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Abstract

In this paper, state observers for control systems with nonlinear outputs are studied. For such systems, the observability does not only
depend on the initial conditions, but also on the exciting control used. Thus, for such systems, design of active control is an integral part
of the design for state observers. Here some sufficient conditions are given for the convergence of an observer. It is also discussed, via a
camera example, how to actively excite a system in order to improve the observability.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a nonlinear system:

ẋ=f (x, t) + Bu(t)

y=h(x) (1)

wherex ∈ Rn, u ∈ Rp is the input andy ∈ Rm is the output
one can measure, bothf andh arcC1 in a neighborhood of
the origin andf (0, t) = 0 ∀t h(0) = 0.
Since 1970s there has been an extensive study on the

design of observers for such systems, (Kou, Elliot, & Tarn,
1975; Krener & Respondek, 1985; van der Schaft, 1986) etc.
Most current methods lead to the design of an exponential
observer. As a necessary condition for the existence of an
exponential observer, the linearized pair(�f (0, t)/�x, h(0))
must be detectable. Under this condition, locally the different
choices of input would barely affect the rate of convergence
for an observer.
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In this paper we consider nonlinear systems in the fol-
lowing form:

ẋ=f (x, t) + Bu(t)

yi=pi(x)

qi(x)
, i = 1, . . . , m (2)

wherex ∈ Rn, u ∈ Rp and eachyi is a scalar. All the
mappingsf, pi, qi are assumed to beC1, f (0, t) = 0 ∀t
and B is constant. We will try to understand under what
conditions one can construct an exponential observer for (2).
In Matveev, Hu, Frezza, and Rehbinder (2000), such a result
for a class of systems was given. However, that result only
gives the condition in terms of the outputy(t). In this paper
we will focus on the existence of input signalsu(t) such that
the observer converges.
We should point out that here for any pointxe such that

f (xe, t) = 0, qi(xe) may be zero. Therefore, this case is
different from the classical case (1). Ifqi(x) is constant
and nonzero, the problem becomes the classical one. In this
study we focus on the case whereqi(x) is not constant and
qi(0) = 0 (without loss of generality, we assumexe = 0).
Obviously one can not apply linearization technique in
this case and one needs to design the exciting controlu(t)

such thatqi(x(t)) �= 0 ∀t�0. A typical example of such a
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system is using a mounted video camera to localize a mobile
robot.
As we will see later, for this kind of systems, the observ-

ability does not only depend on the initial conditions, but
also on the control. This presents an interesting issue: how
to design an exciting control to “maximize” the observabil-
ity, namely how to design an active observer. This has been
a very important issue in the field of active perception in
robotics and computer vision (Eklundh, Uhlin, Nordlund, &
Maki, 1996). However, study from the systems and control
point of view is still lacking, except for bilinear systems.
This is witnessed inLin, Baillieul, and Bloch (2002)where
it is pointed out that one of the key questions in nonlinear
control is “how to design a nonlinear observer for nonlin-
ear systems whose linearization is neither observable nor
detectable”.
In this paper we present some initial results regarding this

design.

Example 1.1. Here we consider the problem of using video
images to identify the relative location and orientation of a
robot. We suppose its mounted camera can recognize a cor-
ner of a room, namely that the images of a corner point and
at least two line directions can be observed continuously.
We want to use these measurements to recover the 3D lo-
cation of the camera in the room and the orientation of the
camera’s image plane in the room.
Supposep=(px, py, pz)

T is the position of a point feature
in the camera-fixed coordinates, wherepz is the depth of
the point. If� is defined according to

� =
( 0 −�3(t) �2(t)

�3(t) 0 −�1(t)

−�2(t) �1(t) 0

)
(3)

where� is the angular velocity measured in the camera
frame, then it is well known that the evolution of the point
is described by

ṗ = �p + v

(
y1
y2

)
=
(
px/pz
py/pz

)
, pz �= 0. (4)

The outputsy1 andy2 represent the image of the point, and
v is the translational velocity. Here we assume that the focal
length f of the camera is 1. The line equations are more
complex and will be discussed later.

