution
obtained in this step is then plugged into step 2.

The problem described above is more general than a
shortest path problem. To model a path starting at

node k and ending at node l a supply of one is placed at
k, bk = 1, and a demand of one at l, bl = −1. All other
bi are equal to zero. in this case a basic solution includes
the actual path flow represented by arcs carrying a flow
of one, as well as arcs with zero flow. The latter ones
are needed for creating a spanning tree.

Assume that network simplex has produced an optimal
solution. What happens if a few costs cij are changed ?
The solution is still both basic and feasible so step 2 is
entered. If cij is changed for a basic arc, there might be
a need to recompute all node prices before checking a
large number of reduced costs of the network. If no cost
of any basic arc is changed only the rij corresponding
to the updated non basic arcs need to be checked.

Network simplex is not the fastest possible choice for
solving a shortest path problem from scratch. However
when having an optimal solution and changing a few
costs it is quite efficient.

2.3 Path Planning Algorithm
The general idea is that a path is planned based on what
is known right now. When the robot gets new informa-
tion it considers choosing another path. Gradual learn-
ing about the surroundings results in better and better
plans. Information about the environment is translated
to arc costs cij . If the terrain is completely unknown
the arcs can initially be assigned costs as if they were
not affected by obstacles. Otherwise information from
e.g. maps can be incorporated as suitable arc costs.

Step 1. Planning
Based on the present knowledge a path from the current
node to the goal node is planned using network simplex.
If the cost of this path is so high it is clear that an
arc with ’infinite’ cost is used the algorithm must be
terminated. This means no feasible path exists within
the network. If the cost is reasonable carry on to step
2.

Step 2. Moving and sensing
The platform moves along the first arc that is part of
the solution while collecting information about the en-
vironment. At the end of the arc a new node is reached.
If that node is the goal node the task is completed, oth-
erwise step 3 follows.

Step 3. Reposing the problem
Unless the arc has been used before and nothing has
changed the system now knows more about the sur-
roundings and has updated a number of arc costs cij .
This new information can be used for replanning. In or-
der for the new planning problem to be correctly posed



the supply of one is moved from the previous node to
the current one. The previous base solution is slightly
modified to be a starting guess to the new problem. The
only adjustment needed is setting the flow of the latest
arc used to zero. In case no new information has been
added this is an optimal solution. The algorithm now
returns to step 1.

2.4 Some Practical Issues of Online Path Plan-
ning
Sometimes there are several paths with the same total
cost, as in the case of a flat area almost free of obsta-
cles. In these cases the proposed method will choose one
of them arbitrarily. For some vehicles the choice does
not matter that much, but for others it can make a big
difference. Many mobile platforms, especially those in
outdoor applications, are nonholonomic. One implica-
tion of this is that the range of steering is limited. Even
if that range is sufficient a more winding path with un-
necessary many turns is often unwanted.

Therefore ways of avoiding such choices are of interest.
To prevent the path planner from choosing jerky paths
one should lower the cost of going straight by a small
quantity δ. This means that if a solution starting with a
turn has the same cost as one starting by going straight
before anything is adjusted, the δ will make the method
pick the arc going straight. (figure 3) Once the robot
has left the node the arc going straight will regain the
cost it had before δ was subtracted. δ should be sig-
nificantly smaller than the cost of an arc. It should
be mentioned that in general an introduction of bigger
temporary cost reductions can cause deadlock problems.
In order to show the applicability of the approach one

b)a)

Figure 3: a) If all the arcs have equal cost this winding so-
lution is an optimal one. b) If there in every it-
eration is a slightly lower cost for going straight,
this is the solution chosen when the first action
is a step to the right.

has to answer the following question: what costs can be
estimated during motion? If the sensing range is only
marginally longer than the length of the longest arcs it
implies that:
• The robot can estimate the costs of the arcs that in-
tersect the path.
• It can estimate the costs of the arcs starting and end-

ing at the nodes it visits.

