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Summary. In this paper we study the attitude estimation problem for an accel-
erated rigid body using gyros and accelerometers. The application in mind is that
of a walking robot and particular attention is paid to the large and abrupt changes
in accelerations that can be expected in such an environment. We propose a state
estimation algorithm that fuses data from rate gyros and accelerometers to give
long-term drift free attitude estimates. The algorithm does not use any local param-
eterization of the rigid body kinematics and can thus be used for a rigid body per-
forming any kind of rotations. The algorithm is a combination of two non-standard,
but in a sense linear, Kalman filters between which a trigger based switching takes
place. The kinematics representation used makes it possible to construct a linear al-
gorithm that can be shown to give convergent estimates for this nonlinear problem.
The state estimator is evaluated in simulations demonstrating how the estimates are
long term stable even in the presence of gyrodrift.

1.1 Introduction

A prerequisite for mobile robot control is state estimation where the states
typically are position, velocity and orientation. State estimation is especially
important for walking robots in difficult terrain where a sense of balance is
absolutely necessary as it is the basis of attitude control. With attitude we
refer to the robot’s orientation relative to the gravity vector, usually described
by pitch and roll. Perhaps most important to walking robots, the problem still
applies to any kind of robot moving in difficult terrain. Attitude estimation
is usually performed by combining measurements from three kinds of sensors:
rate gyros, inclinometers and accelerometers. It is possible to use a rate gyro
to derive attitudes by integrating the rigid body kinematic equations. With
high quality gyros and good initial values these estimates can be very accurate
over long periods of time. However, if the aim is an autonomous vehicle then
the attitude estimate should be reliable over an infinite time scale. It would
also be desirable to use cheap gyros as high quality gyros are expensive. To
provide an absolute reference of the attitude, inclinometers and accelerometers
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which relate the body to the gravity vector can be used. A problem is that both
these sensors also are sensitive to translational accelerations. The sensor errors
described are complementary in terms of frequency characteristics. Due to this
complementarity, the estimation errors can be decreased by sensor fusion [1],
[26]. If the rigid body motion is restricted to planar rotation, it would be
possible to formulate the sensor fusion problem as a linear observer problem
which can be solved by standard Kalman filtering techniques. Fundamental
for walking robots is that the body motion is inherently three-dimensional,
making most kinematics representations nonlinear. For nonlinear problems,
there are no general state estimation algorithms that are guaranteed to work.
Attitude estimation via different ensembles of the above mentioned sensors
has been studied by many authors such as Baerveldt and Klang [2], Balaram
[3], Barshan and Durrant-Whyte [4], Foxlin [8],[9], Greene [10] Lefferts et. al

[13], Madni [14], Rehbinder and Hu [17], [18], Sakaguchi et. al [21], Smith et.

al [22] and Vaganay et.al [25].
In this paper we provide a solution to fusing data from a 3-axis rate gyro

and a 3-axis accelerometer that will provide stable estimates of the robot’s
attitude. By using a global description of rigid body rotation we are able to
obtain a linear problem and can use a modified linear Kalman filter. Fur-
ther, we show how the linear Kalman filter can be used to obtain a projected
Kalman filter, where the states evolve on the unit sphere, a curved space. The
global kinematics representation used eliminates all the nonlinear problems
associated with Euler angles in a remarkably elegant and simple way. This is
paid for by a slight increase in abstraction. As the kinematics representation
used is global, there are no restrictions on the kind of motion the robot is
allowed to perform, contrary to what would be the case if for example Eu-
ler angles were used. The projected Kalman filter can be given a geometric
interpretation which is related to the observer presented by Rehbinder and
Ghosh in [16], [15] where an observer for an implicit output system evolving
on SO(3) is presented. It would be possible to formulate large parts of this
paper in a strict differential geometric framework but for the sake of readabil-
ity, we choose not to do so. Further we discuss how to modify the observer
gains in order to take accelerations that are not well modeled as white noise
into account.

