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Abstract

In this paper we study the attitude estimation problem for an accelerated rigid body using gyros and accelerometers. The application
in mind is that of a walking robot and particular attention is paid to the large and abrupt changes in accelerations that can be expected
in such an environment. We propose a state estimation algorithm that fuses data from rate gyros and accelerometers to give long-term
drift free attitude estimates. The algorithm does not use any local parameterization of the rigid body kinematics and can thus be used for
a rigid body performing any kind of rotations. The algorithm is a combination of two non-standard, but in a sense linear, Kalman filters
between which a trigger based switching takes place. The kinematics representation used makes it possible to construct a linear algorithm
that can be shown to give convergent estimates for this nonlinear problem. The state estimator is evaluated in simulations demonstrating
how the estimates are long-term stable even in the presence of gyro drift.

© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A prerequisite for mobile robot control is state estimation
where the states typically are position, velocity and orien-
tation. State estimation is especially important for walking
robots in difficult terrain where a sense of balance is abso-
lutely necessary as it is the basis of attitude control. With
attitude we refer to the robot’s orientation relative to the
gravity vector, usually described by pitch and roll. Perhaps
most important to walking robots, the problem still applies
to any kind of robot moving in difficult terrain. Attitude es-
timation is usually performed by combining measurements
from three kinds of sensors: rate gyros, inclinometers and
accelerometers. It is possible to use a rate gyro to derive
attitudes by integrating the rigid body kinematic equations.
With high-quality gyros and good initial values these esti-
mates can be very accurate over long periods of time. How-
ever, if the aim is an autonomous vehicle then the attitude
estimate should be reliable over an infinite time scale. It
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would also be desirable to use cheap gyros as high-quality
gyros are expensive. To provide an absolute reference of
the attitude, inclinometers and accelerometers which relate
the body to the gravity vector can be used. A problem is
that both these sensors also are sensitive to translational
accelerations and should only be used during phases of
low accelerations. Fundamental for walking robots is that
the body motion is inherently three dimensional, making
most kinematics representations nonlinear. For nonlinear
problems, there are no general state estimation algorithms
that are guaranteed to work. Especially Extended Kalman
filters (EKF) are known to have an unpredictable behavior
even though they often can be used successfully. Attitude
estimation via different ensembles of the above mentioned
sensors has been studied by many authors such as Vaganay,
Aldon, and Fournier (1993), Barshan and Durrant-Whyte
(1995), Foxlin (1996), Foxlin, Harrington, and Altshuler
(1998), Baerveldt and Klang (1997), Balaram (2000)
and by Rehbinder and Hu (2000a, b). Rehbinder and Hu
(2000a, b) have previously designed an algorithm (Rehbinder
& Hu, 2000a, b) for fusing inclinometer and gyro data that
could be shown to be stable and convergent. However in
Rehbinder and Hu (2000a, b), it was forced to assume low
translational accelerations, something that is of course not
very realistic for a walking robot.
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In this paper we will provide a solution to fusing data from
a 3-axis rate gyro and a 3-axis accelerometer that will pro-
vide stable estimates of the robots attitude. The algorithm is
based on a switching architecture consisting of two modes,
one when accelerations are low, and one when these are
high. Given some natural conditions on the motion, the atti-
tude estimates can be shown to converge to the true states.
By using a global description of rigid-body rotation we are
able to obtain a linear problem and can use a modified lin-
ear Kalman filter. As the representation is global (this will
be explained in Section 2.1), there are no restrictions on
the kind of motions the robot is allowed to perform, con-
trary to what would be the case if for example Euler angles
were used. The contributions of this article are: a mathe-
matically sound, partly linear and quite simple algorithm
that solves the important problem of fusing accelerometer
and gyro data; The use of a global kinematics representation
and a careful treatment of the effect of a switching architec-
ture. The outline of the paper is as follows. In Section 2 the
problem is formulated mathematically and the proposed al-
gorithm is described and analyzed. In Section 3 we describe
some illustrative simulations first, then present an experi-
ment on a walking robot. The paper is concluded in Section
4 with a discussion and summary.

