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Abstract

In this paper, control algorithms are presented for formation keeping and path
following for non-holonomic platforms. The controls are based on feedback from
onboard directional range sensors, and a switching Kalman filter is introduced for
active sensing. Stability is analyzed theoretically and robustness is demonstrated
in experiments and simulations.

Key words: Formation control, multi-agent systems, path following, sensor-based
feedback control

1 Introduction

In recent years, the robotics community has become increasingly interested
in multi-robot systems. A strong motivation for using multi-robot systems
in applications such as surveillance and cleaning is that efficiency and ro-
bustness can be significantly improved. The drawback is, of course, that as
more robots are added to a system the complexity of the control problem
increases. This motivates the development of scalable, cascaded formation
controls [8], [19]. Such controls are proposed in this paper, for agents with
non-holonomic kinematics and limited sensing capabilities.

A variety of approaches to formation control have been developed, often
inspired by flocking and schooling behavior observed in various animal
species. The pioneering work on ”boids” presented in [1] in the field of
computer graphics is now well known.
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Formation controls based on so called virtual vehicles and artificial poten-
tials are proposed in [3], [6], [7], and [13]. This approach is robust and
particularly advantageous if each agent in the formation should follow a
predefined path. In this paper, however, we study a scenario where the
majority of the agents has no a priori information on the desired formation
path.

Graph theoretical approaches to formation control have become increas-
ingly popular and are proposed in for instance [14] and [15]. In many
such contributions, the focus is on formation structure and graph theoret-
ical properties such as connectivity . In this paper, we focus on control
design with constraints on sensors and actuators.

A common formation control strategy is behavior-based control. Such strate-
gies are proposed in [2], [12], [18] and others. The idea is to merge a set of
desired behaviors such as keeping a certain formation, following a spec-
ified path and avoiding obstacles. In this paper, we focus on formation
keeping. The controls proposed here can be incorporated in a more com-
plex behavior-based approach.

In various applications it is desired, mainly for cost reasons, that cheap and
therefore also simple agents are used, when possible, to assist a few highly
skilled but also expensive agents. In particular, in high risk operations such
as mine sweeping or exploration of hostile environments, cheap and ex-
pendable agents are preferable.

In this paper, we consider teams of robots consisting of one leader and a
number of followers. All robots are equipped with directional range sen-
sors, but only the leader has advanced navigation skills and sufficient com-
putational power to execute a more advanced strategy. We propose three
cascaded tracking controls for the followers, which all assume input from
directional range sensors. Complex formations can easily be achieved by al-
tering control parameters. Results from initial experiments and simulations
are included at the end of the paper to illustrate the theoretical results.

2 Related Work and Contributions

For mobile robots, navigation and target tracking are basic capabilities and
well studied in the literature. Tracking by means of a virtual vehicle was
proposed in [10] and implemented in for instance [13]. This is a robust
approach but a drawback is that some kind of planned path is needed to
design the dynamics for the virtual vehicle.



The controls developed in this paper assume platforms with non-holonomic
kinematic constraints and input from directional sensors. On the issue of
sensor and actuator limitations, the literature in the field of mobile robotics
is somewhat sparse. In [11] and [17] omnidirectional visual sensors are used
for formation control. A tracking control for directional sensors is presented
in [13]. For AUVs recent contributions include [20], [21] and the references
therein.

The main contributions of the paper are three cascaded formation controls
for follower agents. The control input is obtained from low-resolution di-
rectional range sensors using active sensing by means of a switching Kalman
filter [16]. No inter-agent communication is needed to execute the controls.

A similar formation control problem is studied in [5]. While this paper
presents a behavior-based approach with two separate controls for heading
and bearing, our approach uses only one control that achieves both objec-
tives simultaneously. Some of the results in this paper have been previously
provided in [4] and are briefly reviewed in [19]. This paper extends the rigid
formation control introduced in [4] to scenarios with dynamic control pa-
rameter values. Further, it is shown that a slight modification of the control
yields monotonic convergence for some of the formation errors.

3 Outline

The paper is organized as follows: in Section 4, notation is introduced and
assumptions on the platform and range sensor model are reviewed. Sec-
tion 5 is dedicated to the cascaded formation control in its original design.
A proof of global stability is included. Section 6 discusses refinements of
the control. Two modified versions of the first control are provided, one
that drives the heading of the agents monotonically toward their reference
values and one that introduces dynamic formation parameters. The con-
trols presented in this paper assume that input is provided from directional
sensors, which calls for active sensing as the tracked target agent may only
be visible from a subset of the range sensors at any given time. A switch-
ing Kalman filter for active sensing is presented in Section 7. The results are
demonstrated in experiments and simulations with the Khepera II platform
in Section 8, and a concluding discussion is included in Section 9.



