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Chapter 1

Input Tracking and Output

Fusion for Linear Systems

Abstract

In this paper, the input-output behavior of a linear stable system is studied
from a geometric point of view. Based on these results, it is discussed how
to choose an output and how to fuse a number of outputs, to best track the
input in stationarity.

1.1 Introduction

In this paper we first review in some detail how the input of a linear stable
system is tracked by the output. Our motivation to further study this classical
problem lies in that the results we obtain can be applied to other important
problems such as optimal input tracking and sensor fusion. It is natural that
before we can develop a procedure to choose an output or a combination of
outputs (sensors) that best tracks an input (in the case that the input is at
least partially unknown), we need to understand when a given output tracks
the input.

In the second part of the paper, we will discuss a sensor fusion problem.
There has been a vast literature on sensor fusion, see for example, the papers
in [1] and the references therein. However, treatment of the problem from the
input tracking point of view has to our knowledge not been addressed.

This paper is organized as follows. In section 2, we discuss the problem of
how a given output tracks an input in stationarity. In sections 3 and 4, we
discuss the problem of how to choose an output, or a combination of sensors,
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to optimally track an input in stationarity. Finally, we use an example to
illustrate our methods.

1.2 Autonomous Linear Systems

In this section we review some classical results on asymptotic input tracking.
Consider a stable, controllable and observable SISO linear system:

ẋ = Ax+ bu (1.1)

y = cx

where x ∈ Rn and σ(A) ∈ C− .
We will consider the case when the input u is generated by the following

exogenous system:

ẇ = Γw (1.2)

u = qw

where w ∈ Rm and σ(Γ) ∈ C̄+. This exo-system can generally have a block
diagonal Jordan realization

q =
(

q1 q2 . . . qM
)

Γ = diag(Γ1,Γ2, . . . ,ΓM)
(1.3)

where each qm =
(

1 0 . . . 0
)

is a first unit vector of length dim(Γm) and
each Jordan block corresponds either to polynomial, exponential, or sinusoidal
functions. The output of the exo-system becomes

u(t) =
M
∑

m=1

qme
Γmtw0m

.

Such exo-systems can generate, for example, step functions, ramp functions,
polynomials, exponentials, sinusoidals, and combinations of such functions.

Proposition 1.2.1 Suppose A is a stable matrix, then all trajectories of (x(t), w(t))
tend asymptotically to the invariant subspace S := {(x,w) : x = Πw}, where
Π is the solution of

AΠ − ΠΓ = −bq.

On the invariant subspace, we have

y(t) = cΠw(t).
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The proof of this proposition can be found, for example, in [5], and there is
also a vast literature on the nonlinear case [3, 6].

Using the matrix Π we have that the output of the linear system in the
steady-state can be represented as

y = cΠw.

Proposition 1.2.2 Let the system

ẇ = Γw, u = qw

be observable and no eigenvalue of Γ is a transmission zero of (1.1). Then the
system on the invariant subspace

ẇ = Γw, y = cΠw

is also observable.

Proof: A similar proof can be found in [5]. Since this result will be used
several times later on, we give a full proof here.

We first need to establish that under the hypotheses, the composite system

(

ẋ

ẇ

)

=

(

A bq

0 Γ

) (

x

w

)

(1.4)

y = cx

is observable. Methods for proving similar results can be found, for example,
in [2].

Define

H(s) =





sI −A −bq
0 sI − Γ
c 0



 .

By Hautus test we know that the system is observable if and only if

rank(H(s)) = n+m ∀s.

If s is not an eigenvalue of Γ, it is easy to see that rank(H(s)) = n+m since
(c, A) is observable. Now suppose s is an eigenvalue of Γ,

H(s) =





sI −A b 0
0 0 Im
c 0 0









In 0
0 −q
0 sI − Γ



 .
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If s is not a transmission zero of (1.1), then and only then the first matrix on
the right-hand side has rank n + 1 + m. The second has rank n + m since
(q,Γ) is observable. By Sylvester’s inequality, we have

rank(H(s)) ≥ n+ 1 +m+ n+m− (n+m+ 1) = n+m.