2. Problem formulation and solution

There is one major question to be considered when de-
signing an algorithm for rigid-body rotations and that is
what representation to use. As is well known, rigid-body
kinematics have a somewhat delicate structure as the rota-
tions is most naturally described as elements of the manifold
SO(3). It is common practice to consider some parameter-
ization of SO(3) such as various versions of Euler angels
or quaternions. In this study we will work directly with the
rotation matrix representation as this, in a sense that will
be made clear, will enable a linear formulation and solu-
tion. Apart from the above the problem of distinguishing
between inertial forces and the gravity vector should be dis-
cussed. We will use an accelerometer as the attitude sensor.
The problem is of course that when the body is accelerated,
the accelerometer is a very bad attitude sensor. We have
investigated an approach to the problem that is based on a
switching architecture consisting of two modes, one for low
accelerations and one for high. It would probably be possi-
ble to use a smoothed version of this where the noise pa-
rameters are tuned according to the estimated acceleration
level. For a study more along this line of thinking we refer
to the work by Balaram (2000).

2.1. Mathematical modeling

Consider a rigid body moving in inertial space. The body
is undergoing both rotations and translations and our aim
is to, given a 3-axis rate gyro and a 3-axis accelerometer,

estimate attitude. Introduce a coordinate system, N, fixed in
inertial space and a coordinate system, B, fixed in the body.
Let the coordinates of an arbitrary point be denoted by &V
if expressed in the N-frame and by &2 if expressed in the
B-frame. If the vector 7V from 0V to 0% is denoted by p
(for position) then the relation between the two frames is
EB=R(EN — p), where R is a rotation matrix, that is R’ R=1,
det R = 1. The kinematics of the rigid body (Sastry, 1999)
are

p=u, .
R =S(w)R, M

where u is the acceleration expressed in the N-frame and
where

0 w3 —n
S((U) = —3 0 (0] . (2)
(00} — W 0

w; are the components of the angular velocity expressed in
the B-frame. A rate gyro measures the angular velocity o
up to an unknown and slowly drifting bias. We will ne-
glect the gyro drift in the analysis but in simulations we
will see that the algorithms will work even with gyro bi-
ases. An accelerometer measures the sum of inertial forces
and gravity. As the accelerometer in this application is as-
sumed to be fixed to the body, these measurements take
place in the body frame. If the output from the accelerome-
ter is denoted by y we have that y =R(u — ¢"). The idea is
to consider the accelerations u as disturbances that we can
measure partially through the accelerometer. Take now the
yaw(r)- pitch(0)-roll(¢$) parameterization of R, that is

R=
cycl sy cl —s0
X | —spycO+cysOsp cfchp+sysOsp cOsp |,

sys¢p+cyslcp  sPslch —cys¢p  clcod
(3)

where ¢y = cos, etc. Note that the third column is inde-
pendent of yaw and that if that column could be estimated,
then it would be possible to extract pitch and roll from it.
Denote the ith column of R by r; (i =1,2,3) and let x =73
and note that of course ¢ = —ges; where g =9.81 m/s?, the
gravitational constant and where es is the third unit vector.
Now, note that the rotation kinematics also could have been
written column wise as 7; =S(w)r;. If we for notational sim-
plicity redefine y := y/g, u := u/g we have the underlying
system

X =S(w)x, |x(0)f =1,
y =X+ Ru.

(4)

Ru is going to be considered as an unknown disturbance.
The constraint on the initial condition [|x(0)|| =1 is due to
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that x is a column of a rotation matrix and thus has to be
of unit length. If [|x(0)|] = 1 then it will be guaranteed that
[x(2)]| =1 as {x€R® : ||x|| = 1} is a so called invariant
manifold for the system x = S(w)x.

Remark. An alternative way to model the pitch and roll
dynamics is to use Euler angles. In that way we would end
up with a two-dimensional highly nonlinear system. The
method we use here is to embed the nonlinear dynamics into
a higher dimensional linear one. As a trade-off, the system
will evolve on a nonlinear manifold.

What really has to be kept in mind is that when designing
an observer for x it must in some way be guaranteed that
the state estimates X actually do satisfy ||%| = 1. We will
see that the linear structure can be used when designing the
attitude estimator as it will turn out that a linear Kalman filter
can be used. Clearly, our estimator will be implemented in
discrete time. If we denote the underlying sample time by 4
and assume that w(t) = wy for ¢ € [kh, kh + h) then we have
the discrete time model

{ Xietr1 = Arx,

(&)
Yk = Xi + Ruy,

where A; = %) has a closed form solution given by

Rodrique’s formula (Sastry, 1999) A, =1 — S(wy )sin(wih)/
lwh|| +S?(wr )(1 — cos(wyh))/||wih||?. Note that the sam-
pled data representation still has ||x|| = 1 as an invariant
manifold. As a matter of fact, 4, = 5@ is a rotation
matrix and thus preserves vector lengths.