4 Kinematic Constraints and Notation

In this section, we discuss the assumptions on platform kinematics and sen-
sors, and introduce notation. Consider a group of n agents Ri , i = 1, ...,n. The
control objective is for Ri to track Ri−1 at the distance d0,i and angle β0,i . The
notation is illustrated in Figure 1. We assume that the kinematics of each
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Fig. 1. Notation of angles and distances.

robot can be modeled by the set of ODEs

ẋi = vi cosφi

ẏi = vi sinφi

φ̇i = ωi ,

(1)

where (xi ,yi) is the position and φi is the heading of Ri . vi and ωi are con-
trol inputs. The kinematics (1) is common for mobile platforms. Examples
include the PowerBot from ActivMedia, the Magellan Pro platform from
iRobot and the Khepera II from K-Team, which is used in the experiments
and simulations in Section 8. Further, we assume the agents have only di-
rectional range sensors, and keep track of their own position by means of
odometry. The Khepera II has directional IR proximity sensors, positioned
as shown in Figure 2.



Fig. 2. Left: The Khepera II. Right: Positions of IR sensors.

5 Basic Formation control

In this section we derive the formation control that constitutes the founda-
tion of controls derived in later sections. The tracking control is an easily
implemented cascaded control algorithm that makes a robot track a leader
or a target at a specified distance and bearing angle. Let di denote the actual
distance between Ri and Ri−1 and let βi be the actual relative angle from the
orientation of Ri to Ri−1 (see Figure 1). The reference values of the formation
parameters are denoted d0,i and β0,i . Finally define γi = φi − φi−1. Now we
can express the kinematics of the system (1) as

ḋi =−vi cosβi +vi−1cos(γi +βi) (2)

β̇i =−ωi +
vi

di
sinβi −

vi−1

di
sin(γi +βi) (3)

γ̇i =ωi −ωi−1. (4)

Equation (4) is trivial and Equation (2) is easily derived from the observa-
tion that di decreases as the projection of the velocity of Ri on the distance
vector (xi−1−xi , yi−1−yi)

T increases, and increases with the corresponding
projection of the velocity of Ri−1. To understand Equation (3), note that the
second term, vi

di
sinβi , is approximately the change of βi if Ri moves and Ri−1

stands still, and conversely for the third term.

This is a cascaded system due to the presence of vi−1 and ωi−1. The control
objective can now be stated as:

Given v1(t) and ω1(t), find controls vi(t) and ωi(t) such that for i = 2, · · · ,n, as
t → ∞,



di →d0,i (5)

βi → β0,i (6)

γi →0. (7)

When β0,i = 0, i = 2, . . . ,n, the robots should follow straight behind each
other. We refer to this as a serial formation. If instead β0,i = π/2, i = 2, . . . ,n,
the robots should move on a line parallel to each other. For reasons soon
to be disclosed, we treat the case where |β0,i| < π/2. Thus, the achievable
formations range from serial to “sloping parallel”, which is often seen, for
example, in formations of aircraft and convoys of tanks and battleships. The
sloping parallel formation allows for an overlap in ground coverage as seen
in Figure 3, which is desirable for applications such as mine sweeping or
when constructing a detailed map. Derivation of the controls is facilitated
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Fig. 3. An example formation. Overlap is illustrated between R1 and R2.

by defining a reference point (x0,i ,y0,i), chosen on Ri’s axis of orientation at
a distance d0,i from the center of Ri :



x0,i = xi +d0,i cos(φi +β0,i)

y0,i = yi +d0,i sin(φi +β0,i).
(8)

With this particular choice of reference point we obtain a point that can be
driven arbitrarily close to Ri−1 without causing the angle to target to be un-
defined. The first formation control is presented in the following theorem:

Theorem 1 As t →∞, and with β0,i 6= π/2+mπ for any integer m, (x0,i(t),y0,i(t))
converges to (xi−1(t),yi−1(t)) with the following control:

Control 1 :















vi =
k

cosβ0,i

(

di cos(βi −β0,i)−d0,i +
vi−1

k
cos(γi +β0,i)

)

ωi =
k

d0,i cosβ0,i

(

di sinβi −d0,i sinβ0,i −
vi−1

k
sinγi

)

.

(9)

Proof The proof is straightforward. In fact, let xe = x0,i − xi−1,ye = y0,i −
yi−1, then we have

xe = xi +d0,i cos(φi +β0,i)−xi−1

ye = yi +d0,i sin(φi +β0,i)−yi−1,
(10)

so that





ẋe

ẏe



=





vi cosφi −d0,iωi sin(φi +β0,i)−vi−1cosφi−1

vi sinφi +d0,iωi cos(φi +β0,i)−vi−1sinφi−1





=





cosφi −d0,i sin(φi +β0,i)

sinφi d0,i cos(φi +β0,i)









vi

ωi



−vi−1





cosφi−1

sinφi−1



 . (11)

Now, by solving





cosφi −d0,i sin(φi +β0,i)

sinφi d0,i cos(φi +β0,i)









vi

ωi



=−k





xe

ye



+vi−1





cosφi−1

sinφi−1



 (12)

for vi and ωi we obtain Control 1, which obviously yields the error dynamics



ẋe = −kxe

ẏe = −kye.
(13)

