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Abstract: In this paper mobile multi-agent systems with limited sensor information
are studied. Two control algorithms are proposed that do not require global
information, and are easy to implement. The control problems are motivated by
robotic applications such as cleaning, grass mowing and land mines detection,
where a common control problem is the complete coverage path planning, for which
it is known that parallel formation is optimal. The proposed control algorithms
provide terrain servoing for the leading robot and parallel formation keeping for
the followers, both of which are only based on measurements from range sensors.
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1. INTRODUCTION

For mobile robots two of the basic functional-
ities are to navigate and to follow. Naturally
both of them are well studied for either single
agent systems or multi-agent systems (Egerstedt
et al., 2001; Das et al., 2002; Lawton et al., 2003;
Egersted and Hu, 2001; Kang et al., 2002; Jad-
babaie et al., 2003; Vidal et al., 2003; Bicho and
Monteiro, 2003). Many methods in the literature,
however, are focused on the problem of designing
full state feedback controllers for goal reaching,
target tracking or maintaining a preassigned for-
mation. The issue of sensor and actuator limita-
tions seems to be more or less overlooked, even
though it has been a major issue in research areas
such as SLAM (Dissanayake et al., 2001; Wang
et al., 2003). Obviously it needs to be addressed
already in designing the control algorithms.
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A good example of this is a team of mobile robots
with low-resolution range sensors that move in
an unknown environment. By cooperating and
exchanging information, the robots are able to get
a good overlook of the surroundings in terms of
angles and distances, even though one robot alone
has a limited and maybe even incorrect view of the
environment. However, this situation poses new
requirements on the motion controls, since the
robots must always stay within communication
range of each other.

In this paper we will focus on mobile multi-agent
systems with limited information from range sen-
sors. We will provide some control algorithms
that do not require global information, and are
easy to implement. Our approach differs from the
other approaches in the literature such as (Das
et al., 2002; Kang et al., 2002; Vidal et al., 2003)
in that different sensing information and actuator
constraints are assumed. Therefore a new control
strategy is needed in order to have a robust for-
mation control. The particular control problems
we study are motivated by robotic applications
such as cleaning, grass mowing and land mines



detection, where a common control problem is the
complete coverage path planning (CCPP) prob-
lem for multiple agents. It is known that parallel
formation is optimal for CCPP. The main contri-
bution of the paper is two new control algorithms
that provide terrain servoing for the leading robot
and parallel formation keeping for the followers,
both of which are only based on measurements
from range sensors.

The outline of the paper is as follows. In Section 2
we propose a control strategy for parallel forma-
tion keeping and study stability behavior of the
controller. In Section 3 an on-line terrain servoing
algorithm, based on a semi-local coordinate frame,
is provided. With this coordinate frame we can
avoid possible singularities in path parameteri-
zation that we would get in a global coordinate
frame. In Section 4 some simulation is done to
illustrate the results.

2. PARALLEL FORMATION KEEPING

In this section we design a control algorithm for a
group of mobile robots following another mobile
agent, which we from now on will refer to as the
”leader”. The goal of the control is to make all the
robots move side by side at some specified distance
from each other, while adjusting the speed and
orientation to the leader.

Through out this paper we use the following
nonholonomic model for each robot:

ẋ= v cosφ

ẏ = v sinφ (1)

φ̇= ω

where v, φ and ω denote the speed, rotation and
angular velocity of the robot with respect to some
fixed coordinate system.

As we mentioned, the objective of the parallel
tracking control is to align all the robots with an-
other moving object so that they move in parallel
with the same orientation (Figure 1). Ideally, the
angle from the leader’s axis of orientation to the
following robot should be π

2 . Eventually we get
a ”chain” of robots, all moving in parallel in the
same direction. Since our eventual control objec-
tive is to align the middle points of two robots,
the linearization technique used widely in the lit-
erature can not be applied here. One might argue
that two off-the-axis points with small distance to
the axes can be aligned instead (Das et al., 2002),
so feedback linearization can be applied. However,
in this case the control action could be very big
and ill conditioned.
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Fig. 1. Horizontal tracking and formation keeping.

We first explain briefly why we can not apply the
usual linearization for parallel formation.
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Fig. 2. Tracking with a sharp angle.