This paper is organized as follows. In Section 2 we for-
mulate the problem and briefly summarize the existing re-
sults. Section 3 is where we present our main theoreti-
cal results. In Section 4 we revisit the camera example
and in Section 5 we show some simulation results for our
example.

2. Preliminaries

We consider again system (1)

ẋ=f (x, t) + Bu

y=h(x). (5)

In general, an observer for (5) should take the following
form:

˙̂x = p(x̂, h(x(t)), t, u), (6)

with the corresponding error dynamics asymptotically sta-
ble. Consequently,‖x(t) − x̂(t)‖ → 0 ast → ∞.

It is fairly common in the literature that the following
form of observer is considered:

˙̂x = f (x̂, t) + l(h(x) − h(x̂)) + Bu. (7)

wherel is a constant gain matrix. Obviously, it is easier to
design an observer in the above form (7). Unfortunately it
has been shown (Hu, 1991) that for a nonlinear system it is
not always possible to design an observer in the form of (7)
whenever it is possible to have observers for (5).
With the type of outputs we consider in (2), it is natural

that we should consider a more general class of observers
than those defined by (7). For an observer (6), it must hold
that if x̂0 = x0, then x̂(t) = x(t) for t�0. It can easily be
seen thatp(x̂, h(x), t, u) of the following form meets this
requirement

p(x̂, h(x), t, u) = f (x̂, t) + l(x̂, h(x) − h(x̂), t) + Bu (8)

wherel(x̂,0, t)=0. Therefore, we define a general nonlinear
observer as follows:

Definition 2.1. Let x(x0, t) be the solution of (5). A dy-
namic system described by

˙̂x = f (x̂, t) + l(x̂, h(x) − h(x̂), t) + Bu (9)

is said to be a (local) observer of (5), if both the following
statements hold:
(I) l(x, y, t) is C1 andl(x,0, t) = 0.
(II) For any initial conditionx0 ∈ N , the domain of inter-

est, the zero point of the errore= x̂(t)− x(x0, t), is asymp-
totically stable.
If additionally

‖x(t) − x̂(t)‖�Ke−at , (10)

wherea >0, then (9) is said to be an exponential observer.
This definition was first introduced inKou et al. (1975).

Now we consider the system (2). Then the problem be-
comes under what conditions there exists an observer in the
following form:

˙̂x=f (x̂, t) + Bu + l

(
x̂, y1(t) − p1(x̂)

q1(x̂)
, . . . , ym(t)

−pm(x̂)

qm(x̂)
, t

)
. (11)
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Here we do not attempt to solve the general case, but rather
focus on a couple of special cases that are motivated by
some applications.

3. Main results

In this paper we focus on the case where the dynamics
is linear and the outputs are linear projections and we will
only use an example to discuss the nonlinear case. So we
represent (2) as

ẋ=A(t)x + Bu(t)

y= Px

qTx
, (12)

whereA(·) is aC1 n×nmatrix and both‖A(t)‖ and‖Ȧ(t)‖
are uniformly bounded,P is am × n matrix andq is n × 1
matrix. This case fits the camera example presented in the
introduction. Although the state equations are still linear,
the observability condition apparently will depend not only
on (A(t), P, q), but also onu(t) (settingu = 0 may make
the system unobservable). This is in sharp contrast to the
classical linear time-varying case, where the observability
grammian does not depend onu.
Rewrite the output equation in (12) as

(P − yqT)x = 0.

This can be interpreted as if the output is defined implicitly.
For this reason we call an observer for such a system an
implicit observer. Using the equation above we consider the
following class of observers

˙̂x = A(t)x̂ + Bu(t) + L(t)(P − y(t)qT)x̂. (13)

This is similar to observers for linear time-varying systems,
but the output enters the error dynamics directly. It is well
known (Kalman, 1963; McGarty, 1974) that the error dy-
namics is asymptotically stable if some uniform observabil-
ity condition is satisfied. Here we only present a more con-
servative version of the result (Matveev et al., 2000).