�

As seen from Equation (13), the control gain k determines the rate of conver-
gence to the desired configuration. In practice, of course, physical limita-
tions will determine the upper bound for k. Also, due to the discretization
of the control in implementation, a too large gain may lead to overshoot.
The value of k must therefore be tuned with respect to platform and dis-
cretization method. By construction, Control 1 drives di to d0,i and βi to β0,i ,
satisfying the control objectives (5) and (6). For the third control objective,
consider the case ωi−1 = 0. With Control 1, the formation is driven to the
steady state di = d0,i , βi = β0,i . Then (4) becomes

γ̇i =−
vi−1

d0,i cosβ0,i
sinγi , (14)

with equilibria at γi = 0±π . For vi−1 > 0 and |β0,i|< π/2 we get

γ̇i <0 if γi ∈ (0,π) (15)

γ̇i >0 if γi ∈ (−π,0). (16)

In other words, with ωi−1 = 0, γ̇i has a stable equilibrium at γi = 0 and un-
stable equilibria at γi = ±π . Therefore, for bounded angular velocity ωi−1,
γi stays close to zero.

By varying the tracking distance and bearing angle a variety of differently
shaped formations can be obtained, such as the one shown in Figure 3. An
example of a complex formation is given in [4]. Clearly, for any given rate
of convergence, the control actions of Control 1 will grow large as β0,i ap-
proaches π/2 and the control becomes singular for β0,i = π/2. To the extent
of our knowledge, no known controller can handle the whole range from 0
to π/2. Thus for reference angles close to π/2 one should switch to another
controller to avoid singularity [8].

6 Further Refinement of the Formation Control

In this section refinements of Control 1 are proposed and analyzed. The
issues of keeping agent Ri−1 in the field of view and allowing for dynamic
control parameters are discussed.



6.1 Driving βi(t) to β0,i

Equation (13) shows that Control 1 is globally exponentially stable in terms
of position errors. However, the control cannot guarantee that the angular
error |βi(t)− β0,i | decreases monotonically. Thus, if the sensors have only
limited angular field of view, we may risk losing track of the target. There-
fore, some strategy for active sensing is needed when using Control 1. Such
a strategy is further discussed in Section 7, where a switching Kalman filter
is used as an observer whose input depends on which sensors of agent Ri

currently view agent Ri−1.

However, a slight modification of Control 1 does make |βi(t)−β0,i | decrease
monotonically. The ability to control βi in this manner means that agent Ri

can choose to keep agent Ri−1 in the field of view of some particular sensors
at all times, unless the reference value β0,i changes rapidly. The price we pay
is the loss of globality. The modified control is presented in the following
theorem.

Theorem 2 Let

Control 2 :















vi =
k

cosβi

(

di −d0,i cos(βi −β0,i)+
vi−1

k
cos(γi +βi)

)

ωi =
k

di cosβi

(

di sinβi −d0,i sinβ0,i −
vi−1

k
sinγi

)

,

(17)

where k > 0, d0,i > 0, |β0,i| <
π
2 . Then for any βi(0) ∈ (−π

2 ,
π
2) and di(0) > 0,

|βi(t)−β0,i | tends to zero monotonically and di(t)−d0,i tends to zero.

Proof Define d̂i = di cosβi − d0,i cosβ0,i and β̂i = βi − β0,i . Then we have,
from Equations (2) - (3)

˙̂di = ḋi cosβi −di β̇i sinβi =−vi +vi−1cosγi +diωi sinβi

˙̂βi = β̇i =−ωi +
vi
di

sinβi −
vi−1
di

sin(γi +βi).
(18)

Now, plugging in Control 2 into (18) yields

˙̂di = −kd̂i

˙̂βi = −
kd0,i cosβi

d0,i cosβ0,i + d̂i
sinβ̂i .

(19)



Since |d̂i(t)| decreases monotonically, di(t)> 0∀t ≥ 0 due to the continuity of

the solution. Since
˙̂βi =−k

d0,i
di(t)

sinβ̂i , it is easy to see that as long as |βi(0)|<
π
2 , |βi(t)−β0,i | decreases monotonically.

�

When β0,i is constant or slowly varying, Control 2 ensures that Ri−1 stays
within the field of view of some of the sensors of Ri . However, some sce-
narios may require a flexible formation, where β0,i changes rapidly to adapt
to conditions in the environment. This would motivate the introduction of
some active sensing scheme. In the next section, a formation control with
dynamic control parameters is proposed.

6.2 Dynamic Control Parameters

A variety of formations can be obtained by altering the parameters d0,i and
β0,i . As Control 1 is globally stable for |β0,i| < π/2, switching between dif-
ferent parameter values can be performed independently on-line for each
robot. Under the assumption of directional sensors, a control with switch-
ing reference values should be combined with active sensing. This is fur-
ther discussed in Section 7, where a switching Kalman filter is proposed for
target tracking applications.