Now let the point (xL, yL) be defined as in Fig-
ure 2, i.e., located on the line that has an angle
β0 from the robot’s axis of orientation, and having
a distance L from the center of the robot. If the
robot is centered in (x, y), then

xL = x+ L cos(φ+ β0)

yL = y + L sin(φ+ β0). (2)

Derivation of equation (2) in combination with the
unicycle model (1) gives the connection between
the velocity and angular velocity of the robot, v
and ω, and the motion of the point (xL, yL).

[

ẋL

ẏL

]

=

[

cosφ −L sin(φ+ β0)
sinφ L cos(φ+ β0)

] [

v
ω

]

(3)

It is obvious that by this way one can invert the
matrix in (3) as long as |β0| <

π
2 .

If ẋL and ẏL are chosen for some positive k as

ẋL = −k(xL − xT ) + ẋT

ẏL = −k(yL − yT ) + ẏT ,
(4)

which includes both a proportional and a deriva-
tive part, xL and yL are driven towards xT and yT .
Then we can obtain the corresponding controls for
the robot, i.e., v and ω.

With this idea, having parallel formation would
amount to having |β0| = π

2 . This is exactly
the situation where we would have singularity.
What we propose here is instead a nonlinear
control strategy. As we will show, the control
is guaranteed to stay stable for some very mild
assumptions on the motion of the leader.



Now we assume that there are n mobile robots,
R1, · · · , Rn, where R1 is the leader. R1 will nav-
igate by servoing through the terrain, which will
be discussed in the next section. The rest of the
robots should line up with the leader in parallel.
Thus for each follower, we have

ẋi = vi cosφi

ẏi = vi sinφi, i = 2, · · · , n (5)

φ̇i = ωi.

Denote that the actual distance between Ri and
Ri−1 is di while L is the desired distance, γi = φi−
φi−1. αi is the actual relative angle from Ri to the
orientation of Ri−1 and βi is the actual relative
angle from the orientation of Ri to Ri−1 (see
Figure 1), both of which are desired to be π

2 .

Then we can rewrite system (5) as

ḋi =−vi cosβi − vi−1 cosαi

γ̇i = ωi − ωi−1, i = 2, · · · , n (6)

β̇i =−ωi +
vi

di

sinβi −
vi−1

di

sinαi.

We note that αi = π − γi − βi. This is appar-
ently a cascaded system due to the appearance of
vi−1 and ωi−1. Now our control objective can be
defined as:

Given v1(t) and ω1(t), find control vi(t) and ωi(t)
i = 2, · · · , n such that for i = 2, · · · , n

di → L, γi → 0, βi →
π

2
as t→ ∞. (7)

Theorem 1. Suppose the reference velocities from
the lead robot R1 satisfy the following condition:
|v1(t)|, |ω1(t)| and |v̇1(t)|, |ω̇1(t)| are bounded, and

∫ t

t0

(v1(s) +iLω1(s))
2ds > δi(t− t0)

∀t > t0 ≥ 0 i ≤ n,

(8)

where δi is a positive constant. Then the cas-
caded system (6) is locally exponentially stabi-
lized around the equilibrium (d2 = L, γ2 =
0, β2 = π

2 , · · · , dn = L, γn = 0, βn = π
2 ) by

the following control

vi = aiL∆βi + Lωi + vi−1 (9)

ωi = bivi−1∆di − ciγi + ωi−1, i = 2, · · · , n

where ai, bi, ci are positive constants that can be
designed.

Remark: It is well known that for such non-
holonomic systems, stabilization to an equilibrium
point by any C1 state feedback control is not
possible. Thus when v1 and ω1 are set to zero,
it is not possible to stabilize the system.

Proof: Denote ∆di = di − L, ∆βi = π
2 − βi, then

∆ḋi =−vi sin ∆βi + vi−1 sin(∆βi − γi)

γ̇i = ωi − ωi−1 (10)

∆β̇i = ωi −
(vi cos ∆βi − vi−1 cos(∆βi − γi)

L+ ∆di

.

Plug in the control (9) and linearize the system:

∆ḋi =−Lω1(t)∆βi − (v1(t) + iLω1(t))γi

γ̇i = bi(v1(t) + iLω1(t))∆di − ciγi (11)

∆β̇i =−ai∆βi.