Lemma 3.1. SupposeA(·) is uniformly Liapunov stable and
let �(�, t) be the state transition matrix of(12),

M(�) : =(P − y(�)qT)T(P − y(�)qT) (14)

and suppose the system(12) is uniformly observable, namely

O : =
∫ t+T

t

�T(�, t)M(�)�(�, t)d���I (15)

for all t� t0, |x0|�m and some positive T and�. Then(13)
is an exponential observer, i.e. the error dynamics converges
to zero exponentially for all|x0|�m. In particular, one can
chooseL = −W−1(P − yqT)T, whereW >0 satisfies

Ẇ + WA + ATW �0. (16)

However, this result only gives the condition in terms of
y(t) for our system andy(t) depends on the excitingu(t).
It would be much more convenient and practical if we

could give conditions onu(t) and the initial conditions. Fur-
thermore, this would allow us to designu in order to enhance
the observability.
ExpandingM(�) yields

M(�) = P TP − qyT(�)P − P Ty(�)qT + ‖y(�)‖2qqT.
(17)

Defining

M1(�) = P TP + ‖y(�)‖2qqT
M2(�) = qyT(�)P + P Ty(�)qT (18)

meansM(�) = M1(�) − M2(�).
We can now expand the observability grammian as

O=
∫ T

0
�T(t + �, t)M(� + t)�(t + �, t)d�

=
∫ T

0
�T(t + �, t)M1(� + t)�(t + �, t)d�

−
∫ T

0
�T(t + �, t)M2(� + t)�(t + �, t)d�. (19)

It is reasonable to assume the following:

Assumption 3.1. For any scalar function�(·) such that∫ t+T

t
|�(s)|ds��>0 wheret� t0, we have for system (12)

∫ T

0
�T(t + �, t)M�(� + t)�(t + �, t)d���1I >0, (20)

whereM� is defined as

M�(� + t) = P TP + �2(� + t)qqT. (21)

The condition imposed on� suggests that the excitement
from the output should be persistent. The motivation of the
assumption is that the system should be observable if the
output can be persistently excited. In other words, the pair
(A(·), (P T�(·)q)T) is uniformly observable. In fact, in many
cases it would suffice to assume that(A(·), (P Tq)T) is uni-
formly observable.
Eqs. (18) and (19) tell us thatM2 represents a possibly

bad influence. Thus, a feasible approach for obtaining uni-
form observability is to solve the following optimal control
problem:

min
u

∣∣∣∣
∫ T

0
〈�T(t + �, t)q,�T(t + �, t)P Ty(� + t)〉d�

∣∣∣∣ (22)

among all admissible controls such that‖y(t)‖�C. This
will reduce the weight of the quadratic formzTM2z.
By looking at (18) and (19) we also realize that choosing

a suitable big oscillatingy will increase the positive impact
of M1 while reducing the possibly damaging impact ofM2.
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Now we need the following definition:

Definition 3.1. A linear systemẋ = A(t)x is said to be
q-persistent if for anyx0 such that|qTx0|>0, we have
|qTx(x0, t)|��x0 >0 for all t�0.

If �1(t) = �2(t) = 0 in the camera example, then the
system is q-persistent whenv is set to zero.

Theorem 3.1. For system(12), suppose Assumption3.1
is satisfied, A(t) is both uniformly stable and q-persistent
and the reachable subspace of the pair(A(·), B) contains
ker qT. Then there exists a controlu(t) such that the system
is uniformly observable from all initial conditions satisfying
|qTx0|>0.

Proof. Let x1= qTx and complete the coordinates withx2,
we can rewrite the system as

ẋ1=a1x1 + a2x2 + b1u

ẋ2=A1x1 + A2x2 + B2u.

q-persistence implies that bothqTx >0 and qTx <0 are
invariant underẋ = A(t)x. ThusqTx = 0 is also invariant
underẋ =A(t)x. The invariance ofqTx = 0 impliesa2= 0,
thus the system becomes

ẋ1=a1x1 + b1u

ẋ2=A1x1 + A2x2 + B2u,

where the assumption of stability andq-persistence
of A(t) implies for some m,M >0, m��1(t, t0) =
e
∫ t
t0
a1(s) ds �M ∀t� t0.
Without loss of generality, we assume thatqT is linearly

independent of the rows ofP. Otherwise it would imply that
(P,A) is already observable and in this case proof of the
theorem is straight forward. Under this assumption we can
haveP = [0P̄ ] and the output can be rewritten as

y = P̄ x2

x1
.