In this section the stability of Control 1 with dynamic parameters d0,i(t),β0,i(t)
is analyzed. According to Theorem 1, Control 1 is globally stable for con-
stant d0,i and β0,i . For time varying d0,i(t) and β0,i(t), using the same con-
trol input vi and ωi yields an additional nonlinear term in the error dy-
namics due to the nonzero time derivatives of d0,i(t) and β0,i(t). Recall that
xe = x0,i −xi−1,ye = y0,i −yi−1. The derivatives are now





ẋe

ẏe



=−k





xe

ye



+





cos(φi +β0,i) −d0,i sin(φi +β0,i)

sin(φi +β0,i) d0,i cos(φi +β0,i)









ḋ0,i

β̇0,i



 . (20)

We see that rapid changes in d0,i(t) and β0,i(t) might affect stability of the
error dynamics. Denote by Φ(t) the nonlinear term of Equation (20). Then
the error expression is





xe

ye



= e−kt





xe(0)

ye(0)



+
∫ t

0
e−k(t−s)Φ(s)ds. (21)



Note that, with ‖ · ‖ denoting the euclidean norm,

‖Φ(t)‖=

∥

∥

∥

∥

∥

∥





cos(φi +β0,i) −sin(φi +β0,i)

sin(φi +β0,i) cos(φi +β0,i)









ḋ0,i

d0,i β̇0,i





∥

∥

∥

∥

∥

∥

=
√

ḋ2
0,i +d2

0,i β̇
2
0,i .

(22)

Therefore, if there exists an M such that
√

ḋ2
0,i +d2

0,i β̇
2
0,i ≤ M, ∀t ≥ 0, it holds

that
∥

∥

∥

∥

∥

∥

xe

ye

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

xe(0)

ye(0)

∥

∥

∥

∥

∥

∥

e−kt +
M
k





1

1





(

1−e−kt
)

, (23)

so that as t →∞ the right hand side of Equation (23) tends to M/k. Thus, with
Control 1 and a given value of k, the error is bounded if ḋ0,i(t), d0,i(t) and

β̇0,i(t) are chosen so that M/k is smaller than the sensor range. To eliminate
the static error, the following modified control should be used:

Theorem 3 For vi and ωi defined by Equation (9), the control

Control 3 :







ṽi = vi + ∆v

ω̃i = ωi + ∆ω
(24)

with




∆v

∆ω



=−
1

d0,i cosβ0,i





ḋ0,id0,i

ḋ0,i sinβ0,i + β̇0,id0,i cosβ0,i



 (25)

results in the error dynamics (13).

Proof The proof is straightforward and follows from the fact that, with
dynamic control parameters d0,i(t) and β0,i(t), the error dynamics are

ẋe = vi cosφi −vi−1cosφi−1+ ḋ0,i cos(φi +β0,i)−d0,i(β̇0,i +ωi)sin(φi +β0,i)

ẏe = vi sinφi −vi−1sinφi−1+ ḋ0,i sin(φi +β0,i)+d0,i(β̇0,i +ωi)cos(φi +β0,i).

(26)
Replacing (vi ,ωi) with (vi + ∆v,ωi + ∆ω) yields

ẋe = (vi + ∆v)cosφi−vi−1 cosφi−1+ḋ0,i cos(φi+β0,i)−d0,i(β̇0,i+ωi + ∆ω)sin(φi+β0,i)

ẏe = (vi + ∆v)sinφi−vi−1 sinφi−1+ḋ0,i sin(φi+β0,i)+d0,i(β̇0,i+ωi + ∆ω)cos(φi+β0,i).

(27)



Now define




∆ẋe

∆ẏe



=





∆vcosφ + ḋ0,i cos(φi +β0,i)−d0,i(β̇0,i +∆ω)sin(φi +β0,i)

∆vsinφi + ḋ0,i sin(φi +β0,i)+d0,i(β̇0,i +∆ω)cos(φi +β0,i)



=





cosφi −d0,i sin(φi +β0,i)

sinφi d0,i cos(φi +β0,i)









∆v

∆ω



+





ḋ0,i cos(φi +β0,i)−d0,iβ̇0,i sin(φi +β0,i)

ḋ0,i sin(φi +β0,i)+d0,iβ̇0,i cos(φi +β0,i)



 ,

(28)

so that




ẋe

ẏe



=−k





xe

ye



+





∆ẋe

∆ẏe



 . (29)

Now, since the control ∆v,∆ω defined by (25) solves





cosφi −d0,i sin(φi+β0,i)

sinφi d0,i cos(φi+β0,i)









∆v

∆ω



= −





ḋ0,i cos(φi+β0,i)−d0,iβ̇0,i sin(φi+β0,i)

ḋ0,i sin(φi+β0,i)+d0,iβ̇0,i cos(φi+β0,i)



 ,

(30)

the terms ∆ẋe,∆ẏe vanish and the resulting error dynamics are exponentially
stable. Note that the derivatives of d0,i(t) and β0,i(t) are completely known
since they are control inputs.

