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Abstract— In this paper, the problem of navigation coordina-
tion is studied. New results are given for robustly integrating
behavior based control systems. In the studied problem formu-
lation, one behavior (path following) is a priori planned, the
other (obstacle avoidance) is reactive. The methods are based
on the virtual vehicle approach and a regularized automaton.
Keywords: Mobile robots, navigation control, obstacle
avoidance, sensor feedback

I. INTRODUCTION

For mobile robots the basic functionality is to navigate in
an at least partially unknown environment without collision
with any obstacle. A popular way in robotics for dealing with
such problems is within the behavior based control architec-
ture. (See for example [1], [9].) The main methodology is
to identify different controllers for a complex control task
with individual robot behaviors. The main advantage of this
approach is that it makes the system modular, which both
simplifies the design process as well as offers the possibility
to add new behaviors to the system without causing any
major increase in complexity, as pointed out in [2].

From a control point of view, there are two issues within
this framework that need to be further studied. One is how to
design each individual behavior (controller) in a robust way,
based on available sensor data, and the other is how to fuse
those behaviors.

The problem of navigation through an unknown environ-
ment we consider in this paper can be decomposed into two
behaviors: path following and obstacle avoidance. Each of
them has been a central problem in mobile systems and
there is a vast literature on them (see, for example, [12]
and the references therein). One key issue here is that given
a reactive (sensor-based) obstacle-avoidance behavior, how
should it be integrated with a path following behavior so
that it incorporates the fact that the two are going to run
concurrently? In [4] a hybrid control approach is used for
integrating these behaviors, where a regularized automaton
is proposed to reduce the chattering that might be caused
by hard switches. In this paper, we further develop the
results in [4] and [5] by using a virtual vehicle approach to
coordinate the two behaviors. Furthermore, a sensor-based
linear controller is designed for obstacle avoidance that can
be easily integrated with the path following controller.

This paper is organized as follows. In Section 2, we give
the problem formulation. In Sections 3 and 4, we discuss the

design of individual behaviors. In section 5, the integration
issue is discussed. In section VI we discuss the application
of our results to a Khepera robot.

II. PROBLEM FORMULATION

The specific problem we consider is how to move a robot
from an initial position to the goal in a planar environment
via a planned path. This path following behavior should be
interrupted when an obstacle is detected and be resumed
when the obstacle is by-passed. Since the obstacle-avoidance
behavior is a necessary safety measure and thus has higher
priority than the path following one, it should be designed as
a reactive behavior.The word reactive used here is to suggest
that the behavior should be thought as a reflex. Thus real-
time constraints are critical in designing such a controller.

In this paper we assume that we can control the robot’s
translational and rotational velocities. Naturally, for platforms
that do not give direct control over the velocities, one needs to
design an actuator control so that these velocity controls are
realized. The implementation could be just a static mapping,
as in the car case, or a dynamic regulator. In those cases, the
velocity controllers can be viewed as higher-level controllers.

Based on our assumptions, we use the following unicycle
model for the robot:

ẋ = v cosφ

ẏ = v sin φ

φ̇ = ω,

(1)

where (x, y) ∈ R
2 is the position of the robot, φ is its

heading, and v and ω are the controlled translational and
rotational velocities respectively.

Our goal is to design a feedback controller (v, ω) that
implements path following and obstacle avoidance, and is
robust to disturbances and uncertainties.

III. PATH FOLLOWING

Given an initial position and a final position, there are
many ways to design a goal reaching behavior. In this paper
we assume that the robot is required to follow a planned path.
This might be the case, for example, if the robot is required
to pass through a set of way points before reaching the goal.
For various path planning algorithms, one can refer to, for
example, [11], [12], [16], [6].



We now assume that the planned reference path is given
by

xd = p(s)
yd = q(s)

0 ≤ s ≤ sf . (2)

In this paper the path following control we use is based on
the work in [5]. For the sake of completeness, we review
the main ideas here and then in section V we will modify
the controller in order to have it better integrated with the
obstacle avoidance control.

In [5] a virtual vehicle approach is proposed where the
idea is to let the motion of the reference point on the planned
path be governed by a differential equation containing error
feedback. It can be viewed as a combination of the con-
ventional trajectory tracking, where the reference trajectory
is parameterized in time, and a dynamic path following
approach [15], where the criterion is to stay close to the
geometric path, but not necessarily close to an a priori
specified point at a given time. This approach makes the algo-
rithm robust to measurement errors and external disturbances
since, if both the tracking errors and disturbances are within
certain bounds, the reference point moves along the reference
trajectory while the robot follows it within a prespecified
look-ahead distance. Otherwise, the reference point should
slow down and “wait” for the robot.