The main contributions of this article are: Two mathematically sound,
quite simple algorithms that solves the important problem of fusing accelerom-
eter and gyro data; The use of a global kinematics representation and a design
idea for observers evolving on a curved space; An experimental evaluation of
the observers, using a walking robot. The outline of the paper is as follows.
In Section 1.2 the problem is formulated and the proposed algorithms are
described and analyzed.
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1.2 Problem formulation and solution

As is well known, rigid body kinematics have a somewhat delicate structure
as rotations are most naturally described as elements of the rotation group
SO(3), a smooth manifold. It is common practice to consider some parame-
terization of SO(3) such as various versions of Euler angels or quaternions.
In this study we will work directly with the rotation matrix representation
of SO(3). We embed the manifold in a larger linear space and it is possible
to obtain a linear problem formulation that is used for the observer design.
Further, the kinematics representation is global, as opposed to the local Euler
coordinates.

Apart from the above, the problem of distinguishing between inertial forces
and the gravity vector is discussed. We will use an accelerometer as the at-
titude sensor. When the body is accelerated, which is the case for walking
robots, the accelerometer noise can be very high. The straightforward Kalman
filtering way of handling this problem is to assign a large covariance matrix
to the output noise. We will investigate an approach where a variable output
noise covariance is used. This variable noise covariance is designed to com-
pensate for the variations in acceleration magnitude that originates from the
feet impacts.

1.2.1 Mathematical modeling

Consider a rigid body moving in inertial space. The body is undergoing both
rotations and translations and our aim is to estimate attitude, the robots
orientation relative to the gravity vector. For this, a 3-axis rate gyro and a 3-
axis accelerometer is used. Introduce a coordinate system, N, fixed in inertial
space and a coordinate system, B, fixed in the body. Let the coordinates of
an arbitrary point ξ be denoted by ξN if expressed in the N -frame and by ξB

if expressed in the B-frame. The relation between the two frames is

ξB = R(ξN − rN ) (1.1)

where R is a rotation matrix, that is

R ∈ SO(3) =
{
R ∈ IR3×3 : R′R = I,detR = 1

}
. (1.2)

The kinematics of a rigid body are

{
r̈N = a

Ṙ = Ω(t)R
(1.3)

where a is the acceleration expressed in the N -frame and where

Ω =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


 . (1.4)
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ωi are the components of the angular velocity expressed in the B-frame. The
matrix Ω has the property that Ωx = −ω ∧ x and is therefore called the
wedge matrix. We consider the body to be equipped with a strap-down iner-
tial measurement unit (IMU), that is, a body fixed rate-gyro/accelerometer
package. The rate gyro measures the angular velocity in the body frame up to
an unknown and slowly varying offset. In the analysis and observer design we
will neglect this offset and therefore we take the angular velocity as a known
entity in the problem.

The strap-down accelerometer measures the difference between the inertial
forces and gravity, expressed in the body frame B. If the accelerometer output
is denoted y, then the accelerometer model is

y = R(a− gN ). (1.5)

From (1.5) it is obvious that the accelerometer may be used as an attitude
sensor if the acceleration itself is considered as a disturbance and the gravity
vector as the entity that we want to measure. As a matter of fact, attitude
may be defined as the body’s orientation relative to the gravity vector. It is
perhaps more standard to consider attitude as being described by the two
Euler angles pitch and roll. The Euler angle formulation of the problem is
here reviewed for completeness and comparison. In the yaw(ψ)-pitch(θ)-roll(φ)
parameterization of SO(3)

R =




cψcθ sψcθ −sθ
−sψcθ + cψsθsφ cψcφ+ sψsθsφ cθsφ
sψsφ+ cψsθcφ sψsθcφ− cψsφ cθcφ


 , (1.6)

where cψ = cosψ etc. As gN = −ge3 where g = 9.81m/s2, and where e3 is
the third unit vector, the accelerometer output may be written

y =




− sin θ
cos θ sinφ
cos θ cosφ


 g +Ra. (1.7)

The pitch-roll kinematics can be derived by straightforward differentiation
of (1.6) and (1.3) and are