In case of a ”4-star” pattern there are no intersecting
arcs. For the ”8-star” pattern the only arc intersec-
tion occuring is between diagonal arcs. If a ”16-star”
pattern is considered the situation is much more com-
plicated. When this node-arc model is used there are
three different arc types. In figure 4, it is shown how
other arcs intersect the three in the interior of the grid.
(Close to the borders the situation is slightly revised.)
These cutting arcs will be visible when moving along
the indicated types.

From a logical point of view often even more arcs can
be measured. Consider a visible arc that is not blocked
by obstacles. Assume that one of its neighbor arcs is
parallel to it and lies within the range of the robot sen-
sors. Then they both lie on the same line and within
the sensing range. In that case it is possible to estimate
the cost of that more distant arc as well.

b) c)a)

Figure 4: Arcs of a) type 1, b) type 2 and c) type 3 are
shown as thick arrows. Intersecting arcs are
drawn as thin arrows.

One could of course choose a denser grid. In such a case
the sensing range may widely exceed the length of the
longest arcs of the network. That means that more arcs
are visible from the nodes and arcs used by the mobile
platform.

2.5 Some Drawbacks
Discretizing a continuous problem is often a good way of
making it easier, but doing so often introduces unwanted
side effects. There are some obvious drawbacks with
this graph approach. Firstly the solutions obtained are
optimal for the discrete network problem, but not for
the original problem. In figure 5 a) this is demonstrated.
Imagine that the terrain is flat and free of obstacles. The
real optimum is shown as a dashed line and the network
optimum as white arrows.

Secondly in some cases an unfortunate choice of network
might cause the discretized problem to be infeasible,
even though the original problem has a solution (figure
5 b)). Local online modification of the network is one
possible way of dealing with such situations.



goal

start

obstacles

b)a)

Figure 5: a) The optimal solution for the discretized prob-
lem is clearly different than the optimal one for
the original problem. b) The original problem is
feasible, but the discretized is not.

2.6 Maze Example
If the environment is fairly uncomplicated a robot with-
out memory or planning skills could still have a sat-
isfactory performance. To show the potential of the
proposed planner a tough example with lots of possi-
ble deadlocks was designed. The maze-like environment
chosen would cause many less sophisticated approaches
to fail. As seen in figure 6 the planner did not have a
problem finding a way through in a rational manner.
When the example was tested on a computer with a
360 MHz UltraSPARC II processor the average plan-
ning task at a node took about 70 ms to finish. A grid
consisting of 50x50 nodes connected with “16-stars” was
used. The distance from a node to its closest neighbors
was 1 length unit and the length of the longest arcs was
2.23. The sensing range used was 2.3 length units and
δ was set to 0.1. The area was initially assumed to be
obstacle free. For obstacle free arcs the costs were equal
to the length of the arcs. Arcs blocked by walls were
assigned a cost 10000 times higher than their length.

3 Integration of Online Path Planning
and Control

Good and robust path tracking control strategies are
needed in many applications and this has been a well
studied topic. Naturally, how good a path following con-
trol is depends a lot on how well the path is planned.
Many path planning strategies produce a smooth path
where the curvature, for example, is minimized. The
path planning algorithm of this paper, which is designed
for navigation in an unknown environment, is quite dif-
ferent. Since a path produced by the algorithm is not
even smooth, it is sometimes difficult to follow it exactly.

However, when the mobile robot navigates in an at least
partially unknown environment, where online path plan-
ning is almost unavoidable, following the planned path
exactly is not the top priority. The important thing is

0 5 10 15 20 25 30 35 40 45 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 6: Solution of the maze example. The dots and
arrows show how the robot moves. Walls are
drawn as thick lines and the thin lines are tem-
porary plans on how to reach the goal in the top
right corner. The starting point is situated in
the bottom left corner.

that the robot follows the path reasonably well in a very
robust way. The robustness requirement is easily under-
standable since small hinders and external disturbances
should always be taken into consideration, especially in
outdoor applications.