2.2. Estimation under low acceleration

Consider now the idealized case when the accelerations
are so low that we can consider them as zero. We might also
introduce two noise sources into the model, a process noise
v incorporating inaccuracies in modeling and gyro noise and
a measurement noise w which models accelerometers noise
as well as high-frequency accelerations. The system that we
use as a model in the filtering equations is

{ X1 = Apxy + vy,

Vi = Xk + Wy,

(6)

where the covariance matrices for v; and wy are Q and R.
Note one very important feature, ||x|| = 1 is no longer an
invariant manifold to (6). This might appear undesirable
but model (6) is just used for designing the observer. The
noise covariance matrices Q and R are to be regarded as
tuning parameters. Model (4) is what we consider as the
“true” underlying system. The constraint that ||x;||=1 will be
incorporated later. At present, we have a linear time-varying
system model and for such, a linear standard Kalman filter
can be used. Such a Kalman filter will be well behaved
in itself due to the linearity of the underlying system. The
estimates produced will not have unit length but this is taken

care of in an extra step outside the filtering equations. To
summarize, a linear Kalman filter computes state estimates
Z, that are not of unit length and these estimates are used to
obtain the state estimate X, =Z;/||Z¢|| which has unit length.
For simplicity, we take the state predictor as the formulas
are more streamlined. The estimation algorithm under low
accelerations is thus

Zpp1 = Arzk + Ki(yr — 2x),
Ky = AxPi(Pr +R) ™",
Pk+1 :AkPkA;{ + Q —AkPk(Pk +R)_1A;€Pk,

Zi /|12 if 2 0,
4= {Zk 2l if 2 # .

Zr_1 if z; =0.
2.3. Estimation under high acceleration

When the acceleration is so high that the accelerometer
must be considered completely unreliable as a gravity sensor
we are forced to rely on the rate gyros. Integrating these
can be obtained by simply setting the accelerometer noise
covariance matrix R to infinity. We then get the algorithm
for pitch and roll estimation under high accelerations

21 = AkZi,
Piy1 = AcPrAy + O,

. Ze/l|2ellif 2¢ # 0,
B = (8)

2 if Z; =0.
2.4. Acceleration detection

In order to handle the problem of attitude estimation un-
der accelerations it would be valuable to be able to detect
acceleration or rather, to detect non-accelerations. Consider
now the case when # = 0 and study what necessary condi-
tions on the accelerometer signal that holds for an accelera-
tion free movement. Recall that the accelerometer model is
y=x++Ru, (where now u=0) so for the accelerometer signal
magnitude it must hold that s(t)=|| y(¢)||> — 1 = ||x||* — 1=0.
This condition is nothing but a formulation of the fact that
when u =0, then the accelerometer output (viewed as a vec-
tor) is moving on a sphere of radius 1. We state the above
as an observation.

Observation 2.1. A necessary condition for acceleration

free movements is

Iyl =1.

The idea is now to use the necessary conditions to design
the switching rule when switching between the two modes
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Fig. 1. Switching architecture.

described above. It is then crucial to understand what might
go wrong, that is, what kind of non-zero accelerations will
result in the output ||y(¢)||* = 1. We have

1=||y)|* =x'x + «'R'Ru + 2x'Ru

=14 |Jul]* + 2e5u =1+ |Ju]|* + 2us, (9)

where we have used that x = Re; and R’'R=1. So, the accel-
erations that might cause false triggers are those that satisfy
u? + u5 + (u3 + 1)*> = 1 and therefore live on a sphere. It
is quite clear that acceleration trajectories that move on this
sphere are very rare. However, not only those acceleration
trajectories that evolve on the sphere will produce false trig-
gers, also those that pass through it will. We must therefore
assure that the switching rule is such that we only switch
when it is highly unlikely that the accelerations are anything
but zero. Such a rule is to demand ||y|| = 1 for a certain
amount of time 7 and this is the approach that we will use.
It should be pointed out that this idea has been proposed
earlier by Foxlin (1996) and Foxlin et al. (1998).

2.5. Hybrid estimation—switching

The detection rule we will use is coded by the binary
variable ¢ defined by
L, |ly(0)|| = 1Vrelt — To,t],
a(t):{ 1yl (10)

0  otherwise

and is to be interpreted as: ¢ = 1 if accelerations are esti-
mated low and 0 otherwise. ¢ will be denoted the switching
path (Dayawansa & Martin, 1999). Using this function, the
combined filter can be conveniently written as