Therefore rank(H(s)) = n+m.
Now we do a coordinate change x̄ = x− Πw. Then (1.4) becomes

(

˙̄x
ẇ

)

=

(

A 0
0 Γ

) (

x̄

w

)

y = cx̄+ cΠw

It is straight forward to see that

((c, cΠ),

(

A 0
0 Γ

)

)

is observable implies (cΠ,Γ) is so too. Q.E.D.

An observer for the input

Based on this result it follows that the input u can be reconstructed by the
observer

˙̂w = Γŵ + L(y − cΠŵ)

û = qŵ
(1.5)

where the vector L can be designed such that the eigenvalues of Γ − LcΠ
can be placed anywhere we desire in the complex plane. This is a reduced
order observer since the dynamics corresponding to A is not included in the
observer equation. One of the prices we pay for this is that the convergence
of the observer is restricted by the transients corresponding to the eigenvalues
of A. Indeed, if x̄ = x − Πw, w̄ = w − ŵ, and ū = q(w − ŵ) then the error
dynamics becomes

(

˙̄x
˙̄w

)

=

(

A 0
−Lc Γ − LcΠ

) (

x̄

w̄

)

ū = qw̄

We will in the next section see that under special conditions it is possible to
design the output such that the input is reconstructed in stationarity. This
will give a memoryless observer, which is preferable from a computational
point of view.
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1.3 Exact Input Tracking

We will now discuss how Proposition 1.2.1 can be used to determine an ap-
propriate output in order to track the input exactly in stationarity. It follows
obviously that the output tracks the input if the vector c is chosen such that

(cΠ − q)eΓtw0 = 0 (1.6)

where w0 is the initial state of (1.2) that generates the input. This is clearly
the case if cΠ = q. If Π, for example, has full column rank, then it is possible
to design an output c for perfect input tracking in stationarity. We will show
below that this is the case if (A, b) is controllable, (q,Γ) is observable and
dim(A) ≥ dim(Γ).

In some way one may view this problem as a dual one to the output
regulation problem discussed in [4]. In this section, we discuss some necessary
and sufficient conditions.

Theorem 1.3.1 Suppose (q,Γ) is observable and (A, b) controllable. Then a
necessary and sufficient condition for the existence of a c, such that cΠ = q,
is that the dimension of A is greater or equal to that of Γ.

Proof: We can rewrite ẋ = Ax+ bu in the canonical form:

ẋ1 = x2

... (1.7)

ẋn−1 = xn

ẋn = −
n

∑

i=1

aixi + ku,

where k 6= 0 and ρ(s) = sn +
∑n

i=1 ais
i−1 is Hurwitz. In the steady state, by

Proposition 1.2.1 we have

x1 = π1w,

where π1 is the first row of Π. Since xi = π1Γ
i−1w, for i = 1, ..., n, we have

Π =











π1

π1Γ
...

π1Γ
n−1











. (1.8)
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Thus,

π1Γ
n = −

n
∑

i=1

aiπ1Γ
i−1 + kq.

Since by assumption Γ does not have any eigenvalue in the open left-half plane,
we have

π1 = kqρ(Γ)−1. (1.9)

If there exists a c, such that

q = cΠ =
n

∑

i=1

ciπ1Γ
i−1,

then

q = kqρ(Γ)−1
n

∑

i=1

ciΓ
i−1,

or,

q(I − kρ(Γ)−1
n

∑

i=1

ciΓ
i−1) = 0.

Denote ∆ = I − kρ(Γ)−1
∑n

i=1 ciΓ
i−1. It is easy to show that

∆ = (Γn +
n

∑

i=1

(ai − kci)Γ
i−1)ρ(Γ)−1

thus q∆ = 0 if and only if

qΓn +
n

∑

i=1

(ai − kci)qΓ
i−1 = 0. (1.10)

Since (q,Γ) is observable, (1.10) has a solution if and only if n is greater or
equal to the dimension of Γ. Q.E.D.