The control objectives here are

lim supt→∞
ρ(t) ≤ ερ

lim supt→∞
|φ(t) − φd(t)| ≤ εφ,

(3)

where ερ and εφ are positive numbers that can be made
arbitrarily small, ρ(t) =

√

(xd − x)2 + (yd − y)2, where
(x,y) is the actual position of the robot, and φ and φd are
actual and desired robot orientations.

From (2) we directly get that ẋd = p′(s)ṡ, ẏd = q′(s)ṡ,
which implies that if the robot would track the path perfectly,
we would have

ṡ =
p′(s)

p′2(s) + q′2(s)
ẋ +

q′(s)

p′2(s) + q′2(s)
ẏ, (4)

since this corresponds to ẋ = ẋd and ẏ = ẏd. On the other
hand, (4) does not contain any position error feedback, which
is important for the robustness. Therefore we propose our
dynamics for the reference point as follows:

ṡ =
ce−αρv0

√

p′2(s) + q′2(s)
, (5)

where v0 is the desired speed at which one wants the vehicle
to track the path, and α and c are appropriate, positive
numbers.
Remark: If the reference path is only given as a collection
of dense way points {(xd(s), yd(s)) : s = 1, 2, . . . , N}, then
(5) can be modified as

sk+1 = sk + σ(ρk), (6)

where

σ =

{

0 if ρk > ερ

1 if ρk ≤ ερ

We now let our control algorithm be as follows:

v = γρ cos(eφ)

ω = keφ + φ̇d, k > 0,
(7)

where both γ and k are positive, eφ = φd − φ, and φd =
arctan2(yd − y, xd − x).
Remark: eφ is not defined at ρ = 0 since φd is not defined.
In implementation, one can replace φd by

φ̃d =

{

φd if ρ > ε
φd(−2ρ3+3ερ2)+θr(−2(ε−ρ)3+3ε(ε−ρ)2)

ε3
if ρ ≤ ε,

(8)
where ε is a small positive number and θr is the orientation
angle of the tangent to the reference curve at s. It is easy to
see that φ̃d is well defined at ρ = 0 since limρ→0 φd(−2ρ3 +
3ερ2) = 0.

An intuitive interpretation for this control algorithm is
that the robot is steered toward the reference point on the
desired path with a speed proportional to the tracking error
and whenever it reaches the steady tracking error (the desired
looking-ahead distance) it will track the path with an almost
constant speed. It is easy to see that even if a path is planned
beyond the dynamic or kinematic constraints of the system,
this control algorithm can still be used to track the path the
best it can.

Lemma 3.1: For a robotic system (1), when the path
following control (5), (7) and (8) are applied, the tracking
error is bounded globally. Furthermore, the tracking error can
be made arbitrarily small as t → ∞, by tuning the parameters
in the control. In particular, if we let c = e

αv0

γ , increasing
γ will reduce the steady state tracking error, and v0 will
approximately be the speed in the steady state.
Remark: Naturally, when we decrease the steady state
tracking error, the on-line computation will go up.

IV. OBSTACLE AVOIDANCE

Sensor-based obstacle avoidance has been a very important
problem in mobile robotics. There are basically two groups
of techniques for avoiding obstacles. One is reactive (online)
and the other is re-planning (mostly offline) [8], [13], [12].
When designing a reactive controller, one important factor
one should take into account is the constraints on communi-
cation and computation bandwidth.

In this section we propose a simple reactive controller
that is directly based on sensor feedback, and can be easily
integrated with the path following controller. Used alone,
the proposed control will prevent the robot from running
into an obstacle, but it will not make any attempt to steer
the robot in accordance to a pre-defined path. However, in
combination with the path-following control it shows a robust
path following behavior, as will be discussed in Section 5.



Adding the controls from the obstacle avoidance behavior
and the path following behavior will, with properly chosen
parameters, result in a trajectory approximately tangential to
the surface of the obstacle.

We assume that the sensors available for obstacle detection
are an array of infra-red sensors that are placed symmetri-
cally. The readings from each pair of such sensors would
give a linear approximation of the obstacle contour.

Once such a linear approximation of obstacle contour
is detected and is decided to be close to the robot, the
objective of the obstacle avoidance control is to steer the
robot away from the obstacle. The proposed control function
is implemented as a linear combination of the sensor readings
with parameters chosen in order to steer the robot away from
the obstacle by making a smooth turn. Once the robot has
turned away from the object it will continue to move in a
direction normal to the contour.