Zrt = Ak + o(6)Ki (v — Z),

Ky = o(tp))AxPy(Py + R) ™',

Py = ApPidy, + O — o(6)ArPr(Pi + R) ™' PiAy,

. Z/llZellif 2¢ # 0,

e = (11)
2 if =0,

where the switching between the two modes indicated in
Fig. 1 is encoded with the ¢ function. The algorithm pro-
posed can be shown to be convergent given some rather
mild and reasonable conditions on the accelerations. That

convergence is not trivially guaranteed can be understood
when considering the underlying systems that were used to
design the two Kalman filters. System (6) is observable (the
Kalman filter would converge if this was the only mode
used) and system (8) is unobservable (the filter would di-
verge). Now we are switching between these two different
filters and it is not obvious that the combined will converge.
However, the following holds “If the system model upon
which the Kalman filter is based is stochastically observ-
able and stochastically controllable, then the filter is uni-
Sformly asymptotically globally stable” (Maybeck, 1979),
that is, the estimation errors go to zero. The switching
system model can be written as

{ X1 = Apxy + v,

Vi = Crxyp + wi,

(12)

where C; = a(#:)I. The covariance matrix of vy is a tun-
ing parameter at our disposal and it can be taken as a di-
agonal matrix with non-zero entries. Then each state can
be independently controlled and the system can easily be
shown to be stochastically controllable. As to observability,
we will have to impose some restrictions on the switching
path/accelerations. Let the switching times for the switching
path be denoted by #0 and ¢! according to

n

0, 2 <t<t forsome n,
o(1) = (13)

1, ¢

L St < t,?H for some n,

Definition 2.1. o(¢) is
37, > 0 such that

called non-pathological if

inf (6,1 — Lty —6,) > T
a(t) is called non-degenerate if 37, < co such that

sup (£ — 0 < T,.
n

Non-pathological switching means simply that switching
is such that there is a lower bound on the minimum time
that the system is in each mode (so chattering is avoided)
and non-degeneracy that there is an upper bound on the time
that the systems remains in the unobservable mode.

Observation 2.2. If o is non-pathological and non-
degenerate then (12) is stochastically observable.

Proof. Stochastic observability amounts to checking if there
exists o, f: 0 < o < ff < oo and a positive integer N such
that for all i > N

o < Y @ CRTICP < B

j=i—N+1
where @;;=A4;_;...A;. Here C; =Io(¢;). Take an arbitrary
z € R? and consider qﬁ(z):Z;.:i_NH 2@ CIR™'C;®; 2. If
now N > T,/T; then there will be at least one element of the
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sum (say the jith element) where o(¢;, ) = 1. That such an
N exist follows from that the switching is non-pathological
and non-degenerate. Now

P(z) =2/}, R~ ®; iz = mineig(R™ )|z > al|z|%,

where the second inequality is due to the fact that @ is
a rotation matrix which is an isometric mapping and ele-
mentary linear algebra. As R is positive definite, the exis-
tence of o > 0 is proven. That ¢(z) is bounded from above
for bounded z is apparent from the isometric properties
of . [

2.6. Filter analysis

It turns out that the filter equations can be simplified for a
clever choice of the tuning parameters Q and R, namely that
Q =¢ql and R = rl. Due to the fact that 4 is an orthogonal
matrix it can be shown that the Riccati equation can be
described by a scalar equation.

Observation 2.3. If O=ql, R=rl, Py= pol and A A, =1,
then Py = pil where piiy = pi +q — 04 p2/(pr +71).

The proof'is just a simple calculation. We know that Py =
pol. Now assume that Py = pi/. Then

Py :AkkaA;( + ql — oAy ka(PkI + V[)ilpk[A,/(

i
= A3 A, — 0 +ql
¢ k(pk kPk""’) 1

p2
P tr

The proof follows from induction.
Now, the filter equations can be written in the more
condensed form

A A k A
Ziy1 = Ay {Zk +oa(t) P (Vk —Zk)] )
prtr
b
Pt = pi+q — o —2—,
Pr+tr
R Zi/|2ell if 26 # 0,
Xk = (14)
Zk—1 if zZ; =0

and it is clear that this is quite simple to implement. The
only matrix operations involved are those involving A;. The
Riccati equation is also scalar.