Corollary 1.3.1 If dim(A) ≥ dim(Γ), then Π has full column rank, and thus
there exists a c, such that,

cΠ = q.

Moreover, if dim(A) = dim(Γ), then such c is unique.
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Proof: It follows from (1.8), (1.9), (1.10), and observability of the exo-system
(1.2). Indeed,

Π =











π1

π1Γ
...

π1Γ
n−1











= k











q

qΓ
...

qΓn−1











ρ(Γ)−1

which has full rank since (q,Γ) is observable. Q.E.D.

Corollary 1.3.2 Suppose dim(A) = n ≥ dim(Γ) = m, then there exists a c

such that cΠ = q and the resulting system (1.4) is observable and (1.1) does
not have any transmission zero that is also an eigenvalue of Γ.

Proof: Consider the canonical form (1.7). Suppose the characteristic poly-
nomial for Γ is ρΓ(s) = sm +

∑m
i=1 γis

i−1. It follows from (1.10) and Cayley-
Hamilton that

ci =
1

k
(ai − γ̄i) i = 1, ..., n,

where γ̄i = 0 ∀i < n −m + 1 and γ̄i = γi−n+m otherwise, is a solution such
that cΠ = q. It then follows from the fact that A and Γ do not share any
eigenvalue, that no eigenvalue s0 of A or Γ is a root of

n
∑

i=1

cis
i−1
0 =

1

k

n
∑

i=1

ais
i−1
0 −

sn−m
0

k

m
∑

i=1

γis
i−1
0 .

Indeed, if s0 is for example a root of the characteristic polynomial of A, the
above expression reduces to

−
sn−m
0

k
ρΓ(s0),

which must be nonzero. Thus, no transmission zero of the corresponding (1.1)
is an eigenvalue of Γ and the pair (c, A) is observable. From the proof of
Proposition 1.2.2 we derive that (1.4) is observable. Q.E.D.

We have shown under the assumptions of Corollary 1.3.1 that the input u
can be reconstructed simply as

û = cx,

where, e.g. c = qΠ†, where Π† is the pseudo inverse. The tracking error
satisfies (where x̄ = x− Πw)

ū = u− û = cx− qw = cx̄+ cΠw − qw = cx̄
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Hence, the error dynamics in this case becomes

˙̄x = Ax̄

ū = cx̄

which, as for the observer in (1.5), has its rate of convergence limited only by
the eigenvalues of A.

The exo-system will in many applications have significantly larger dimen-
sion than the linear system (1.1) and then there only could exist a solution
to (1.6) for special choices of initial condition w0 of the exo-system. In the
next section we discuss a strategy for fusing the output of a number of outputs
in order to minimize the steady state tracking error.

1.4 Output Fusion for Input Tracking

We will here consider a special sensor fusion problem where we try to minimize
the tracking error by appropriately combining the outputs of a number of
sensors. A sensor in our terminology means a particular choice of ck matrix.
If the state space model represents physical variables, then typically each ck
corresponds to one state variable. The idea is that the sensor fusion block

Fusion
Sensor 

Exo-sys

Classifier

y u
ẋ = Ax+ bu

c1x

c2x
...

cNx

Figure 1.1: Sensor fusion set-up.

should determine a linear combination of the sensor signals such that the
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output

y =

N
∑

k=1

αkckx (1.11)

tracks the input u in stationarity. We will here discuss how this sensor fusion
idea works for the case when the input is generated by an observable exo-
system of the form (1.2).

The Classifier Block

We first need a classifier block in order to determine what Jordan blocks are
active in the generation of the input u, i.e. it determines a set M ⊂ {1, . . . ,M}
of indices such that the input can be represented as

u(t) =
∑

m∈M

qme
Γmtw0m

.