In this section, by integrating the path planning algo-
rithm with the so called virtual vehicle control strategy
[3] , it is shown that the algorithm serves well for the
purpose of navigating in an unknown environment. Of
course many other control approaches could be inter-
esting as alternatives. However here the aim is just to
show that the planner can be used in practice.

3.1 The Virtual Vehicle Approach
For the sake of simplicity, only paths in a 2D-plane are
considered. Suppose that a planned reference path is
parameterized as:

xd = p(s), yd = q(s), 0 ≤ s ≤ sf (6)

where subindex d stands for desired. Consider a vehicle
and a reference as shown in figure 7. Now assume that
p′(s)2 + q′(s)2 6= 0 and let

∆x = xd − x, ∆y = yd − y, v =
√

ẋ2 + ẏ2

∆ψ = ψd − ψ, ρ =
√

(∆x)2 + (∆y)2
(7)

where v is of course the vehicle speed and (x, y) a ref-
erence point on the mobile platform, for example, the



mid point of the vehicle’s front axle for a car-like robot.
ψ denotes the orientation of the platform.

In the virtual vehicle approach the parameter s is
treated as a function of the time s(t). Its dynamics
is governed by a differential equation that contains the
tracking error ρ. Thus s(t) is called the virtual vehicle
(that the actual one should track). Suppose that one

(p(s),q(s))

∆

(x,y)

ρ
y

∆x

d ψ
ψ

Figure 7: Virtual vehicle geometry.

can control the rotational and translational velocity of
the platform. (They can be viewed as higher-level con-
trols. For platforms that do not have direct control over
the velocities, one needs to design the actuator control
so that these velocity controls are realized.) Then the
following generic control algorithm is given by [3]:





ṡ = ce−αρv0√
p′(s)2+q′(s)2

ω = k∆ψ + ψ̇d

v = γρcos(∆ψ)

(8)

where ω = ψ̇ is the rotational velocity and α, c, γ and
k are some positive constants. As can be seen in the
translational velocity control law, reverse drive is used
when the magnitude of the deviation from the desired
direction is too big.

In [3] it is shown that this control strategy is stable
and quite robust for the two different platforms dis-
cussed there. Furthermore, the tracking error can be
tuned arbitrarily small asymptotically but remains pos-
itive (note if ρ = 0 then ψd is ill-defined).

Since the position and orientation of our platform are
assumed to be known the above closed-loop control ap-
proach can easily be applied here.

3.2 Path Planning Online Combined with the
Virtual Vehicle Approach
It is obvious that in order to use the virtual vehicle
approach, the path has to be smooth (C1). Therefore
there is a need to somewhat modify the path produced
by the planning algorithm.

In fact, if relaxing the problem slightly one can say that
a node is reached if the robot gets within a certain dis-
tance from it. This will define a “goal disc” centered
at the node point. Between such discs trying to track a
straight line along an arc seems reasonable. The radius
of the goal area is limited by the fact that one needs
to be close enough to evaluate outgoing arcs from the
node. Otherwise the planning would be crippled by a
lack of necessary information.

From an initial position (usually at the border of a goal
disc) the vehicle will try to track a straight line leading
to the next node area using the virtual vehicle approach
presented above. When the robot gets there and plan-
ning has taken place the next node along the path is
determined and the same procedure takes place again.
This will go on until the final goal is reached. (figure 8)

If the starting node has position r̄1 = [x1, y1]
T and the

next node is located at r̄2 = [x2, y2]
T the line between

them can be described by r̄ = r̄1 + (r̄2− r̄1) s
sf

, yielding

{
p(s) = x1 + (x2 − x1) s

sf

q(s) = y1 + (y2 − y1) s
sf

(9)

and

p′(s) =
x2 − x1

sf
, q′(s) =

y2 − y1

sf
. (10)

Clearly p′(s)2 +q′(s)2 6= 0 unless r1 = r2. The reference
could have s starting at zero or at a relatively low value.
In simulation it turns out that the vehicle chases the ref-
erence point like a dog would chase a rabbit, rather than
being in front or beside it. Since the robot chases the
reference point, the reference line might extend beyond
the next node point (s > sf ).

ideal planned path

actual motion with
relaxed conditions

Limit for sufficient info about 
outgoing arcs from the node

Circle where a new goal
point is chosen

Figure 8: Relaxation of the control problem.