3. Simulations and experiments

We will demonstrate the filter algorithms using numerical
simulations. The simulations are meant to resemble a mov-
ing robot that once in a while stops (enters a non-accelerated

Table 1

Parameter values used in the simulations

Gyro noise Accm noise Gyro offset Ts
0.01 (std) 0.1 (std) 0.1 0.01

acclg

LB

Fig. 2. Switch signals. Solid-acceleration magnitude, dash—dotted-
accelerometer magnitude, dashed-switch signal.

mode). The motion considered is such that the switching
structure is both non-pathological and non-degenerate. Con-
tinuous time motion and sensor data were generated and
the sensor data were sampled with a sampling frequency of
100 Hz after which white noise was added. Also, a rate gyro
offset was added to ensure realistic simulations. To demon-
strate that the proposed filter actually is convergent it was
initialized with an erroneous guess. The above parameter
values are summarized in Table 1. The simulations were per-
formed using SIMULINK on an Ultra Sparc 5 workstation.
With imperfect and noisy sensors (as in the simulations) the
switching rule || y|| — 1 = 0 can obviously not be used. It is
natural to use thresholding instead and the rule

o) ={lly@l -1 <e Vie[t,t— T}

was used instead. ¢ was chosen as three standard deviations
of the accelerometer noise. The time threshold is hard to give
a general rule for how it should be chosen. We argue that it
would be very unlikely for the robot to maintain a false alarm
acceleration for Ty = 0.2 s and this was the method used in
the simulations. The only reasonable way of choosing 7 is
through extensive testing for the application in mind.

The results of a 12 s simulations is shown in Figs. 2—4. In
order to simplify the tuning, the matrices Q, R, Py are chosen
as discussed in Section 2.6, with only parameters g, 7, po to
tune. The simulations have been run for 100 s and the 12 s
simulations do describe the interesting features. The motion
considered consists of 4 s of high accelerations and 1 s of
zero acceleration repeated periodically. In Fig. 2 three graphs
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pitch [rad]

roll [rad]

6
tlg]

Fig. 3. Pitch (top) and roll (bottom) angles. Solid lines denote true values
and dashed estimated.

roll [rad]

0 2 4 6 8 10 12
t[g]

Fig. 4. Pitch and roll errors.

concerning the switching signals are shown. The solid line
is the magnitude of the true acceleration and it is clear how it
abruptly changes between the high and low mode. The dash—
dotted line is s(z) = ||| y(¢)|| — 1|, that is, the signal which
is used to detect low accelerations. It is apparent from the
graph that it is crucial to use for example the time window
approach as there are several occasions, where s(¢) =0 even
though the true acceleration is non-zero. Finally, the dashed
line is the switch signal a(¢). Using this switch signal, the
described Kalman filter is run to estimate x(¢). In Fig. 3 the
estimates, expressed in pitch/roll are shown. As the filter
was initialized with an erroneous initial guess, there is a
large error for the first 4 s when the body is accelerated. As
soon as the filter goes into the low-acceleration mode the
errors rapidly decrease. A complementary view of the errors
is given in Fig. 4 where the effect of the unmodeled gyro
offsets is clear. A small trend of increasing errors during

Fig. 5. Balance control of a walking robot: www.math.kth.se/~hu/
balance.mpg.

the high-acceleration phases is apparent but these errors are
compensated for during the low-acceleration phase. It should
be pointed out that the gyro offsets chosen in this study are
rather high and would correspond to very badly calibrated
gyros.

Finally, we should point out that the filter has been suc-
cessfully implemented on a walking robot (Ridderstrom,
2003) in closed loop, namely the estimation is used in the
feedback control of body balance (Fig. 5). In this experi-
ment, the walking robot was placed on a balancing board
which was made to jerk back and forth with quite rapid
movements. The attitude estimator described in this paper
provided the estimates that the balance controller used for
keeping the robot trunk parallel to the floor.

4. Summary and discussion

In this paper we have presented an approach to solving the
attitude estimation problem for a rigid body. The algorithm
does in a theoretically consistent and easily implementable
way solve this problem. The application in mind is a walk-
ing robot but the algorithms are in no way dependent on that
application and could just as well be applied to other robots
such as flying or climbing ones. For climbing robots, the
use of the global representation instead of the more standard
yaw/pitch/roll parameterization could prove very useful as
such robots usually have an attitude out of the bounds for
which that parameterization is valid. The kinematics repre-
sentation is very important as the linear Kalman filter can
be used which makes it possible to easily obtain theoretical
convergence results. It is worth emphasizing that the hard
nonlinear problems concerning these problems stem from
the choice of coordinates and that it was possible to avoid
them by a suitable representation. The approach presented
in this paper does not address the problem of estimating the
entire rotation matrix R. To be able to do this, some addi-
tional sensor has to be used. The use of vision together with
rate gyros has been studied by Rehbinder and Ghosh (2003).
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One error source in the filter is due to the gyro bias. It
would in theory be possible to design a gyro bias estimator.
Such bias estimates would however be very sensitive to dis-
turbances from accelerations. In fact, we have experimented
with this idea, but we could not achieve an acceptable per-
formance. In fact, due to the sensitivity the performance with
bias estimation was often worse than without.
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