We will see below that this information sometimes is enough to obtain perfect
tracking. However, it is generally important to use as much information on the
vector w0 as possible in order to obtain better tracking. For example, if we in
addition to M also obtain an estimate ŵ0M =

[

ŵ0m1
, . . . , ŵ0mn

]

of the initial
condition then our ability to reconstruct the input improves. Even qualitative
information such as the relative amplitude of the various blocks is useful.

The Sensor Fusion Block

This block takes as input the classification M and maps it to a vector α
that minimizes the steady state tracking error for the output (1.11) according
to some cost criterion. We will discuss this in more detail below where we
also give necessary and sufficient conditions for obtaining perfect tracking. In
more sophisticated schemes we may also use an estimate ŵ0M of the initial
condition of the exo-system. This may give better tracking, however at the
price of more complex classifier and sensor fusion blocks. Note that this scheme
will be independent of the state space realization and the convergence to the
steady state solution depends on the spectrum of A.

A main practical motivation for our sensor fusion scheme is due to the lim-
ited communication and computation resources in many embedded systems,
such as mobile robotic systems. There is a need to develop “cheap” sensing al-
gorithms. The central idea in our scheme is to optimally combine the existing
sensors for state variables to measure the external signals. This optimization
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can be done off-line and then the sensor fusion block only needs to use a table
look-up to decide the parameter vector α. The only remaining issue is how to
design the online classifier.

The most natural way from a systems point of view is perhaps to use
a dynamical observer (in discrete time) to identify qualitatively the initial
condition (or the active Γ blocks) and then shut it down. This is possible since
the state of the exo-system is observable from the output from any sensor that
satisfies the conditions of Proposition 1.2.2. However, this approach could be
computationally expensive even if we only run it once in a while. A more
refined scheme is discussed for a special case below.

For many practical systems, it is perhaps more realistic to design the clas-
sifier based on other sensors that sense the interaction of the system with the
environment (such as laser scanners and video cameras), or/and on the nature
of application the system is operated for. In this way, typically only a range
of the Γ blocks (such as a frequency range) can be identified.

An Example Classifier

Let us consider the case when only one Jordan block of Γ is active at a time.
Then we can construct a classifier consisting of a bank of discrete time ob-
servers. Each observer in the classifier corresponds to a particular Jordan
block. The idea is to initially activate all observers in order to decide which
block is active. Once this is done, all observers are shut down except the
one corresponding to the active Jordan block. This observer is used to detect
changes in the exo-system. By running the monitor on low sampling frequency
a minimum computational effort is spent in the classifier.

Let us discuss how to construct such an observer for block Γm. Zero order
hold sampling of the dynamics gives

(

xk+1

wk+1

)

=

(

Ad bm,dqm,d

0 Γm,d

) (

xk

wk

)

where h is the sampling time, xk = x(kh), wk = w(kh), Ad = eAh, Γm,d =
eΓmh, and bm,d, qm,d are matrices of full rank such that

bm,dqm,d =

∫ h

0
eA(h−s)bqeΓmsds.

We can use exactly the same arguments as in the proof of Proposition 1.2.1
to show that the functions (xk, wk) converges to an invariant subspace Sm =
{(x,w) : x = Πmw}. It should be intuitively clear that the invariant subspace
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is the same as in continuous time. The following proposition gives a formal
mathematical proof.

Proposition 1.4.1 The sampled functions converge to the invariant subspace
Sm = {(x,w) : x = Πmw}, where

AΠm − ΠmΓm = bqm

Proof: Let uk = qwk and assume xk = Πmwk. It is straight forward to derive
that xk = Πmwk is invariant if and only if

AdΠm − ΠmΓm = bm,dqm,d.