(
θ̇

φ̇

)
=

(
0 cosφ − sinφ
1 sinφ tan θ cosφ tan θ

)

ω1

ω2

ω3


 . (1.8)

Therefore, the attitude kinematics and measurements may be written as the
nonlinear system





(
θ̇

φ̇

)
=

(
0 cosφ − sinφ
1 sinφ tan θ cosφ tan θ

)

ω1

ω2

ω3




y =




− sin θ
cos θ sinφ
cos θ cosφ


 g +Ra

(1.9)
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This system is nonlinear, both in the dynamics and in the output equation.
Further, the yaw-pitch-roll parameterization is not one-to-one globally and
clearly θ̇ and φ̇ are undefined for θ = ±π/2. This makes the representation
unsuitable for general robots. It would for example not be possible to use (1.9)
for a climbing robot which operates around φ = ±π/2. Further, it is far
from easy to design a convergent observer for (1.9) due to the nonlinearities.
The observer design problem is further complicated by that φ̇ → ∞ when
|θ| → π/2.

Consider instead the possibility of using the rotation matrix itself as state.
This will in a remarkably clear way eliminate most of the problems associated
with (1.9). The rotational kinematics Ṙ = Ω(t)R may be written column-wise
as

ṙi = Ω(t)ri, i = 1, 2, 3 (1.10)

where ri is the ith column of R. In the same way, the accelerometer output
can be written

y = r3g +Ra. (1.11)

Denote now by
x = r3
u = a/g

, (1.12)

and with a slight abuse of notation

y := y/g. (1.13)

In this notation, the attitude kinematics and accelerometer measurements is
described by the differential-algebraic equation




ẋ = Ω(t)x
||x|| − 1 = 0
y = x+ w

(1.14)

where w = Ru. The algebraic constraint ||x||2 − 1 = 0, which captures that x
is a rotation matrix column, is better viewed as the geometric constraint

x ∈ S2 =
{
x ∈ IR3 : ||x||2 − 1 = 0

}
, (1.15)

where S2 is the unit sphere. As a matter of fact, S2 is a manifold of a special
kind, a smooth hypersurface embedded in IR3. It is well known that S2 is an
invariant set under ẋ = Ω(t)x, so the algebraic constraint can be replaced by
an initial value constraint. The system (1.14) can therefore be written




ẋ = Ω(t)x
x(0) = x0 ∈ S2

y = x+ w
. (1.16)

There is an appealing linear structure to this formulation, but, note that the
vector field Ω(t)x viewed as a mapping κt : S2 → IR3 defined by
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κt : x 7→ Ω(t)x (1.17)

is not linear. Linearity is only defined between linear spaces and S2 is not
a linear space. However, if κt is extended to IR3, κt : IR3 → IR3, by the
same definition (1.17) then it may be viewed as a linear mapping. This is
perhaps not a very surprising observation but it still is the key insight needed
to formulate the simple observers we will present.

The constraint x ∈ S2 adds a difficulty to the observer problem. It must
be ensured that the state estimates x̂ ∈ S2. If this is not ensured, x̂ can not be
the column of a rotation matrix. However, the problem formulated as in (1.16)
is still much easier to solve than formulated in the form (1.9). It will be shown
that it is possible to base the observer design on the embedded linear system




ẋ = Ω(t)x
x(0) = x0 ∈ IR3

y = x+ w
. (1.18)

and still obtain state estimates x̂ ∈ S2.

