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Abstract

In this paper a recursive control theoretic smoothing spéipproach is pro-
posed for reconstructing a closed contour. Periodic splare generated through
minimizing a cost function subject to constraints imposgalinear control sys-
tem. The optimal control problem is shown to be proper anficset optimality
conditions are derived for a special case of the problemguliamilton-Jacobi-
Bellman theory.

The filtering effect of the smoothing splines allows for usad noisy sensor
data. An important feature of the method is that several dets for the same
closed contour can be processed recursively so that thesagocan be improved
stepwise as new data becomes available.

1 Introduction

In this paper we focus on the problem of reconstructing cl@smtours from noisy and
sparse samples.

Data smoothing is a classical problem in system and conistaty [1,3]. Smooth-
ing splines were introduced in the 1960s. As opposed topntating splines, smooth-
ing splines pass close to, rather than through interpoigt@nts, providing a filtering
or smoothing effect. A comprehensive overview is given ihgdd [5], where splines
are studied in a statistical setting. In mathematicalstiasi, the aim of the smoothing
spline is generally to fit a curve to a data set so that the eatween the curve and the
data has nice statistical properties, for instance thatribrmally distributed.

Control theoretic smoothing splines were first introduaeilio], and are further
studied in for instance [11, 12, 15]. In [16] the smoothindirep problem is studied
using Hilbert space methods. [6] is, to the extent of the awsttknowledge, the first
book to give a complete overview of the field. The aim of cottieoretic smoothing
splines is to find a trade-off between faithfulness to a gtata set and control gain.
This is motivated by for instance trajectory tracking apgtions, where exact tracking
of way points often calls for undesirable large acceleratio

A nice property of smoothing splines is robustness. [13kobes that smoothing
splines are in some sense band limited so that small changaei data point will
mainly affect the spline in a neighborhood of that point.

The focus of this paper is control theoretic smoothing gdiwith a periodicity
constraint. A recursive approach is developed, where thmate of the underlying,
closed curve is improved stepwise as new data sets are recove



2 Related Work and Contributions

We note that recursive approaches to constructing spleesteen investigated in [23]
and [29]. In the field of robotics, recursive cubic B-splinetimods for path planning
have been presented in [21] and [22]. However, little work been done in this direc-
tion with control theoretic splines. A notable contributiis presented in [6]. While
the recursive smoothing spline problem formulated in [@]udes previous curve esti-
mates, the formulation in the present paper only includesitimplicitly.

Control theoretic smoothing splines may be viewed as ptoHgeint LQ optimal
control problems with dynamic constraints. Point-to-padip optimal control prob-
lems have been investigated in for instance [24] and [25§re[fi24] treats the optimal
output-transition problem for linear systems while [25hswlers LTI continuous-time
systems with affine constraints in initial and terminalesat

[14] investigates a point-to-point LQ optimal control pkeim under the assump-
tion of dynamic constraints with a stochastic uncertaifityis paper examines a similar
LQ problem, with the important distinction that we optimiaeer all periodic solu-
tions. Again, results for periodic LQ problems can be foumgépers dating back to
the 1970s, [8, 9], but these do not cover the point-to-paiobjem.

In the field of mathematical statistics, early contribuiamn periodic smoothing
splines include [26]. Until recently, little work had beeonr# on periodic, control
theoretic smoothing splines. Notable contributions hawsdver emerged during the
past few years. [28] studies applications of control theommoothing splines to mo-
bile robotics, and poses a problem where the periodicitysitamt depends on input
data. In [27] periodic, control theoretic smoothing splpreblems are solved using
Hilbert Space methods. In the current paper, optimalitydétoons for such splines are
examined using Hamilton-Jacobi-Bellman theory for optiomantrol problems.

3 Outline

The paper is organized as follows. In Section 4, we statedh&oar estimation prob-
lem formally and propose a closed form and a recursive goipeint LQ formulation
for estimation of closed contours. In Section 5 we discusgrality conditions for the
periodic smoothing spline problem. Some simulation resaté reported in Section 6,
and a concluding summary is provided in Section 7.

4 Problem statement and motivation

Consider the problem of reconstructing continuous, smatised curves ifiR? from
noisy and sparse measurement data. This problem arisesfance in mapping appli-
cations and trajectory tracking for mobile robots. In théstton we pose two optimal
control problems that aim to find the best estimate of an uUyider;, closed curve given
noise contaminated samples from the curve. First, we iotte@ closed form optimal
control problem that yields a first estimate of the undedydnrve and then a modified,
recursive problem. A formal problem statement follows.



GivenadatasetD= {(ti,z): i=1,..,N},wherez=z(t),t € [0,T]and4T) =
Z(0). If z = y(t) + & are noise contaminated samples from a closed continuous
curve, where; is a symmetric, zero-mean white noise, how to find the cutyehat
best represents the data?

We view this as an optimal control problem, whg(e) is the output of a dynamic
system whose control inputt) should be properly designed.

4.1 Closed Form

The following closed formL, smoothing problem yields an estimate yf) while
minimizing the control effort(t).

Problem 4.1

min 3 — & [ u0/Q udt+ 3t — 1)z — Ox(i)R 2@ — Cx(t
i 3000 = 5 [ U/ it § (6~ a) (3 - Oxt) R e Ot

1)
sit. X = Ax+Bu (2)
x0) = x(T), ©)

whereto =ty — T, andt; > tj_; fori =1,...,N. The constraints (2) - (3) consist of
an n-dimensional ODE with relative degreeand periodic boundary condition. The
resulting smoothing spline is given pyt) = Cx(t). The system

X = Ax+Bu

y = Cx (4)

is referred to as the spline generator of (1). Thus the sougivey is the output of
ann-tuple integrator with state variable controlled by an inputi = x, = x<1”), thent
derivative ofx;. The dimension of the spline generator determines on wiecivative

to impose the smoothing penalty. As the magnitude of thergkderivative ofx (t) is
proportional to the curvature & (t), n= 2 is a natural choice. Throughout the paper,
the following numerical values are used.