Obviously, to show the closed-loop system of (10)
is exponentially stable is to show (11) is exponen-
tially stable. And in order to show (11) is exponen-
tially stable, we only need to show the following
system is exponentially stable for i = 2, · · · , n:

∆ḋi =−λi(t)γi

γ̇i = biλi(t)∆di − ciγi, (12)

where λi(t) = v1(t) + iLω1(t). With a quadratic
positive definite and decrescent candidate Lya-
punov function for each 1 < i ≤ n

V =
1

2
bi(∆di − ελi(t)γi)

2 +
1

2
γ2

i ,

where ε > 0, we have

V̇ = −ελ2
i (t)b

2
i ∆d

2
i − (ci + εf(t))γ2

i + εg(t)∆iγi,

where f(t) and g(t) are bounded. When ε is
sufficiently small, we can easily show that

V̇ ≤ −
1

2
εb2iλ

2
i (t)(∆d

2
i + γ2

i ).

Having the condition (8) in mind, one can use
Gronwall’s inequality to show that (12) is expo-
nentially stable for each 1 < i ≤ n . 2

3. TERRAIN SERVOING

3.1 Terrain servoing of the lead robot
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π

(x(s),f(x(s))) − position of virtual vehicle at time s

d 1
d 2
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f(x) − adjusted and displaced curve

Fig. 3. Robot 1 following the wall using terrain
servoing.

Terrain servoing is performed by Robot 1 to
navigate along the wall (Figure 3). The sensors
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Fig. 4. Advantages of a semi-local frame.

making angle π/4 and π/2 with the orientation
of the robot are used to measure distances to the
wall. With each measurement two distances are
found, d1 and d2, corresponding to points on the
wall. These points are collected in a vector (xi, yi)
and used to approximate the shape of the wall. At
every few time steps a second order polynomial
f(x) is fit to the m last elements of (xi, yi). A
higher order polynomial might give a better fit to
the data but will for some data give unnecessarily
complicated curves. For non-convex walls it is
necessary to employ sensors at other angles as well
to find the closest wall, but the principle is the
same.

Orthogonally displacing f(x) a distance dw from
the wall gives the path that the Robot 1 will
follow. Not following the measurements directly
gives the advantage of never making a decision
based upon a single measurement. In addition, if
all sensors loose contact with the wall, the robot
has the option to backtrack along the path until
contact is established and then rotate to find a
new measurement.

3.2 A semi-local coordinate system

Using a global coordinate system, approximating
the contour of the wall with a polynomial will
be difficult for some shapes. For instance, when
servoing an elliptic shape, no matter how you
place your frame you will always end up with two
singular points. On the other hand, a coordinate
system fixed in one of the robots would give us
trouble expressing the dynamics.

Here, a semi-local frame is used instead. At t = t0
Robot 1 is placed in the origin. While Robot 1
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Fig. 5. The semi-local frame.

moves the frame remains fixed until t = t1. At
this time a coordinate transform is made so that
the origin is placed in the present coordinates for
Robot 1 and the new frame is oriented so that the
x-axis is aligned with the orientation of Robot 1.
This new system is kept until t = t2 when another
transform is made. The changing times ti vary
with the shape of the wall; when the curvature is
high the frame needs to move more often. If the
polynomial at time ti is

f(x) = ax2 + bx+ c,

the next switching time is

ti+1 = ti + τ1 + τ2a

where τ1,2 are constants. Transforming the system
is done using translation and rotation:







[

x′

y′

]

= R(ψR1)

[

x
y

]

−

[

xR1

yR1

]

ψ′ = ψ − ψR1

where (x′, y′, ψ′) is the new system, (xR1, yR1, ψR1)
are the old coordinates for Robot 1 and R(ψR1)
is a rotation matrix:

R(ψR1) =

[

cosψR1 sinψR1

− sinψR1 cosψR1

]

.

It is clear that with a semi-local frame, we
can avoid the singular points that might appear
in a global frame. Besides, at each local frame,
localization of the robot can be done, for example,
by the encoders. Thus from a practical point of
view, this method is more implementable than
a global frame since localization would be more
difficult in that case. The advantages of a moving
frame will be exemplified in Section 4. In the next
subsection we discuss how the lead robot should
move along the path we have interpolated.

