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Nonlinear Observers for Unicycle Robots with
Range Sensors

Simon Cedervall and Xiaoming Hu

Abstract— For nonlinear mobile systems equipped with exte-
roceptive sensors, the observability does not only depend on the
initial conditions, but also on the control and the environment.
This presents an interesting issue: how to design an observer
together with the exciting control. In this paper the problem of
designing an observer based on range sensor readings is studied.
A design method based on periodic excitations is proposed for
unicycle robotic systems.

Index Terms— Nonlinear observers, active sensing, mobile
robots.

I. INTRODUCTION

For nonlinear systems in general, the observability does
not only depend on the initial conditions, but also on the
control. Moreover, in mobile robotic systems, exteroceptive
sensors such as lasers and video cameras are typically used.
Thus for such systems the observability (of the state of the
system) does not only depend on the system itself, but also
on the environment. Due to the nature of the sensors used,
how to actively design an exciting control in order to gain
observability has been a very important issue in the field
of active perception in robotics and computer vision [2].
Although there have been several papers on the design of
observers for non-uniformly observable nonlinear systems [6],
[10], [11], further studies from the systems and control point of
view are still needed [8]. As we know, many mobile robotic
systems are not uniformly observable. Although there have
been several case studies such as [7] where localizing a point
feature via active vision is studied and [9] where a state-
feedback controller for a unicycle robot is combined with an
observer that estimates the orientation error, observer design
for mobile systems that interact with the environment remains
largely an open issue, in particular when the environment
consists of terrains, rather than just point features.

In this note we will use a case study to reveal some of
the unique aspects in designing observers for mobile robots
equipped with exteroceptive sensors. Such a system can be
modeled as follows.

ẋ = f(x) + g(x)u (1)

y = h(x, se(x)) (2)

xe = φ(s), (3)

where x ∈ R
n, y ∈ R

p, u ∈ R
m and s ∈ R

q . The
output mapping h is a mapping of both the state x and the
sensor interaction with the environment. Here we assume that
exteroceptive sensors such as range sensors are used. xe =
φ(s) defines a r-dimensional smooth manifold in R

n where
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r ≤ n, which models terrains (walls) in the environment.
se(x) denotes the “perceived” point in the environment by
the sensor mounted on the robot located at x. Naturally we
assume that once φ is given, se(x) is uniquely determined.

In this paper we study the so-called relocalization problem
in robotics. Namely, we assume that the map φ(s) is already
given, and we would like to observe the state of the system
based on range sensor readings. Although we will use a
specific system model for the problem, we hope that the
discussion would nevertheless raise some general interest on
active nonlinear observers.

II. THE SYSTEM SETUP

We consider an oriented robot in the plane, using the so-
called unicycle model. Namely, the state of the system is
described by ( (x1, x2) , θ) ∈ R

2 × S1 and it has two control
inputs, the translational velocity v and the angular velocity ω.
The governing kinematics is

ẋ1 = v cos θ (4)

ẋ2 = v sin θ (5)

θ̇ = ω. (6)

Furthermore, we assume that the robot is equipped with
two range-measuring sensors, oriented at angles ϕ1, ϕ2 with
respect to the orientation of the robot frame. These sensors
measure the distances ρ1, ρ2, to some smooth curve r : S1 →
R

2 or r : R → R
2, along the ray originating at the point x

of the robot and making an angle θ + ϕ i, i = 1, 2, with the
x1-axis. Thus we have two outputs for the system

y1 = ρ1(x, θ, s1) (7)

y2 = ρ2(x, θ, s2), (8)

where both ρ1 and ρ2 depend naturally also on the terrain
manifold, which is defined by

xe1 = r1(s) (9)

xe2 = r2(s). (10)
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Fig. 1. The system setup

In this paper we assume that the curve r = (r1(s), r2(s))T

is closed, i.e. r : S1 → R
2, and that it encircles a convex
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domain D. The robot is restricted to move in the interior of
this domain, and thus the outputs ρ1, ρ2 are well defined.

We note that if the robot stands still (both v and ω are set
to zero), then the system is obviously unobservable.

Our problem is to construct, with the help of the input
design, an observer for the full state of the robot. It is easy
to see that this problem is equivalent to the reconstruction of
orientation θ and the two parameter values s1, s2 ∈ S1 corre-
sponding to the points on the curve measured against. In order
to do this we define a (new) state variable p = (s1, s2, θ) ∈
S ⊂ T 3, which we call the parameter configuration. Since
we will be concerned with the local properties only, we can
consider p as an element of R

3.
For the configuration (x, θ) ∈ R

2×S1, the distances ρ ∈ R
2

and the parameters s ∈ R
2, we have the basic geometrical

relationship

x + ρiRθRϕie1 = r(si), i = 1, 2, (11)

and differentiating,

vRθe1 + ρ̇iRθRϕie1 + ρiωRθRϕie2 = r′(si)ṡi, i = 1, 2,
(12)

where we use the prime “′” to denote partial derivative. Here
we use the notation e1 = (1, 0)T , e2 = (0, 1)T , and

Rα =
[
cosα − sinα
sin α cosα

]
.