This can be written

eAhΠm − Πme
Γmh = −

∫ h

0
eA(h−s)bqme

Γmsds

⇔ eAhΠme
−Γmh − Πm = −

∫ h

0
eA(h−s)bqme

−Γm(h−s)ds

This is a discrete time Lyapunov equation so we get

Πm =
∞

∑

i=0

eAih

∫ h

0
eA(h−s)bqme

−Γm(h−s)dse−Γmih

=
∞

∑

i=0

∫ (i+1)h

ih

eAτ bqme
−Γmτdτ =

∫ ∞

0
eAτ bqme

−Γmτdτ

which is the solution of the Lyapunov equation AΠm − ΠmΓm = bqm. The
convergence to the subspace can be proven similarly to that in the proof of
Proposition 1.2.1.
Q.E.D.

We will next consider observability of the pairs (cΠm,Γmd) on the invariant
subspace Sm = {(x,w) : x = Πmw}. It is well known that the sampled system
(cΠm,Γmd) is observable if and only if the continuous time system (cΠm,Γm) is
observable. Hence, from Proposition 1.2.2 we know that a sufficient condition
is that the exo-system (qm,Γm) is observable and that no eigenvalue of Γm is
a transmission zero of the system (1.1). The next proposition shows that it is
possible to design one sensor that works for all Jordan blocks.

Proposition 1.4.2 Suppose all pairs (qm,Γm) are observable. Then there
exists a sensor combination, c, such that all pairs (cΠmd,Γmd) are observable
on the corresponding invariant subspace.
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Proof: From the above discussion and Proposition 1.2.2 it follows that it is
enough to find c such that (c, A) is observable and (1.1) does not have any
transmission zero at the eigenvalues of the Γm. Such a c is always possible to
design since only a finite number of constraints are imposed. Q.E.D.

Assume now that we have sensors co, which corresponds to the output z,
such that the pairs (coΠm,Γmd) are observable. We can then use the following
block of observers

ŵk+1 = Γm,dŵk + Lm(zk − coΠmŵk)

where the observer gains Lm are designed such that the eigenvalues of Γm,d −
LmcoΠm are stable. The observer that corresponds to the active Jordan block
has error dynamics

(

x̄k+1

w̄k+1

)

=

(

Ad 0
−Lmco Γm,d + LmcoΠm

) (

x̄k

w̄k

)

which convergences to zero. By proper design of Lm the convergence rate
is determined by the eigenvalues of Ad. All other observers have the error
dynamics

w̄k+1 = (Γm,d − LmcoΠm)w̄k + (Γn,d − Γm,d − Lmco(Πn − Πm))wk

The matrix Λ = Γn,d −Γm,d −Lmco(Πn −Πm)) can without loss of generality
be assumed to be nonzero, which implies that w̄k does not converge to zero.
To see that Λ generically is nonzero, let us suppose Λ = 0. This implies

(Γm,d − LmcoΠm)e−Γnh − I = −LmcoΠne
−Γnh

On the other hand,

(Γm,d − LmcoΠm)Ψe−Γnh − Ψ = −LmcoΠne
−Γnh

has the unique solution

Ψ =
∞

∑

i=0

(Γm,d − LmcoΠm)iLmcoΠne
−Γnh(i+1).

Generically, we have Ψ 6= I, thus we can design Lm such that Λ 6= 0.
In the decision logic block we simply need to compare the magnitude of the

error signals w̄m from observers. Under our hypothesis that only one Jordan
block at a time is active it follows that only one error signal will converge to
zero.
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Once it is decided which Jordan block is active the classifier goes into the
monitoring mode, where the observer corresponding to the active Jordan block
is used to detect a change in the input signals. The sampling frequency in the
monitoring mode can often be chosen significantly lower than in the detection
mode. Suppose, for example, that the Jordan blocks correspond to sinusoidals
with distinct frequencies. Then by choosing the sampling frequency such that
these frequencies fold into distinct locations, we can detect a change of fre-
quency with a significantly lower sampling rate than the Nyquist frequency.

Perfect Steady-state Tracking

Assume we are given K sensor combinations c1, . . . , cK . We derive a sufficient
(and in a sense also necessary) condition for obtaining perfect steady state
tracking using these sensors. We have the following result.