1.2.2 Two linear Kalman filter based observers

Consider the system model (1.18). It is linear and clearly it is observable as the
entire state vector is measured. Therefore, the standard deterministic linear

Kalman filter [24]
ż = Ω(t)z + L(t)(y − z) (1.19)

where
L(t) = P (t)Q−1

2

Ṗ = Ω(t)P + PΩ(t)′ +Q1(t) − PQ2(t)
−1P

(1.20)

is an exponentially convergent observer for properly chosen Q1(t), Q2(t).
When using the deterministic framework, the matrices Q1 and Q2 have no
interpretation as noise covariances. However, the usual heuristics that large
measurement errors calls for a large Q2 and that large system uncertainties
calls for large Q1 still applies. Now, (1.19) can actually be used to estimate
x ∈ S2. In the noise free case, ||z(t) − x(t)|| → 0 as t → ∞ so z(t) → S2.
For finite t, and in the presence of sensor noise, there are no guarantees that
z(t) ∈ S2. But, this problem is solved easily by adding a projection PS2 of z
onto S2, outside the observer dynamics (1.19). The projection onto S2 is of
course very straightforward

PS2z =
z

||z||
(1.21)

if we assume that z 6= 0.

Remark 1. When implementing (1.23) in discrete time, the problem of han-
dling z = 0 in (1.21) is easily solved by instead using

x̂(t) =

{
z(t)/||z(t)||, if ||z(t)|| 6= 0
x̂(t− 1), if ||z(t)|| = 0

. (1.22)
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The observer {
ż = Ω(t)z + L(t)(y − z)
x̂ = PS2z

(1.23)

will hereafter be referred to as the pseudo-linear Kalman filter. An illustration
of the idea behind the pseudo-linear Kalman filter is given in Figure 1.1 where
it is shown how the states x and the state estimates x̂ evolve on the sphere
while the observer states z evolve in IR3. It must be pointed out that the reason

PSfrag replacements

x1

x2

x3

x(t)

x̂(t)

z(t)

Fig. 1.1. Pseudo-linear Kalman filter states z and state estimates x̂ along with true
states x.

why this very simple observer works is that the system (1.16) is observable,
without the information that x̂(0) ∈ S2, that is, that (1.18) is observable. If,
for example, the accelerometer was 2-axis, then the system (1.18) would not
be observable and some other method would have to be used.

The idea presented here was to use an observer where the states did not
evolve on S2 but anyway converged and then project the observer states onto
S2. It would also be possible to design an observer where the states evolve
on S2, just as for the underlying system. For an observer to evolve on S2, it
must be so that the state estimate derivatives are tangential to the sphere ,
that is, that

˙̂x ∈ Tx̂S
2 (1.24)

where
Tx̂S

2 = {x ∈ IR3 : x̂′x = 0} (1.25)
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is the tangent space of the sphere at the point x̂. The observer (1.23) can
be used to design such an observer. If the observer vector field is projected
orthogonally onto Tx̂S

2, then an observer evolving on S2 is obtained. We note
that the orthogonal projection onto Tx̂S

2 is given by

PTx̂S2 = (I − x̂x̂′) (1.26)

Proof: It is well known that Tx̂S
2 = ker x̂′, the orthogonal complement of

{x̂}. As ker x̂′ = (Imx̂)⊥ and as ||x̂|| = 1, it is clear that PTx̂S2 = (I − x̂x̂′).2
The projection of the vector field is

PTx̂S2 (Ω(t)x̂+ L(t)(y − x̂)) = Ω(t)x̂+ (I − x̂x̂′)L(t)(y − x̂) (1.27)

due to that Ω(t)x̂ ∈ Tx̂S
2. We can formulate the projected Kalman filter,

defined by {
˙̂x = Ω(t)x̂+ (I − x̂x̂′)L(t)(y − x̂)
x̂(0) = x0 ∈ S2 (1.28)

with the property that x̂(t) ∈ S2 ∀ t. The projected Kalman filter can actually
be shown to be convergent for a special choice of filter parameters. The proof
of this is particularly simple if a natural error measure for this geometric
setting is used. This error measure is based on the scalar product and is a
simplified version of the error measure introduced in [12] for states on SO(3).
We note that ξ = 1 − x′x̂ is an error measure for (1.28) in the sense that
ξ = 0 ⇔ x = x̂. Further 0 ≤ ξ ≤ 2.

Proof: As x and x̂ are of unit length, x′x̂ = cosα for some α ∈ [0, 2π)
and the proof readily follows.