M(�) in (17) becomes

M(�) =
(
yT(�)y(�) −yT(�)P̄
−P̄ Ty(�) P̄ TP̄

)
.

It is obvious that Assumption 3.1 is satisfied if and only
if (A2, P̄ ) is uniformly observable.
It is observed inMatthies, Kanade, and Szeliski (1989)

that quick translational movements in planes (roughlyx2 in
our case) parallel to the perception plane provide very rich
depth (roughlyx1) information. Based on this observation,
we can construct an open-loop exciting control as follows:

1. If b1 �= 0, let sgn(x1(t0))b1u= k >0 for some duration
T1, to drivex1 further away from 0; otherwise go directly
to Step 2.

2. Let u = D(�) sin(�t), whereD is chosen to satisfy
‖D(�)‖< m�

M‖b1‖kT 1. Thus |x1(t)|�	>0 ∀t�T1. If

b1 = 0, we can simply takeD(�) = �[1, . . . ,1]T, for
example.

With this control, we have

x2(t)=�2(t, t0)x2(t0) + �21(t, t0)x1(t0) +
∫ t

t0

�21b1u(s)ds

+
∫ t

t0

�2(t, s)B2u(s)ds,

where�21(t, t0) = ∫ t
t0

�2(t, s)A1(s)�1(s, t0)ds.
The stability assumption onA(t) implies thatA2(·) is also

critically stable (sincex1 = 0 is invariant whenu is set to
zero). Plug in the control in Step 2, we have∫ t

t0

�2(t, s)B2u(s)ds

= −B2D

�
cos(�t) + �2(t, t0)

B2D

�
cos(�t0)

− 1

�

∫ t

t0

�2(t, s)A2(s)B2D cos(�s)ds.

The last term in the above equality tends to zero as� tends to
infinity. In fact, by the classical Riemann–Lebesgue theorem,
we know that

lim
�→∞

∫ t2

t1

f (t) sin(�t)dt = 0,

lim
�→∞

∫ t2

t1

f (t) cos(�t)dt = 0

for any integrable functionf, while

lim
�→∞

∫ t2

t1

f 2(t) sin2(�t)dt = 1

2

∫ t2

t1

f 2(t)dt

is bounded from below. Denotex2u(t) = −B2D(�)
� cos(�t),

we can choose� sufficiently large such that∣∣∣∣
∫ t+T

t

�T
2(s, t)P̄

TP̄ x2u(s)�1(s, t)ds

∣∣∣∣ � 1 (23)

and∣∣∣∣
∫ t+T

t

�T
21(s, t)P̄

TP̄ x2u(s)�1(s, t)ds

∣∣∣∣ � 1, (24)

while∫ t+T

t

�1(s, t)|P̄ x2u(s)|2�1(s, t)ds�c >0, (25)

namely, it remains bounded from a positive number due to
the reachability and observability assumption on the pair
(A2, B2) and(A2, P̄ ).
We note that the integrand in (15) is always at least semi-

definite, with inequalities similar to (23) and (24) one can
show with straight forward calculations that in the matrix
integration defined by (15) some of the diagonal terms (or
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sign indefinite terms) vanish (almost), while the correspond-
ing item on the diagonal remains bounded from below due to
(25). This extra positive item on the diagonal will make the
matrix positive definite. Therefore the system is uniformly
observable. �

Although the optimal control problem (22) would pro-
vide us with an alternative approach for finding a control, in
general it is a nonconvex problem and difficult to solve
analytically. Since the purpose of this paper is mainly to
demonstrate the dependence of observer on control, rather
than attempting to solve the problem of optimal design of ac-
tive controls, we can limit the control to some special classes
and try to find a suboptimal open-loop controller. By ob-
serving the functional to be maximized and from the proof
of the theorem, it is reasonable to assume that the control is
a periodic function, as discussed above.
Another interesting issue regarding the design of active

observers for (12) is the robustness of algorithm with respect
to measurement noise. The key requirement for (13) to con-
verge is that (15) holds. Therefore (13) would still converge
if the noise is small in comparison to the true measurement.
However, when the noise is big, the error dynamics for (13)
may become unstable, which is in sharp contrast to the lin-
ear case.
In the rest of this paper, we shall use Example 1.1 to

illustrate the ideas presented so far.