�

Next, the switching Kalman filter is derived.

7 Active Sensing Through Switching Kalman Filters

To use Control 1 for agent Ri , we need to estimate the distance di , the angle
βi , and the velocity vi−1 of Ri−1 from sensor measurements. When using di-
rectional range sensors, the only information available is the distance from
each sensor to Ri−1. di and βi may be computed directly from sensor data,
but this is not the case for vi−1. In [19] a nonlinear observer is proposed
for this purpose. In this section, an alternative approach is introduced, en-
abling the use of a linear observer in the form of a Kalman filter.

As we shall see, even though this is not required explicitly by the forma-
tion controls, the Kalman filter needs an estimate of the global position of
the target in order to estimate vi−1. Although this introduces extra com-
putations, the method is appealing due to the desirable properties of the
Kalman filter, such as linearity, optimality and convergence.



As Control 1 does not guarantee monotonic convergence of βi , the observer
must be robust to the scenario that agent Ri−1 moves out of the field of
view for some of the sensors of agent Ri . Using dynamic parameters, Con-
trol 2 may also loose tracking for some directional sensors. We propose
a switching Kalman filter for active sensing, and introduce the concept of
active sensor pairs to obtain appropriate input to the Kalman filter.

The Khepera II, with its directional IR proximity sensors, is used as an ex-
ample platform to illustrate the method. For localization, Khepera II uses
odometry. Further down, expressions for di , βi , γi and vi−1 are computed
from sensor measurements. First, a brief review of notation and recursion
formulas for the Kalman filter is provided.

7.1 The Discrete Kalman Filter

In this section we introduce notation and review the Kalman recursions.
Consider a discrete, time-invariant system with a state space vector xt gov-
erned by the linear stochastic difference equation

xt = Axt−1+Bwt (31)

and a measurement yt ∈ R
m governed by

yt =Cxt +vt . (32)

The signals wt and vt are random process noise and measurement noise,
respectively, and are assumed to be independent, gaussian noise with co-
variance matrices

E(wtwT
t ) = Qt

E(vtvT
t ) = St .

(33)

Here, E(·) is the expectation value of (·). The discrete Kalman filter is an
observer that gives an estimate x̂t of the state xt at time step t, given the es-
timate x̂t−1 and the observation yt , in a least squares sense. In other words,
if we define the estimation error as

et = xt − x̂t , (34)

then the Kalman filter will give the estimate x̂t that minimizes E(eT
t et). Now

let

Pt , E(eteT
t ) (35)



denote the covariance matrix of x̂t . Then, given initial estimates x̂0 and P0,
the discrete Kalman filter is the recursive process

x̂−t = Ax̂t−1

P−
t = APt−1AT +BTQt−1B

Kt = P−
t CT

(

CP−
t CT +Rt

)−1

x̂t = x̂−t +Kt
(

yt −Cx̂−t
)

Pt = (I −KtC)P−
t .

(36)

Next, the application of the Kalman filter to target tracking is discussed.

7.2 Target tracking using the Kalman filter

Consider the problem of estimating the motion of the target Ri−1. This
should be done locally by Ri using odometry and the information available
from the sensor pairs p j , j = 1, . . . ,6, shown in Figure 4. A linear model is
needed for the kinematics of Ri−1 in order to apply a Kalman filter. There-
fore, let the position (xi−1,yi−1) and motion (ẋi−1, ẏi−1) of Ri−1 constitute the
state vector:

x =
(

xi−1 yi−1 ẋi−1 ẏi−1

)T
. (37)

Since we assume that the follower Ri has no a priori information about the
kinematics or trajectory of Ri−1, it is natural to represent the motion with an
ordinary random walk model:

ẋ =

















0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

















x +

















0 0

0 0

1 0

0 1

















w, (38)

where w = (ẍi−1 ÿi−1)
T is the unknown acceleration of Ri−1, which is mod-

eled as gaussian noise. As (xi−1,yi−1) can be measured in the sense that they
can be computed from sensor measurements, we define the measurement y
of the dynamic system (38) as

y =





1 0 0 0

0 1 0 0



x + v. (39)



where v is unknown, gaussian measurement noise. To enable application
of the discrete Kalman filter, the system (38) - (39) is discretized using an
sample time h. Denoting the discrete time steps with t, we get

xt+1 =

















1 0 h 0

0 1 0 h

0 0 1 0

0 0 0 1

















xt +

















h2

2 0

0 h2

2

h 0

0 h

















wt

yt =





1 0 0 0

0 1 0 0



xt + vt .

(40)

It is easy to show that this system is observable. The output of the Kalman
filter is

x̂ = (x̂i−1 ŷi−1 ˙̂xi−1 ˙̂yi−1)
T , from which the velocity estimate vi−1 =

√

˙̂x2
i−1+

˙̂y2
i−1

is finally obtained. In the next section, y is derived from sensor measure-
ments.