Theorem 1. Let L(t) = l(t)I and let l(t) be continuous, non-negative and

bounded from above. Further, let there be T < ∞ and δ > 0 such that for

every t ∫ t+T

t

l(τ)dτ ≥ δ. (1.29)

Then the error dynamics of the projected Kalman filter (1.28) is exponentially

stable and 0 ≤ ξ < 2 is contained in the domain of attraction. The only feasible

ξ for which the error dynamics are unstable is ξ = 2 which corresponds to

x(0) = −x̂(0).

Proof: Consider the nominal dynamics of the error ξ = 1 − x′x̂ where the
noise is set to be zero.

ξ̇ = −ẋ′x̂− x′ ˙̂x = −x′(Ω(t) +Ω(t)′)x̂− l(t)x′(I − x̂x̂′)(x− x̂)
= −l(t)x′(I − x̂x̂′)x = −l(t)(1 − x′x̂x̂′x)
= −l(t)ξ(2 − ξ).

(1.30)

Since (1.30) is a Bernoulli equation, the solution can be written
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ξ(t) =
ξ0e

−2
∫

t

t0
l(s)ds

(1 − ξ0

2 ) + ξ0

2 e
−2

∫
t

t0
l(s)ds

(1.31)

Consequently,

|ξ(t)| ≤
|ξ0|

(1 − |ξ0|
2 )

e
−2

∫
t

t0
l(s)ds

(1.32)

and by noting that from (1.29)

∫ t

t0

l(s)ds ≥
δ

2T
(t− t0), t ≥ t0 + T (1.33)

it is proven that (1.28) is exponentially stable and that [0, 2) is contained in
the domain of attraction. 2

Remark 2. The gain matrix L(t) = l(t)I does not have to be a Kalman gain
for Theorem 1 to hold. Further, the integral constraint (1.29) does not exclude
the possibility that l(t) = 0 on intervals. This makes it possible to turn off
the accelerometer during phases when the acceleration is extremely high and
still obtain convergent estimates.

For the following simple set of Kalman filter parameters, L(t) = l(t)I and the
projected Kalman filter converges.

Corollary 1. Let P0 = p0I, Q1(t) = q1(t)I, Q2(t) = q2(t)I and let there be

q
1
> 0,q1 <∞, q

2
> 0, q2 <∞ such that q

1
≤ q1(t) ≤ q1 and q

2
≤ q2(t) ≤ q2.

Let further q1(t) and q2(t) be continuous functions. Then the conditions in

Theorem 1 are fulfilled.

Proof: Take P (t) = p(t)I and show that P (τ) = p(τ)I for τ ≥ t.

Ṗ (t) = p(t) (Ω(t) +Ω(t)′) + q1(t)I −
p(t)2

q2(t)
I =

(
q1(t) −

p(t)2

q2(t)

)
I (1.34)

as Ω(t) = −Ω(t)′. As P (0) = p0I, P (t) = p(t)I ∀ t. From stochastic observ-
ability and reachability and the standard Riccati equation theory [6] it follows
that ∃ll > 0 and lu <∞ such that ll ≤ l(t) < lu. Therefore (1.29) is fulfilled.
2

In our experiment the two observers are found to have similar perfor-
mances. The question if there are any conditions under which the two ob-
servers actually are equivalent may therefore be asked. The answer is that
there is such a condition and that it is very special. However, it is in an ap-
proximate sense fulfilled in the experiments and therefore we discuss it here.