4. The camera example

We should first point out that there has been a vast litera-
ture oncomputer vision, see for exampleShapiro and Stock-
man (2001), Faugeras, Luong, and Papadopoulo (2001)and
the references therein. The purpose of this section is to use
Example 1.1 to illustrate the ideas of active perception pre-
sented in the paper. To focus on this aim, we do not incorpo-
rate measurement uncertainties and noises in our simulation.
For a robot moving around in a 3D environment lines and

points are of interest when trying to figure out the position
and orientation using vision. How many lines and points
one needs to determine the rotation and translation depends
on how the features are placed relative to the camera. If the
camera for example moves along a straight line a detected
line parallel to it does not add any depth information.
In this section, we first derive the model for line mea-

surements. Then we use the point feature to illustrate the
design of a linear observer, and the line feature to illustrate
the possibility of nonlinear observers.

4.1. Measurement of a line

One way of describing a line in 3D is to specify a point
p, as done in the introduction, plus a direction

d = (
dx, dy, dz

)T
. (26)

Though not necessary, in this paper we choose to modeld
as a vector of norm one. Ifp is a fixed point, such as a
corner (intersection with another line), one can, as discussed
in the beginning of this paper, describe its dynamics by (4).
Similarly we can write

ḋ = �(t)d. (27)

The projection of a line onto the image plane of a camera
is well understood. We however still give an elementary
derivation here in order to put the observation in the form
we study in the paper. LetP2D(p) denote the projection of
the pointp onto the image plane. If the focal lengthf is
assumed to be 1 the 2D projection can be written

P2D(p) =
(
px

pz
,
py

pz

)T
. (28)

To compute the 2D projection of the 3D direction we first
consider the projection of two points lying on the linep+td:

P2D(p + tid) = 1

pz + tidz

(
px + tidx
py + tidy

)
(29)

wherei=1,2. The direction of the line projection can now be
obtained by looking at the difference between these points.

P2D(p2) − P2D(p1)

= t2 − t1

(pz + t2dz)(pz + t1dz)

(
pzdx − pxdz
pzdy − pydz

)
(30)

A measurement of the point is given by (4). One such iden-
tifiable point could be the intersection of two coplanar lines.
Based on (30) it is clear that a measurement of the 2D pro-
jection of the direction looks like(
y3
y4

)
= C

(
pzdx − pxdz
pzdy − pydz

)
= Cd2D. (31)

It is convenient to assume that[y3, y4]T is a vector of length
one. In that caseC = 1/||d2D||. Then the system consisting
of (4), (27) and (31) is in the form of (2).
Now note that(
pzdx − pxdz
pzdy − pydz

)
=pz

(
dx − (px/pz)dz
dy − (py/pz)dz

)

= pz

(
dx − y1dz
dy − y2dz

)
. (32)

Using (32) in (31) gives

y3Cpz(dy − y2dz) = y4Cpz(dx − y1dz) (33)

yielding

y3(dy − y2dz) − y4(dx − y1dz) = 0. (34)

Eq. (34) can be rewritten as( −y4
y3

y4y1 − y2y3

)T (dx
dy
dz

)
= Bd(y)d = 0. (35)

The above expression is well suited for the design of an
observer.
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4.2. Localization

Now we construct an observer to estimate one of the lines
and the intersecting point. Defining

Bp(y) =
(−1 0 y1

0 −1 y2

)
, (36)

Matveev et al. (2000)shows that for a pointp satisfying (4)

Bp(y)p = 0. (37)

Comparing (4) and (37) to (13) and (16) yields the observer

˙̂p = �p̂ + v − W−1Bp(y)
TBp(y)p̂. (38)

If (27) and (35) are matched against (13) and (16) one gets

˙̂
d = �d̂ − W−1Bd(y)

TBd(y)d̂. (39)

However, when using (39)̂d is not guaranteed to converge
to a vector of norm one. This could be a problem since we
modeld as a vector of unit length. In order to remedy this,
we can add an extra forcing term. We observe that for the
following system:

ẋ = −x(xTx − 1), (40)

the direction ofx(t) is not affected by the dynamic equation
above, but the norm ofx(t) is driven towards one. By adding
this extra feature to (39), we get

˙̂
d = �d̂ − W−1Bd(y)

TBd(y)d̂ − d̂(d̂Td̂ − 1). (41)

Then, the observer becomes quite nonlinear.