If the reference is smooth and long enough the method
is guaranteed to work, but the switching of reference
paths at the nodes could cause problems.



3.3 Example of Online Path Planning Combined
with Control
The combined planning and control package was tested
on the previous maze example.

In the simulation, a car-like robot model [1] is used:





ẋ = v cos(ϕ + ψ)
ẏ = v sin(ϕ + ψ)
ψ̇ = v

l sin(ϕ)
(11)

where (x, y) is the mid point of the vehicle’s front axle,
ϕ is the steering angle and the other components have
the same definitions as above. This model works for
both forward and backward motion as well as switching
continuously between them.

With this model we first need to find the correspond-
ing steering control from the generic rotational velocity
control:

ϕ = sin−1(
l

v
(k∆ψ + ψ̇d)). (12)

The simulation result is displayed in figure 9, where the
steering angle is assumed to be saturated at +/− π/5.
Figure a) is too small to show any details but as seen in
b) the vehicle moves quite nicely along the planned path.
It should be noted that the robot was relatively small
(turning radius about 0.2 length units) and drove slowly,
but the outcome of the test is undoubtedly positive.

0 10 20 30 40 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

30 30.5 31 31.5 32 32.5 33 33.5

−21

−20.5

−20

−19.5

−19

−18.5

−18

b)a)

Figure 9: a) The actual path through the maze. b) Zoomed
detail of the maze example. An ∗ represents a
node chosen by the planner.

4 Conclusions

The paper presents an online path planner for unknown
or partially unknown environments and shows that it
can deal with really difficult problems, such as mazes.
Furthermore, the applicability to navigation is demon-
strated by combining the planner with path following
control. Simulation results for the integrated online

path planning and path following control module sug-
gests that the method has a good chance of being fea-
sible for real applications.

Acknowledgments

Special thanks to Dr. Stefan Feltenmark for his help
with the code and his advice about network methods.

References

[1] J. Ackermann. Robust Control. Springer-Verlag,
1993.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Net-
work flows: Theory, algorithms and applications. Pren-
tice Hall, 1993.

[3] M. Egerstedt, X. Hu, and A. Stotsky. Control of
a car-like robot using a virtual vehicle approach. In
Proceedings of the 37th IEEE Conference on Decision
and Control, 1998. A revised version is to appear in
IEEE-TAC.

[4] J-C Latombe. Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[5] V.J. Lumelsky, S. Mukhopadhyay, and K. Sun.
Dynamic path planning in sensor-based terrain acquisi-
tion. IEEE Transactions on Robotics and Automation,
6, 1990.

[6] B.J. Oommen, S.S. Iyengar, N.S.V. Rao, and R.L.
Kashyap. Robot navigation in unknown terrain using
learned visibility graphs. part i: The disjoint convex ob-
stacle case. IEEE Journal of Robotics and Automation,
RA-3 No.6 December, 1987.

[7] N.S.V. Rao. Algorithmic framework for learned
robot navigation in unknown terrains. IEEE Computer,
June, 1987.

[8] A. Stentz. Optimal and efficient path planning
for partially-known environments. In Proceedings IEEE
ICRA, 1994.

[9] A. Stentz. The focussed D? algorithm for real-
time replanning. In Proceedings of the Joint Conference
on Artificial Intelligence, 1995.

[10] A. Yahja, A. Stentz, S. Singh, and B.L. Brumitt.
Framed-quadtree path planning for mobile robots op-
erating in sparse environments. In Proceedings ICRA,
1998.

[11] J.S. Zelek. Complete real-time path planning
during sensor-based discovery. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Sys-
tems, 1998.