For future use, we also define M = Rπ/2, and note that
∂Rα/∂α = MRα = RαM , Me1 = e2, Me2 = −e1.

Multiplying (12) with eT
2 R−ϕi−θ from the left gives

ṡi =
−v sin ϕi + ρiω

r′(si)T RθRϕie2
, (13)

and multiplying (12) with r ′(si)T M , one obtains

ρ̇i =
−vr′(si)T Rθe2 + ρiωr′(si)T RθRϕie1

r′(si)T RθRϕie2
. (14)

The above expressions are well-defined except when
r′(si)T RθRϕie2 = 0, which occurs when a sensor measures
tangentially to the wall. In the convex setting we have
assumed, this will not happen.

Using only the values of ρ1 and ρ2 it is easy to see that we
will, in general, only be able to determine the configuration of
the robot up to some curve in R

2×S1. One can picture this by
following a planar curve with the tips of two extended fingers.
We call this curve the statically unobservable submanifold.

By also taking ρ̇ into account, we find a similarly unobserv-
able submanifold, also one–dimensional. The theoretical basis
for active nonlinear observer design as we will show later is
that under certain conditions the two different submanifolds
are not parallel at the actual parameter configuration of the
robot, and hence the system ought to be locally observable.

III. THE STATICALLY UNOBSERVABLE SUBMANIFOLD

For a general parameter vector p = (s1, s2, θ) and two
distances ρ1, ρ2, we define

z1(p) = r(s1) − ρ1RθRϕ1e1, (15)

z2(p) = r(s2) − ρ2RθRϕ2e1, (16)

z(p) = z1(p) − z2(p), (17)

Vz = zT z. (18)

Clearly, if ρ1 and ρ2 are measured distances and p the actual
parameter configuration of the robot, then z 1 = z2 = x, and
z and Vz vanish. Consider the differential of the map z : p �→
R

2,

∂pz =

[
∂zx

∂s1

∂zx

∂s2

∂zx

∂θ
∂zy

∂s1

∂zy

∂s2

∂zy

∂θ

]

=
[
r′(s1) − r′(s2) M(r(s2) − r(s1)) + Mz].

We see that if z = 0, this is onto (as a linear map from R
3

to R
2) as long as the slope of the curve is not parallel at

r(s1) and r(s2) and simultaneously perpendicular to the line
between these two points. By the Implicit Function Theorem,
we then have the following,

Proposition 1: Assume that at a configuration (x, θ), where
x lies in the interior of D, the robot measures distances ρ1, ρ2

against parameters s1, s2. Also assume that r′(s1) and r′(s2)
are not parallel or, if they are, not perpendicular to the vector
r(s1) − r(s2). Then, locally around (s1, s2, θ), the equation
z(ŝ1, ŝ2, θ̂) = 0 defines a one-dimensional surface (a curve)
which passes through (s1, s2, θ). This is called the statically
unobservable submanifold.

If we define d = r(s2) − r(s1), then the kernel of ∂pz is
spanned by

νz =

⎡
⎣−r′(s2)T (d + z)
−r′(s1)T (d + z)
r′(s1)T Mr′(s2)

⎤
⎦ , (19)

which vanishes as the rows of ∂pz become linearly dependent.
In general, it might still be possible to find a continuation of
the curve on which V = 0 through higher order terms. A
clear case of when this is not possible would be when the
sensors measures points on the boundary where there simply
is no room to move the robot to a nearby point that would
give the same measurements (e.g. measuring along the major
axis of an ellipse).

It is also clear that if Vz = 0 (i.e. z = 0) for some
(ρ1, ρ2, ŝ1, ŝ2, θ̂) and z1 = z2 ∈ D, then in the configuration
(z1, θ̂), the robot measures precisely the distances ρ1, ρ2

against the parameters ŝ1, ŝ2. That is, continuation of the level
curves from Proposition 1 gives curves of feasible configu-
rations which, from the information given by the measured
distances, the robot could occupy.

Then it is clear that the gradient flow

dp̂

dt
= −ks(∂p̂z)T z(p̂), ks > 0

should be included in the observer design. It serves to localize
the parameter configuration to the submanifold of feasible
configurations.
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Next, we will discuss what can be done in the statically
unobservable direction.