5. Simulation

One could imagine a robot operating in an environment
containing polygonal objects. In such a case points and
directions can be extracted from the boundaries of these
polygons. The example below could originate from such a
situation.
When simulating a combined point and direction estima-

tion the following setting was used. Letp̂ andd̂ denote the
estimates ofp andd, �p = p̂ − p and�d = d̂ − d. The
parameters�1 = 0,�2 = sin(
t) , �3 = 0 ,W = 0.2I were
chosen and the initial conditions used were

p(0) = [1,−1,2]T, p̂(0) = 1.3p(0),
� = 
/13, � = 2
/3, �̂ = 1.2�, �̂ = 0.8�,
d(0) = [cos(�) cos(�), sin(�) cos(�), sin(�)],
d̂(0) = [cos(�̂) cos(�̂), sin(�̂) cos(�̂), sin(�̂)].

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

t

 
 
 

∆px
∆py∆pz

Fig. 1.�p.

The velocity was chosen as a periodic function

v(t) =
(−2
 sin(2
rt)

2
 cos(2
rt)
0

)
,

wherer = 1. With this control it can be verified that thep
system, described by (4), is uniformly observable. And in-
creasing the frequency of the velocity speeded up the con-
vergence of the estimates. We note that with our choice of
initial condition the depth (|qTx0|) is already large enough,
thus it is not necessary to use a constant control first to
increase the depth further, as is suggested in the proof of
Theorem 3.1.

Remark 5.1. On the other hand, for av consisting of two
zero components and one oscillating component,p̂ and d̂
failed to converge top andd since the system is not uni-
formly observable in this case.

The result of applying Eq. (38) is shown inFig. 1. As
seen therêp converged nicely top. It should be pointed out
that the point estimation is independent of the direction. The
estimates ofdwill on the other hand depend onpvia outputs.
This means that a good choice ofv is equally important for
estimatingd.
All simulations in this section were done in Matlab, using

ode45 for integration.

5.1. Using a linear observer

First Eq. (39) without norm feedback for̂d was used.
When using (39) the norm of̂d is not guaranteed to con-

verge to one. To evaluate how well the direction ofd̂ de-
scribes the one ofd, d is compared tõd = d̂/||d̂||. Further-
more we let�̃d = d̃ − d. Figs. 2and3 show results for this
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Fig. 2. Norm of d̂ linear case.
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Fig. 3. �̃d linear case.

case.d̂ converges to a vector parallel tod, but has a slightly
smaller norm.

5.2. Using a nonlinear observer

The second case studied was the observer described by
(41) with a norm feedback for̂d. The outcome of the simu-
lation is displayed inFigs. 4and5. They show howd̂ con-
verges nicely tod.
Let

Â = � − W−1BT
d Bd (42)

and note thatBdd = 0. Now Eq. (41) can be rewritten

˙̂
d = Âd̂ − d̂(d̂Td̂ − 1). (43)
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Fig. 4.�d nonlinear case.
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Fig. 5. Norm of d̂ nonlinear case.

Letting e = �d = d̂ − d yields

d̂Td̂ = eTe + 2dTe + 1. (44)

The dynamics ofewill be governed by

ė = Âe − (e + d)(eTe + 2dTe). (45)

If ||e|| is assumed to be small the above equation can locally
be approximated by

ė = (Â − 2ddT)e. (46)

For a periodic(Â − 2ddT) a Floquet test (Khalil, 1996) of
stability can be applied. When the states of our simulation
were plugged into such a test stability was confirmed.
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6. Conclusions

In this paper theoretical results for improving observabil-
ity by active control design are presented. Though we do not
present any method for optimizing observers the paper can
be thought of a first step towards designing observers and
feasible exciting input signals for better estimates.
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