3.3 A virtual vehicle approach to path following

The task of Robot 1 is to keep track of the wall
and move along it. Our control here is developed
from the virtual vehicle approach in (Egerstedt et

al., 2001).

The control in (Egerstedt et al., 2001) was devel-
oped to steer a mobile robot along a pre-defined
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Fig. 6. The virtual vehicle approach.

trajectory. A ”look-ahead” distance L, from the
center of the robot to the reference point on the
path, had to be given due to the necessity to avoid
singularities. Otherwise, as the distance to target
decreases, the angle to target (∆φ in Figure 6),
measured from the robot’s axis of orientation,
will eventually be undefined. However, from which
direction or orientation this look-ahead distance
should be kept was not specified.

Here we want the mobile robot at all instants
to be oriented towards its leader and therefore
we choose a point (xL, yL) on the robot’s axis
of orientation (see Figure 6) as the reference for
the robot, instead of the center. This particular
choice of reference point not only can be driven
arbitrarily close to the leader without causing the
relative angle to be undefined, but also enable us
to obtain the desired control of the orientation.

Using the linearization arguments in the begin-
ning of Section 2, we can easily obtain the follow-
ing control:


















ṡ =
v0

√

p′2 + q′2
e−αρL

v = k(ρ cos ∆φ− L) + v0e
−αρL cos(θr − φ)

ω =
kρ

L
sin∆φ+

v0
L

sin(θr − φ)

,

(13)
where we assume the reference path is parameter-
ized by (p(s), q(s)), thus the first equation governs
the evolution of the “virtual vehicle” on the path,
s. Here v0 > 0 can be shown to be the desired

tracking speed, θr = atan( q′(s)
p′(s) ), α > 0, and ρL is

defined in Figure 6.

4. SIMULATIONS

Simulations have been carried out for both a
convex and a non-convex case for the different
approaches. As a convex wall an ellipse is chosen,
and for the non-convex case we use a sinusoidal
curve. The robot formation moves along the wall.
The deviations from the desired parallel forma-
tion are measured with respect to both angles
and distances. This control strategy should be
applicable to various types of robots although

our simulations are only modeled on the Khep-
era mobile robot platform - a circular platform
with a diameter of 55 mm with two wheels and
sensors at angles ±π/2, ±π/4, 0 and π. Due to
the page limitation, we unfortunately can not list
the parameters used in the simulation.

4.1 Convex Case - Planned and reactive approach

Three robots move along the ellipse in a parallel
formation. The trajectories are plotted and the
deviations from the desired positions for all robots
are measured. The equation of the curve repre-
senting the wall is y = 15+10 sin(t), x = 20 cos(t),
the desired distance to it is dw = 5 and desired
distance between robots is L = 4.

Fig. 7. Convex case: The paths for all robots. The
wall is dotted, the leader trajectory is a solid
line and the follower trajectories are dashed.

Fig. 8. Convex case: The robots servoing in paral-
lel formation with the moving frame plotted.
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Fig. 9. Convex case: The formation errors in
distance and angle.

Although Figure 7 shows that the robots follow
their trajectories well, we can note that the devi-
ation from desired angle (Figure 9, right column)



has two peaks. These correspond to where the
curvature of the ellipse is the highest.

4.2 Non-convex Case

Following a non-convex wall while keeping a par-
allel formation is a bit more challenging, but our
simulations show that the control works also in
non-convex situations. The equation of the curve
representing the wall is y = 5+4 sin(0.1x), the de-
sired distance to it is dw = 8 and desired distance
between robots is L = 6. The peaks in the plots
of Figure 12 correspond to the non-convex parts
of the wall.

Fig. 10. Non-convex case: The paths for all robots.
The wall is dotted, the leader trajectory is
a solid line and the follower trajectories are
dashed.

Fig. 11. Non-convex case: The robots servoing in
parallel with the moving frame also plotted.
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Fig. 12. The formation errors in distance and
angle.

5. CONCLUSIONS

Formation control is well studied in the litera-
ture. In this paper we have proposed some new
control algorithms for parallel formation keeping
and terrain servoing that are only based on local
information and easy to implement.
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