7.3 Computation of Kalman Filter Output

y in (39) can be derived from sensor data, using triangulation for pairs of
directional sensors, as follows. For the Khepera II we define 6 neighboring
sensor pairs (Figure 4):

p1 = {s1 s2}, p2 = {s2 s3}, p3 = {s3 s4},

p4 = {s4 s5}, p5 = {s5 s6}, p6 = {s7 s8}.
(41)

When there is no risk of confusion, we will use the notation sq to specify
both the sensor indexed q∈ [1,8], and the global position of that sensor. For
an explanation of the notation used in this section, see Figure 6.

The IR sensors of the Khepera II measure reflected light intensity. The re-
lation between light intensity and distance for the IR sensors depends on
factors such as ambient light and reflecting material. For the initial exper-
iments presented in Section 8, the measured relation is shown in Figure 5.
Let δ̃q be the measured distance to the target from sensor sq, and define the
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.

distance δq from sensor sq to (xi−1,yi−1):

δq , δ̃q+ r. (42)

Here, r denotes the radius of Ri−1. Let p j = {sq,sq−1}, ∆sj = ‖sq− sq−1‖
and define, using the law of cosines, the angle ψ j such that

δ 2
q−1 = ∆s2

j +δ 2
q −2∆sjδqcosψ j . (43)

Denote by y j the target position estimate associated with p j . All variables
are defined in a local coordinate system O′ with x-axis parallel to the differ-
ence vector sq−sq−1 as shown in Figure 6. Expressed in O′, we obtain
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Fig. 6. Notation for computing the position of Ri−1 from sensor measurements.
Here sq and sq−1 form the sensor pair p j .

∆x′j = δqcosψ j

∆y′j = δqsinψ j .
(44)

This means that the position of the target, as measured by p j , in the frame
O′ is

y′j =
(

x′q−∆x′j y′q+∆y′j

)T
= (x′i−1 y′i−1)

T (45)

where (x′q,y
′
q) are the coordinates of the sensor sq in the local frame. Ex-

pressed in the global coordinate system, we get

y j =





cosθ −sinθ

sinθ cosθ









x′i−1

y′i−1



+





xi

yi



 , (46)

where θ is the rotation of O′ compared to the global frame. θ and (xi ,yi)
are obtained from the odometry of Ri . Before computing control inputs, a
critical issue is to decide from which senor pairs to record measurements.
This is discussed in the next section, and a formalization of the procedure
is provided.

7.4 Switching Kalman Filters

In this section we derive a switching Kalman filter suitable for target track-
ing using directional sensors. It is clear from Figure 2 that each sensor has



a limited field of view. We say that a sensor is active if the target is in its
field of view. If a Kalman filter Fj is designed for each sensor pair p j and
they are allowed to act on the discretized system (40), Fj will only give a
fair estimation if both sensors in p j are active. Further, note that (43) and
(44) yield

∆y′j =
√

δ 2
q −∆x′2j = δq

√

1−

(

∆s2
j+δ 2

q−δ 2
q−1

2∆sj δq

)2
(47)

which is imaginary for (∆s2
j + δ 2

q − δ 2
q−1/2∆sjδq)

2 > 1. Naturally, the true

distance ∆y′j is a real number. However, the estimate computed from (47)
can be imaginary if too much measurement noise is present in the sensor
readings δq and δq−1. We will therefore use the following definition.

Definition 1 A filter Fj is activeat time step t if and only if

(1) Both sensors in the associated sensor pair p j are active
(2) For measurements from the sensor pair p j , it holds that

(

∆s2
j +δ 2

q −δ 2
q−1

2∆sjδq

)2

< 1. (48)

In order to estimate the movement of Ri−1, Ri should only pay attention
to the output of active filters. Which filters Fj that are active at each time
step will vary with the path of the target and the tracking parameters. This
motivates the use of a switching Kalman filter.

The switching Kalman filter consists of the subfilters Fj , which all run in
parallel to each other. At each time step, the estimates x̂ j,t from the active
subfilters are merged into an estimate x̂t for the switching filter. x̂t can be
either a linear combination of the state estimates from the active filters, or
the best estimate x̂ j,t with respect to some criterion.

A summary of the switching Kalman filter scheme follows in Algorithm 7.1.

Algorithm 7.1 Target Tracking with a Switching Kalman Filter
For each follower agent Ri , at each time step t:

(1) Record, using odometry, the agent’s own position at time t: (xi,t ,yi,t ,φi,t).
(2) Record range measurements from the IR sensors. If sq−1 and sq both get read-

ings, the associated sensor pair p j is added to the list of candidates for active
filters.

(3) Check condition (48). If (48) holds for p j , this sensor pair is added to the
final list of active sensor pairs.