IV. NONLINEAR OBSERVERS WITH ACTIVE CONTROL

It is clear that with any pair of fixed measurements (ρ1, ρ2),
the system will have a one dimensional unobservable subman-
ifold. Thus it is necessary to design controls such that the
outputs do not remain constant. In this section we will first
discuss what are the constraints we need impose on the motion
and the environment in order to make the system observable.

Assuming that we have obtained a point on the curve
of feasible configurations by some optimization method, we
would now like to localize the actual configuration of the robot
by finding a point on the curve where the estimated output flow
(time derivatives of the measured distances) coincide with the
actual output flow.

From the basic relationship

x + ρiRθRϕie1 = r(si), i = 1, 2,

we obtain

r′(si)T Rθ(ve2 + ρ̇iRϕie2 − ρiωRϕie1) = 0, i = 1, 2, (20)

by first differentiating with respect to time and then multiply-
ing by r′(si)T M from the left. Now define F : R

3 → R
2, for

given v, ω, ρi, ρ̇i, by

F (s1, s2, θ) =
[
r′(s1)T u1

r′(s2)T u2,

]
. (21)

where u1, u2 are given by

ui = Rθ(ve2 + ρ̇iRϕie2 − ρiωRϕie1), i = 1, 2. (22)

Naturally one can use (14) to replace ρ̇ i.

The differential of F with respect to the parameter vector is
given by

∂pF =
[
r′′(s1)T u1 0 r′(s1)T Mu1

0 r′′(s2)T u2 r′(s2)T Mu2

]
, (23)

The kernel of ∂pF , as long as this has full rank, is spanned
by

νF =

⎡
⎣−(r′′(s2)T u2)(r′(s1)T Mu1)
−(r′′(s1)T u1)(r′(s2)T Mu2)

(r′′(s1)T u1)(r′′(s2)T u2)

⎤
⎦ . (24)

Assume now F = 0 and p0 = (s1, s2, θ) are the true
parameters and state, then we have

ui(p0) = RθRϕi

[
v sin ϕi − ωρi

v cosϕi + ρ̇i

]

= (v sin ϕi − ωρi)RθRϕi

[
1

− r′(si)
T RθRϕi

e1

r′(si)T RθRϕi
e2

]
,

i = 1, 2,

or

Mui(p0) =
(v sin ϕi − ωρi)
r′(si)T RθRϕie2

r′(si), i = 1, 2. (25)

Hence, we have

νF (p0) =
(v sin ϕ1 − ωρ1)(v sinϕ2 − ωρ2)

(r′(s1)T RθRϕ1e2)(r′(s2)T RθRϕ2e2)
×

×
⎡
⎣ (r′′(s2)T Mr′(s2))(r′(s1)T r′(s1))

(r′′(s1)T Mr′(s1))(r′(s2)T r′(s2))
(r′′(s1)T Mr′(s1))(r′′(s2)T Mr′(s2))

⎤
⎦ .

What we should consider, though, is

∂pFνz |p0 =

[
v sin ϕ1−ωρ1

r′(s1)T RθRϕ1e2
D1

v sin ϕ2−ωρ2
r′(s2)T RθRϕ2e2

D2

]
, (26)

where

D1 = ((r′′(s1)T Mr′(s1))(r′(s2)T d) +
(r′(s1)T r′(s1))(r′(s1)T Mr′(s2))),

D2 = ((r′′(s2)T Mr′(s2))(r′(s1)T d) +
(r′(s2)T r′(s2))(r′(s1)T Mr′(s2))).

As long as this is non-zero, the statically unobservable sub-
manifold crosses the dynamically unobservable submanifold
transversely, which implies that we are bound to have at least
local observability through ρ and ρ̇ or the output flow.

We discuss now what constraints we have to impose on the
environment and the control so that ∂pFνz|p0 does not vanish.

We will assume that ∂pz has full rank, so that νz can be
expressed as (19) , which is equivalent to assume

H 1: Denote the range of the sensors by Rs. There are no
two points s1 and s2 on the curve with ‖r(s2) − r(s1)‖ ≤
2Rs sin (φ1+φ2)

2 , such that r′(s1) and r′(s2) are parallel and
at the same time perpendicular to r(s2) − r(s1).
Should it happen that[

sinϕ1 −ρ1

sinϕ2 −ρ2

] [
v
ω

]
= 0,

then ∂pFνz|p0 vanishes completely. Thus we need the follow-
ing assumption on the control design:

H 2: The exciting control v, ω should be designed such
that v sin ϕi − ωρi �= 0, for i = 1, 2.
Having one of the components zero corresponds to moving
in such a way that ṡi = 0 for that sensor. If the sensors
are directed to different sides of the steering direction and the
control input is not zero, this cannot happen since ρ1 and ρ2

both are positive.
Assumption H2 has actually suggested a way for designing

the active control. Namely, the following criterion can be used:

max
|v|,|ω|≤k

‖
[
sin ϕ1 −ρ1

sin ϕ2 −ρ2

] [
v
ω

]
‖.