Remark 3. If y = γ(t)x̂ then the two observers (1.23) and (1.28) are equivalent
in the sense that

{(z, x̂) : z/||z|| − x̂ = 0} (1.35)

is an invariant set under the dynamics of the two observers
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{
ż = Ω(t)z + l(t)(y − z)
˙̂x = Ω(t)x̂+ l(t)(I − x̂x̂′)(y − x̂)

. (1.36)

Proof: z/||z|| − x̂ = 0 can equivalently be written h(z, x̂) = z− ||z||x̂ = 0.
By straightforward differentiation,

d

dt
h(z, x̂) = l(t)(1 + ||z||)[y − x̂(x̂′y)] (1.37)

so for h(z, x̂) = 0 to be invariant it must hold that

y = γ(t)x̂ (1.38)

for some γ(t). 2

1.2.3 A geometric interpretation

The projected Kalman filter was derived by taking the standard Kalman fil-
ter and projecting the observer vector field on Tx̂S

2. It turns out that the
projected Kalman filter, for L(t) = l(t)I, can be given a quite precise ge-
ometric interpretation which clearly illustrates the observer dynamics. For
any system ẋ = f(x, t) evolving on S2, the vector field must be such that
x′f(x, t)∀x ∈ S2,∀ t or in other words that f(x, t) ∈ Tx̂S

2. A spanning set for
Tx̂S

2 is {−ei ∧ x}i=1...3 where ei is the ith unit vector. Thus, the vector field
can always be written

f(x, t) = −λ(x, t) ∧ x (1.39)

for some vector function λ. Consequently, it must be possible to rewrite the
observer (1.28) as

˙̂x = Ω(t)x̂− v(t, x̂, y) ∧ x̂. (1.40)

Indeed, this is the case as the following simple calculation shows

(I − x̂x̂′)(y − x̂) = (I − x̂x̂′)y = y − x̂(x̂′y) = yx̂′x̂− (x̂y′)x̂
= (yx̂′ − x̂y)x̂ = −(y ∧ x̂) ∧ x̂

(1.41)

Apparently, the projected Kalman filter can be written as

˙̂x = Ω(t)x̂− l(t)(y ∧ x̂) ∧ x̂ (1.42)

which will be referred to as the geometric attitude observer. The geometric
interpretation is depicted in Figure 1.2. Ideally, y = x = x̂, and then y∧x = 0
so the estimate evolves according to a copy of the underlying systems dynamics
ẋ = Ω(t)x. If not, then a corrective angular velocity is added, driving x̂
towards y. This angular velocity is directed along the vector y ∧ x̂.
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PSfrag replacements

x̂

y ∧ x̂

y

Fig. 1.2. Geometric interpretation of the projected Kalman filter

1.2.4 Acceleration handling

If the acceleration induced noise is modeled well by white noise then it is
straightforward to apply either of the two filters presented with q2(t) = q2,
the covariance of the acceleration noise. For a mobile robot such as a walking
one, the acceleration pattern will typically consist not only of white noise but
also of impulse like signals when the feet hit the ground. Other applications
where non-white accelerations may occur is airplanes, cars or trains. When
these vehicles turn, the centripetal acceleration will typically be non-white.
Whatever characteristics the acceleration have, it might be argued that one
may choose q2 so high that the errors in the worst case scenario are small
enough. The problem with this approach is that it is conservative and the
filter performance will be unnecessarily bad. In an attempt to handle the
problem of non-white accelerations we propose to use a variable q2 = q2(y, x̂)
that is a function of some acceleration estimate. We propose two different
approaches, one switching approach and one continuous approach. In both
cases the following structure

q2(t) = (1 + φ(y, x̂))q̂2 (1.43)

where 0 ≤ φ(y, x̂) < ∞ is used. In the following we only consider the scalar
version of the filters but the same line of thinking can be applied to the general
case. The different approaches presented below are equally applicable to the
two filters. For both methods, a reliable acceleration estimate is of course
necessary.