(4) Compute y j,t for all active sensor pairs using (42) - (46).
(5) Apply the Kalman filter (36) to the system (40) using y j,t to obtain estimates

x̂ j,t for all active filters.
(6) Compute or choose the final state estimate x̂t = (x̂i−1,t ŷi−1,t ˙̂xi−1,t ˙̂yi−1,t)

T

from the estimates x̂ j,t .
(7) Compute

vi−1,t =
√

˙̂x2
i−1,t +

˙̂y2
i−1,t (49)

di,t =
√

(x̂i−1,t −xi,t)2+(ŷi−1,t −yi,t)2 (50)

βi,t = tan−1 ŷi−1,t −yi,t

x̂i−1,t −xi,t
−φi,t (51)

φi−1,t = tan−1 ŷi−1,t − ŷi−1,t−1

x̂i−1,t − x̂i−1,t−1
(52)

γi,t = φi,t −φi−1,t . (53)

(8) Compute and apply control inputs vi,t and ωi,t from Control 1, Control 2 or
Control 3.

In the next section, the controls discussed in previous sections are demon-
strated in experiments and simulations.

8 Experiments and Simulations

In this section, initial results from experiments and simulations are pro-
vided. The results in this section serve to illustrate the theoretical results in
previous sections. An extensive experimental evaluation remains for future
work and will be further discussed in Section 9. First, the outcome of exper-
iments using Control 1 and Algorithm 7.1 are reported. Then, simulation
results for Control 2 and Control 3 are included to demonstrate advantages
of refining the control.

8.1 Experiments: Control 1 and Algorithm 7.1

The platform used in the experiments is the Khepera II (Figure 2) which has
unicycle kinematics and 8 directional IR sensors. The sensors have a range
of up to 100 mm but the quality of data is highly sensitive to factors such as
ambient light. For localization, the Khepera II uses odometry.

Algorithm 7.1 was used to obtain position and velocity estimates. The
switching strategy was to choose x̂t as the estimate x̂ j,t among the outputs



of the active filters Fj that differed the least from the previous estimate x̂t−1.
This is a rough and simple strategy, best suited for constant or slowly vary-
ing parameters. More sophisticated strategies should be investigated in
future work.

The experiments were performed with a setup of one leader (R1) following
a predefined path, and one follower (R2). The platforms were controlled
through an interface in MATLAB. No communication occurred between the
agents.

Results are shown for robustness of a rigid formation as well as for switch-
ing bearing angle. The figures in this section contain plots of ∆d2 and β2

computed from the Kalman filter output. Note that the scaling differs some-
what between plots, depending on the magnitude of the deviations of the
curves from the reference values.

Robustness of Control A.1

To investigate the robustness of Control 1, R1 followed a predefined path at
constant speed, and R2 tracked R1 with a given reference angle, β0,2, and a
reference distance of d0,2 = 120 mm (from center to center).

The formation error ∆d2 ≡ d2−d0,2 and angle β2, together with the trajecto-
ries of the robots, are shown in Figure 7 - 8 for β0,2 = 0 rad and β0,2 = π/6 rad
respectively. For β0,2 = 0 rad, β2 converges nicely and stays at 0 rad after
a transient of about 15 s. β0,2 = π/6 rad is a more challenging case for the
Khepera II, as this angle lies at the edge of the field of view for two sensors
(s2 and s3 in Figure 4). As seen in Figure 8, β2 fluctuates around its reference
value and does not converge. This is due to the fact that for this challenging
angle, the active filter switches back and forth between F2, F3, and some-
times F1 (see Figure 4). In addition, the drifting error in the odometry used
for localization contributes to measurement uncertainties. To reduce oscil-
lations, a more sophisticated switching strategy, such as a weighted mean
estimate from several filters, should be applied. This is an issue for further
study. However, despite fluctuations, R2 is able to follow R1, R1 remains
within the sensor range of R2 at all times, and the errors are bounded.

Robustness for switching β0

To investigate the robustness of a switch of the reference angle, the same
setup as in Section 8.1 was used. Again, R1 followed a predefined path with
constant speed, and R2 tracked R1 with reference angle β0,2 = 0 rad, and a
reference distance of d0,2 = 120 mm. The reference angle was switched to
β0,2 = π/6 rad at t = 10s, and then switched back to β0,2 = 0 rad at t = 60s.
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The formation error ∆d2 and angle β2 are shown, together with the trajecto-
ries, in Figure 9. After a transient of roughly 20 s, ∆d2 decreases and fluctu-
ates around a small static error despite switch in β0,2. R2 responds quickly
to the change in β0,2 and although fluctuations are present, we observe no
static error in β2. R1 remains withing the field of view of R2 throughout the
experiment, and the errors remain bounded.
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8.2 Simulations: Control 2

To demonstrate the usefulness of Control 2, simulations were carried out for
two agents R1 and R2 using Control 1 and Control 2, which drives βi −β0,i

to zero monotonically. The agents were modeled as unicycle platforms. For
v1 = 10, ω1 = π/3, k= 1, β0,2 = π/7, d0,2 = 1,
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(x1,y1,φ1) = (0,0,0), (x2,y2,φ2) = (−0.97,−0.70,π/10) error convergence is
studied. The measured entities are the deviations from reference values
of control parameters (d2 − d0,2 and β2 − β0,2), and position error (xe and
ye). Although all errors converge to 0, they do not do so monotonically for
both controls. Results are plotted in Figures 10 - 12. Figure 10 shows the



resulting trajectories for R1 and R2. Figure 11 shows convergence of d2 and
β2 toward the reference values for both controls. Clearly, Control 2 yields
a monotonic convergence while Control 1 does not. If R2 is equipped with
directional sensors, it may risk to loose tracking for t ∈ (0,4) when using
Control 1. On the other hand, as is seen in Figure 12, the position error
converges monotonically with Control 1 but not with Control 2. It should
however be noted that if the control gain k can be increased sufficiently, all
errors will decrease monotonically for both controls.