To illustrate the design of the obstacle avoidance control
we assume the total number of sensors is eight.PSfrag replacements
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Fig. 1. Robot with two head-on sensors

for the sensor pair (1, 2) (Figure 1) the reactive control is

v = −k1(y1 + y2) (9)

ω = p1(−y1 + y2) (10)

where k and p are positive parameters, and y1 and y2 are
normalized readings from sensor 1 and 2. Naturally one has
to tune the parameters for a given platform.

Control for pair (7, 8) can be designed similarly

v = −k7(y7 + y8) (11)

ω = p7(−y7 + y8) (12)

Remark: When y1 = y2, i.e. when the robot is facing
an obstacle straight on, a situation may occur where the
obstacle avoidance and the path following controls cancel
out. However, it happens rarely since this orientation is
unstable for obstacle avoidance control (see Proposition 4.1),
and the solution is discussed in Section 5.

For pair (3, 5) (Figure 2) the reactive control is

v = −k3y3 + k5y5 (13)

ω = −p3y3 − p5y5 (14)
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Fig. 2. Robot with two pairs of side sensors.

Here we should have k3 < k5 and p3 > p5. To motivate this
choice of parameters, let us consider the case in Figure 2
where the robot is approaching an obstacle. If the sensor
readings y3 and y5 are equal the desired behavior of the
robot should be to turn to the right while moving forward
with a positive velocity, v. This implies that k5 > k3.
p3 > p5 follows from the fact that a signal from sensor 5
indicates only that the robot is passing beside an object and
not necessarily that it has to turn away to avoid the obstacle.

Similarly for pair (4, 6)

v = −k4y4 + k6y6 (15)

ω = p4y4 + p6y6 (16)

Thus if we use y = (y1, . . . , ym)T to indicate the normalized
sensor readings, we will end up with a reactive controller

v = Ky (17)

ω = Py (18)

Remark: Here we assume that the sensor reading is linear
to the distance. In reality, an infra-red sensor like the ones
used in Khepera may have a very nonlinear characteristics:

Fig. 3. Khepera infra-red sensor outputs

Then, one may need to use some f(y) instead of y in the
controller for higher accuracy. The readings might also be
quite noisy. In this case one might have to use an EKF first.

Proposition 4.1: Suppose the linear contour l (see Fig-
ure 2) is sufficiently long, the sensors are identical and
the output y is monotonically decreasing with the reflecting



distance d, and y(d) > 0 for all d > 0. Then, with the
reactive control (9) to (16)

φ̇ = ω = Py

has two equilibria: φ1 = π
2 + α (θ = 0) and φ2 =

−π
2 + α (θ = π). Furthermore, φ1 is unstable and φ2 is

asymptotically stable.
Remark: The proof is fairly straight forward and omitted
here. This result implies that if the environment consists of
only convex polyhedrals, then the robot would not get stuck
in any local minima since it is unstable and there is always
some noise.

V. NAVIGATION COORDINATION

When adding an obstacle-avoidance behavior to the path
following behavior, the overall system may need to be
coordinated by a hybrid automaton. In fact, we may get
two different possible hybrid automata (see for example
[14]). This depends on whether the two behaviors are active
simultaneously or not.

If one treats concurrently active behaviors as sub-
controllers for the overall system, different controllers affect
the system simultaneously, resulting in a smooth overall
performance, as shown in [10]. However, with this method
the analysis of the system is becoming significantly more
difficult as new behaviors are added.

The other possible solution to the coordination problem,
corresponding to hard switches between the different be-
haviors, is more scalable, but has the disadvantage that it
increases the risk of introducing chattering into the system
and the overall transient response may not be satisfactory.

In this paper we follow the method proposed in [4], where
the idea is to use a regularized automaton, which improves
the transient performance by adding some intermediate nodes
to the automaton.

We use the problem we study here to illustrate the idea.
When an obstacle is closer to the robot than a priori given
distance dOA (for example, the range of the infra-red sen-
sors), the obstacle-avoidance behavior becomes active. If we
would use hard switches between the two behaviors, under
some scenarios this may lead to a chattering situation. On
the other hand, if we consider the overall system with these
two behaviors as a discontinuous differential system, there
exists a sliding surface under some assumptions. Since the
repulsive potential field from the obstacle-avoidance behavior
is orthogonal to the surface on which the behavior becomes
active, the vector field on the sliding surface could be just

fS = αsfOA + (1 − αs)fPF , (19)

where αs ∈ [0, 1] is so that fS is orthogonal to fOA.
Then adding this as an intermediate node would give better
transient response and avoid the so-called “Zeno phenomena”
[7]. This discussion can be summarized as follows:

Proposition 5.1: Suppose the obstacle in consideration is
either a circle or a line segment, and the norm of each of the
vector fields corresponding to the path following and obstacle
avoidance behaviors is proportional to the respective distance,
then at each point of the sliding surface, the resulting sliding
solution is orthogonal to the obstacle avoidance vector field.