Proposition 1.4.3 Suppose M = {m1, . . . ,mn} ⊂ {1, . . . ,M} are the active
Jordan blocks. Then we can obtain perfect tracking if

qT
M ∈ Im(ΠT

MCT )

where AΠM − ΠMΓM = −bqM and

ΓM = diag(Γm1
, . . . ,Γmn

)

qM = (qm1
, . . . , qmn

)

CT =
[

cT1 . . . cTK
]

(1.12)

Proof: The steady state output will be y = αCΠMwM(t), where wM(t) =
eΓMtw0M . Hence, we obtain perfect tracking since our assumption implies that
there exists a solution to αCΠM = qM. Note that this condition is necessary
if w0M is allowed to take any value. Q.E.D.

If the condition of the proposition holds then we normally want to find the
vector α with the minimum nonzero coefficients such that

αCΠM = qM

in order to minimize the number of sensors used. This can be done off-line
and then the sensor fusion block only need to use a table look-up to decide
the vector α.
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Approximate Tracking

It will often happen that we have too few sensors or too poor knowledge of
the exo-system to obtain perfect tracking. In such cases we need to optimize
the sensor fusion in order to get best tracking in some average sense.

Suppose Γ(δ), q(δ) is an uncertain parameterization of the exo-system,
where δ ⊂ ∆ is the uncertain parameters. We let ∆ = {0} correspond to the
case when we have perfect knowledge of the exo-system. If ∆ 6= {0} or if the
condition in Proposition 1.4.3 does not hold then we let the sensor fusion be
determined by the solution to some optimization problem

min
α

L∆(|αCΠ(δ) − q(δ)|)

where L∆ is some functional over ∆ and Π(δ) is the solution to AΠ(Γ(δ)) −
Π(δ)Γ(δ) = −bq(δ). Some examples are given in [5].

An Example of optimal output design

As an example to demonstrate our methodology, we consider a car-like base
and a robot arm mounted on it. By using the homogeneous representation
of rigid body motions, we can easily compute the position of the end-effector,
relative to the base, rB

A , and thus the kinematic model as

ẋA = f(xA, u).

Under the assumptions that the velocity of the car is constant, and that
the side slip angle is small, we can get a simplified model of the base vehicle
as follows:

ẋ = v cosB(ψ + β) (1.13)

ẏ = v sinB(ψ + β) (1.14)

β̇ + r =
ff + fr

mv
= a11β + a12r + b11δf (1.15)

ψ̇ = r (1.16)

ṙ =
ff lf − frlr

J
= a21β + a22r + b21δf + d(t), (1.17)

where (x, y) is the center of gravity of the vehicle, m is the vehicle mass and J
is the moment of inertia, and the a and b coefficients depend on the physical
parameters of the vehicle.

The disturbance d(t) could be for example, side wind or roughness on the
road surface.



1.5. CONCLUDING REMARKS 17

This example shows that by measuring the orientation (ψ) and yaw rate
(r), it is possible to recover d(t) in some cases, which shall be useful to know
for the control of the arm.

The advantage of using the output fusion method, in comparison to the
observer method, is that the lateral dynamics of the car is typically very fast.
Thus this method converges fast, while not having the transient peakings that
might be induced by the pole placements of an observer.

Figure 1.2 shows a simulation where by combining r(t) and ψ(t) we can
track a sinusoidal disturbance d(t) in stationarity. The upper diagram shows
the convergence of the output and the lower bound shows the error y − u.

0 5 10 15 20 25 30
−4

−2

0

2

4

y

t

0 5 10 15 20 25 30
−3

−2

−1

0

1

e−
u

t

Figure 1.2: Simulation of the sensor fusion.

1.5 Concluding Remarks

We have discussed conditions for steady state input tracking for stable lin-
ear systems. It has been shown that these results can be used to devise a
sensor fusion scheme for input tracking in some situations. We need to fur-
ther study the robustness issue of such methods (for example, when there are
uncertainties in Γ and/or in the measurements) and ways to generalize them.
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