−10 −5 0 5 10 15
−5

0

5

10

15

20

25
trajectories

 

 

Fig. 10. Controll A.2: Trajectory of R1 (solid) and R2 (dashed).
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8.3 Simulations: Dynamic Parameters

Advantages of Dynamic Parameters
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To demonstrate potential advantages of dynamic control parameters, we
consider a scenario where the formation strives to stay on the same path as
the leader at all times. We defined dynamic control parameters d0,i(t) and
β0,i(t) such that, given the path of agent Ri−1 up until time t, agent Ri should
steer toward a position located on that path such that the distance d0,i(t) is
maximized while the area shown in Figure 13 is smaller than a tolerance
value Amax. Simulations were performed for a team of 5 agents using first
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i−1 i−1δ δx    (t−   t), y    (t−   t)
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Fig. 13. Advantages of Dynamic Parameters: d0,i(t) is chosen as the maximum
distance that keeps the tinted area smaller than Amax.

dynamic, and then constant, d0,i and β0,i and results were compared. For
both cases we used Control 1. The leader agent R1 traveled along a pre-
defined path, which is unknown to the followers. The simulation setup is
illustrated in Figure 14. For the dynamic parameters, letting Amax= 0.005
resulted in a mean inter-agent distance of 1.19 length units. In the case with
constant parameters, we use reference angle 0 rad and reference distance
equal for all agents. This distance was chosen as d0,i = 1.19, i = 2, . . . ,5 to
get as fair a comparison as possible. For both controls, we used the gain
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k = 1. At each time step, the deviation for Ri from the path of Ri−1 was
measured as

devi = min
τ∈(0,t]

‖Ri−1(τ)− (xi(t),yi(t))‖. (54)

Results are shown in Figures 15 - 18. Figures 15 - 16 show a significant
improvement in path following using dynamic parameters. Figures 17 -
18 show how d0,i and β0,i vary for the dynamic parameter control. High
curvature parts of the path cause the formation to contract to enable safer
path following.
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Control 3

Finally, an example is included to illustrate the improvement of the error
dynamics with Control 3. We used two agents and defined d0,2(t) and β0,2(t)
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by

ḋ0,2 = 0.1cos(45β0,2)

β̇0,2 = 0.001

d0,2(0) = 0.5

β0,2(0) = π/7.

(55)
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The resulting functions d0,2(t) and β0,2(t) are shown in Figure 19. For v1 =
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Fig. 19. Control 3: The dynamic parameters resulting from Equation (55). Left:
d0,2(t). Right: β0,2(t).

10, ω1= π/3, k= 1, β0,2(0)= π/7, d0,2(0)= 1, (x1,y1,φ1)= (0,0,0), (x2,y2,φ2)=
(−0.97,−0.70,π/10), we let R2 track R1 using Control 1, Control 2, and Con-
trol 3. The gain k = 1 was used for all three cases. Results are shown in
Figures 20 - 21. It is clear from Figure 20 that both Control 1 and Control 2
yield static or even increasing errors in d2 and β2, while Control 3 drives
the errors to zero. The same behavior is apparent for the errors xe and ye,
shown in Figure 21.
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Fig. 20. Control 3: Left: d2− d0,2(t). Right: β2− β0,2(t). Top: full scale. Bottom:
closeup view.
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Fig. 21. Control 3: Left: xe(t). Right: ye(t).

9 Conclusion

In this paper, cascaded controls were proposed for formations of autonomous
agents. The controls are based on feedback from directional and noise con-
taminated range sensors, and a switching Kalman filter was introduced to



enable target tracking for sensors with limited field of view. Theoretical
results testified to stability and robustness, as well as flexibility, of the con-
trols. Initial results from experiments and simulations were provided to
illustrate the theoretical results. Combined with behaviors like obstacle
avoidance and failure detection, the formation controls proposed in this
paper are suitable for applications such as servoing, surveillance and map-
ping.

Future work includes a thorough experimental evaluation of the proposed
control algorithms. Issues of interest are for instance scalability and robust-
ness with respect to noisy measurements, and refinement of the switching
criterion for the Kalman filer algorithm. A comparative study should also
be made in order to evaluate the proposed controls in contrast to for in-
stance the hybrid control proposed in [5], and the Kalman filter approach
in contrast to the non-linear observer in [19].
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