Proof: The conclusion follows from the fact that at each point
of the sliding surface, the projection of the path following
vector field to the normal direction of the obstacle has to
cancel the obstacle avoidance vector field.

f
f

f S s
PF
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Fig. 4. The fusion of Path following and obstacle-avoidance.

In practice, what we do is to switch the system into the
following intermediate node once an obstacle is detected:

fs = αfOA + (1 − α)fPF , (20)

for some α ∈ [0, 1]. Different choice of α will result in
different distance to the obstacle from the resulting sliding
surface.

Since we use the virtual vehicle approach for goal reach-
ing, a remaining issue here is when the obstacle-avoidance
is active, how one should update the virtual vehicle. After
all, the updating of the virtual vehicle will eventually decide
if the robot will get stuck on the sliding surface or move on
after it has passed the obstacle. We propose the following
modification to (5),

ṡ =







ce−αρv0√
p′2(s)+q′2(s)

if ρ > dOA

v cos(φ−θr)√
p′2(s)+q′2(s)(1−κ(s)ρ)

if ρ ≤ dOA

(21)

where κ(s) is the curvature of the reference path at s and the
rest of the variables are defined in Figure V. What the second
component suggests is that once the obstacle-avoidance is
active, s should switch to be the orthogonal projection of the
robot position onto the path [3].
Remark: In order to keep the second term in (21) bounded,
the curvature has to be sufficiently small everywhere. In
practice, one can use a saturation function to make the term
always bounded.

Arbitration
Let us denote the path following control action as uPF and

the obstacle-avoidance action as uOA. If properly scaled, the
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Fig. 5. Update of s when obstacle avoidance is active

regularized automaton would lead the overall control action
to

u = uPF + uOA.

In order to avoid singular cases and possible local minima
since the environment does not always consist of only convex
objects, we propose the following arbitration control

ω = δ, if uPF = −uOA 6= 0.

VI. EXPERIMENTS

In this section we use some experimental results on a
Khepera robot to illustrate our methods.

Khepera is a small mobile robot (55 mm in diameter),
which was designed as a research and teaching tool. It allows
testing algorithms, behaviors and control strategies theoret-
ically developed for trajectory planning, obstacle avoidance
and hypotheses on behavior processing, among others.
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Fig. 6. Khepera and its infra-red sensors

Each wheel of the robot is driven by a DC motor coupled
with it. The two motors are independent, which leads to
decoupled translation and rotation. Thus (1) is a good model
for it.

The robot has two encoders (one in each wheel) for sensing
the position of each wheel and then, the distance covered

by the wheels. The encoder readings are the only data we
used in our experiments for position feedback. Naturally the
accuracy can be improved by incorporating other sensors.

The sensors we used for detecting obstacles are the infra-
red proximity sensors on Khepera. Eight such sensors are
placed around the robot and are positioned as four in front,
one in each side and two in back.

In our experiments, the controllers proposed in the pre-
vious sections are implemented. For obstacle avoidance, the
following controller is used:
(

ω

v

)

=

0.1

(

−0.2 −1 −1 1 1 0.2 0 0

0.5 −0.2 −0.3 −0.3 −0.2 0.5 0.1 0.1

)







y0

...
y7






,

where y′

is are the infra-red sensor outputs. The coefficients
are obtained after some trial and error. When the path is
generated by a bitmap file, the virtual vehicle (6) is used
instead.

In Figure 7 the following of a path by the Khepera is
shown, where the path is generated by a cubic spline.

(a) (b)

Fig. 7. Path following

In Figure 8 the same path following and obstacle avoidance
is shown. We should point out that the obstacle was placed
on the path randomly after the robot had started to move on
the path.

VII. CONCLUSIONS

In this paper a method for integrating behavior based
control systems, based on a virtual vehicle approach, is
presented. In particular we discuss the algorithm for updating
the virtual vehicle when the obstacle avoidance control is
active, and a modification of the results in [4] is proposed.
Also, a new reactive controller for obstacle avoidance is
suggested. The strength of this control is that it is simple
to implement, robust and does not require a great deal of
computational resources. The results of this work has been
verified experimentally on a Khepera robot and the results
of the experiments are presented in the paper. Furthermore,
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Fig. 8. Path following and obstacle avoidance

this controller for a reactive behavior can be easily integrated
with the controller for the planned path following behavior.
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