Under the above assumptions, ∂pF |p0 will still not have full
rank if r has zero curvature (r ′′(s) = 0) at both these points,
and ∂pFνz|p0 will vanish if furthermore r ′(s1) and r′(s2) are
parallel.

The final way ∂pFνz|p0 can vanish is if

D1 = 0 and D2 = 0.
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To give a geometrical interpretation of this, consider when
r is the unit circle, i.e. r(α) = Rαe1. Then we have

(r′′(α1)T Mr′(α1))(r′(α2)T d)+

(r′(α1)T r′(α1))(r′(α1)T Mr′(α2))

= eT
2 RT

α2
(Rα2e1 − Rα1e1) + eT

2 RT
α1

MRα2e2

= 0,

This corresponds to the observation that in a circular sym-
metry, neither the measured distances nor the time derivatives
thereof change if we displace the robot in the ”symmetric
direction”.

Based on the above discussion, we need to make the last
assumption:

H 3: There are no two points s1 and s2 on the curve with
‖r(s2) − r(s1)‖ ≤ 2Rs sin (φ1+φ2)

2 , such that
1. ‖r′′(s1)‖2 + ‖r′′(s2)‖2 = 0,

or,
2. D1 = 0, D2 = 0.

Design of observer

Under the above assumptions, we propose the following
observer

dp̂

dt
= −ks(∂p̂z)T z(p̂) − ka(∂p̂F )T F (p̂), (27)

where ks, ka > 0 are some suitably chosen feedback gains.

V. CONVERGENCE ANALYSIS

In this section we will only study the scenario where
periodic exciting controls are used. We show that in this case
(27) converges asymptotically to p0(t), the true parameters
and state trajectory, with bounded errors.

Proposition 2: Suppose Assumptions H1-3 hold and the
motion generated by the exciting control is periodic. Then, by
using the observer (27), locally the estimation error is bounded
and the bound can be made arbitrarily small asymptotically by
tuning ks and ka.

Proof
It is easy to see that the true parameters and state trajectory

p0(t) is indeed an equilibrium for (27), since z(p0(t)) = 0
and F (p0(t)) = 0.

Let δp = p̂ − p0(t) and we define a candidate Lyapunov
function as

V (δp) =
1
2
‖δp‖2,

then,

V̇ = −δpT [ks(∂p̂z)T z(p̂) + ka(∂p̂F )T F (p̂)] − δpT ṗ0(t).

When δp is sufficiently small, we have

z(p̂) ≈ ∂p0zδp, F (p̂) ≈ ∂p0Fδp.

Then,

V̇ = − δpT Q(t)δp + o(‖δp‖2) − δpT ṗ0(t),

where

Q(t) = ks(∂p0z)T ∂p0z + ka(∂p0F )T ∂p0F.

By the transversality assumption of the two submanifolds, we
have rank [(∂p0z)T (∂p0F )T ]T = 3. Therefore

Q(t) = [
√

ks(∂p0z)T
√

ka(∂p0F )T ]
[√

ks∂p0z√
ka∂p0F

]

is always of full rank, and thus positive definite for any fixed
t.

The assumption of periodic motion implies that Q(t) is
periodic and ṗ0(t) is bounded. Thus when δp is sufficiently
small and if we let ks > k, ka > k, we have

V̇ ≤ −kγ‖δp‖2 + P‖δp‖, (28)

where γ > 0, P > 0. This shows that by tuning k we can
make the tracking error arbitrarily small as t → ∞. QED

Remark 1: Since the first term in (28) is quadratically neg-
ative definite, one can expect that the observer is reasonably
robust with respect to measurement errors.

VI. SIMULATION

In this section we show some Matlab simulation results.
In the simulation setup, the robot is placed inside an ellipse
shaped closed wall.

Fig. 2. The initial estimation

Figure 2 shows the initial guess of the state versus the
true state. Figure 3 shows that the estimation of the state
is converging to the true state. Figure 4 shows the history of
estimation errors.

VII. CONCLUSION

In this paper we have studied the problem of designing an
observer for a mobile robot together with the exciting control.
For such systems, there is no obvious way to apply existing
methods for the observer design. By discussing conditions we
have to impose on the control and the environment in order
to have observability, we have suggested a method for the
observer design based on periodic excitations.
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Fig. 3. The final estimation
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Fig. 4. The observation errors
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