The most natural acceleration estimate is

ŵ = y − x̂ (1.44)
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as y = x+w and in steady state, ideally x = x̂. The question is now whether
this estimate can safely be used or if there are false indications of low accel-
erations? Are there unfortunate combinations of x, x̂ and w such that ŵ is
small even if w is not? The answer is yes. Consider the equation ||ŵ|| = 0. As

||ŵ|| = ||x+ w − x̂|| (1.45)

we have a false indication of zero acceleration if w = x̂ − x. This situation
is depicted for a planar case in Figure 1.3. If x = x̂ then there are no false

PSfrag replacements

x1

x2

x

w

x̂

ŵ

Fig. 1.3. False indications of low acceleration.

indications and for small differences x̂ − x the acceleration must be small.
Therefore, once the observer have converged, false indications will not be so
fatal to performance. What though may happen is that combinations of state,
state estimate and acceleration may prevent the observer from converging.
However unlikely, it still must be considered. It should though be noted that
in a typical robotics application, the robot would start from a stand still
position with no acceleration. The observer can then be allowed to converge
before the actual movement starts. To reduce the risk of false indications, the
following time-window based acceleration norm estimate may be used

|̂|w||(t) = max
τ∈[t−T0,t]

||y(τ) − x̂(τ)||. (1.46)

Here T0 is a parameter that needs to be tuned. The higher it is chosen the more
certain it is that no false indications take place, but, the filter design is more
conservative. It should be pointed out that a related idea has been proposed

earlier by Foxlin ([8],[9]). In Figure 1.4, an illustrative example of |̂|w|| and
||y−x̂|| shows how the expression (1.46) excludes the spurious occasions where
y − x̂ = 0 but captures the longer phases of y − x̂ = 0.
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Fig. 1.4. Time-window approach for avoiding false detections

If the accelerations are well modeled as consisting of phases of low accel-
eration and of phases of high acceleration, then a reasonable idea is to use a
switching structure where

φ(y, x̂) =

{
0, |̂|w|| = 0

φ̄, |̂|w|| 6= 0
(1.47)

Care need though to be taken when using this switching structure. The pa-
rameters in the Riccati equation (1.20) are now changing discontinuously. So
is the observer vector field. How to prove stability for switching and hybrid
systems is an open issue [5] and indeed, in the paper [6] where bounds on the
Riccati equation is shown, the involved matrices are assumed to be continuous.
Fortunately, these problems can be avoided by starting with a sampled-data
model of (1.3) and working in discrete time. This approach is described by
Rehbinder and Hu in [19].

In an environment where the acceleration is not well modeled as composed
by high/low accelerations, a continuously tuned acceleration noise parameter
may be used. Here we propose

φ(y, x̂) = α2 |̂|w||
2

(1.48)

where α is a parameter that needs to be tuned. To avoid the technical
difficulties with the switching structure (1.47) we study the continuous ap-
proach (1.48). Further, our main application is walking robots and we argue
that a switching structure is less suitable than the continuous structure (1.48).
In the following experimental evaluation, the acceleration estimate (1.46) has
not been used.

1.3 Summary and discussion

In this paper we have presented an approach to solving the attitude estima-
tion problem for a rigid body. The algorithm does in a theoretically consistent
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and easily implementable way solve this problem. The application in mind is
a walking robot but the algorithms are in no way dependent on that appli-
cation and could just as well be applied to other robots such as flying or
climbing ones. For climbing robots, the use of the global representation in-
stead of the more standard yaw/pitch/roll parameterization could prove very
useful as such robots usually have an attitude out of the bounds for which
that parameterization is valid. Further, the kinematics representation is very
important as the linear Kalman filter can be used which makes it possible to
easily obtain theoretical convergence results. We are also able to formulate a
nonlinear observer that evolves on the sphere. It is worth emphasizing that
the hard nonlinear problems often associated with the problem studied in this
paper originate from the choice of coordinates and that it was possible to
avoid them by a suitable representation. The observers presented have also
been evaluated in experiments. The most challenging and interesting research
topic that should follow this study is to study observer design for systems
on Lie groups in a more general setting. Questions to ask are: Is it possible
to find conditions guaranteeing that projected Kalman filters in some more
general setting are convergent? Does the geometric attitude filter have some
generality? Are there any fundamental connections to the observer presented
in [16], which has a similar structure? From the applications perspective, more
careful experimental testing is necessary. A discrete-time counterpart of the
pseudo-linear Kalman filter, presented in [19], has been used in feedback loops
for walking robot balancing. The next experimental step is to close the loop
with the observers presented in this paper.
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