A:[g é] B:[ﬂ,cz[l 0].

Q=1 Ry=1/¢?, T=2m

(5)

Let us have a closer look at the cost function (1). The intégrposes a penalty
on large magnitude of the inpuit), corresponding to the curvature of the curve
y(t) = Cx(t) = x1(t). The sum punishes large deviations of the cuyftg from the
data(tj,z). In other words, the solution of Problem 4.1 is in some seheeptimal
compromise between smoothness of the output curve andufaiéiss to the data set.
The magnitude of the smoothing parameter 0 determines how much credibility
is given to measurement data. In the next section it is shawnd modification of
Problem 4.1 allows for a recursive approach to the contdimation problem.



4.2 Recursive Form

As the data is noise contaminated, the resulting spline framdata seD may give
a poor estimate of the underlying curve. If new data becomaiadle over time, im-
provements of the estimate can be made by solving a recdmsiveof Problem 4.1.
Here, the optimal contral*~(t) from the previous iteration is used in iteratiko-

gether with new datéX, Z).

Problem 4.2

min_ I = 3 /OT<uk<t>fu“(t»’Q*l(uk(t)fuk*1<t>>dt+

ukeL,[0,T]

%i(tik—t ) CEEYR A —CEE) (6)
st. X = AX¥+BU 7)
X0) = X(T). (8)

Introduce the notation

i‘ AR (i)
“(t) t) =Xt 9)
) —u*

=X
U

At iterationk, the spline solutiox*"of Problem 4.2 is an adjustment of the culfe!
based on the new datqhz‘-k). Substituting for the variables (9) in (6) and (7) - (8), we
obtain

min I, %) = / ' ak(t) Qo (t)dt+
0

keL,[0,T]
1 N
5 > (=t (F - CX(W) RHE - CK(w)  (10)
i=
K = AR BIK (11)
£(0) = (), (12)

which are identical to (1) - (3). Therefore, solution methaahd optimality conditions
for Problem 4.1 and Problem 4.2 are identical. The curvenedé at iteratiork can
now be written

k—1

k_ 1 g

X<=Xx"+ 2 X (13)
J:

wherex! is the spline solution to Problem 4.1 for the first batch ofaddh the next
section, optimality conditions for this smoothing problendiscussed.



Remark 1 Itis intuitively easy to see that using the closed form (Rrob4.1) and in-
creasing the number N of data points, the spline output shapiproach the underlying
curve if the noise is symmetric. If such a data set is avadlathis may be an option. In
many applications, however, new data may arrive at diffepaints in time, calling for
an update of the estimate. This is for instance the case wéariglcollected by teams
of cooperating autonomous vehicles. As k increases, tlwe efrthe spline estimate
with this recursive formulation decreases only slightlgvatr than when increasing N
for the closed form. In the extreme, a further motivationtfa recursive formulation
is that as N— o, Problem 4.1 may experience numerical instability in imnpdatation.

5 Properness and Optimality

Problem 4.1 is a continuous time problem with discrete datheriodic boundary
conditions. Such problems, without the periodic constrdiave been widely studied
in the literature, see for example the books by Bryson and Holleondes [2] and
Jazwinski [3]. However, as far as we know, it is difficult todiresults concerning the
periodic case. In this section, we investigate conditiansblving this problem. We
begin by studying the proper periodicity conditions.

5.1 Proper periodicity conditions

In this section, we adopt the notations used in [7]. Let= J(0F,X*) in Problem 4.1,
whereu™ is any constant function.

Definition 1 The optimal control problem iproper if there exists an admissible con-

trol u(-) such that B
J(U(-),x(+) < I (14)

In this context, proper periodicity conditions refers tondiions establishing whether
an optimal, periodic control problem is proper or not. Thiéofwing proposition estab-
lishes that Problem 4.1 is proper for all but a special casiatf input.

Proposition 1 For distinct sampling anglefis, ..., tn], Problem 4.1 is proper if and
onlyif 31i, j € [1,N] such that z+ z;.

Proof The proof is constructed by showing that a particular, tiraeying, periodic
controlu(t) = a((t) satisfies (14). For details, see Appendix A.

Next, we discuss optimality conditions for Problem 4.1.



5.2 Optimality Conditions and Hamilton-Jacobi-Bellman Theory

In the following, sufficient optimality conditions for Prt#m 4.1 are examined using a
Hamilton-Jacobi-Bellman approach. A set of differentigliations are derived leading
to an expression of the optimal contnal It should be noted that for the particular
choice of system matrices (5), straightforward and welhknapproaches for regular
smoothing splines are applicable [5]. The purpose of thif@eis to analyze smooth-
ing splines from a control perspective and suggest solsitionmore complex spline
generators.

First, a brief review of the Hamilton-Jacobi-Bellman the@rgiven in Section 5.2.1.
Then, in Section 5.2.2, sufficient optimality conditiong given for the special case
of Problem 4.1 where the input is a continuous curve. Fin#ily discrete data case is
discussed in Section 5.2.3.

5.2.1 Optimality Conditions for a General Periodic Control Problem
Consider the problem

Problem 5.1

) T
i () = /O L(x(t), u(t))dt (15)

st. X = f(xu) (16)
x(0) = x(T). 7)

Some definitions of useful concepts follow.
Definition 2 TheHamiltonian of (16)is
H(X,u,A) = L(x,u)+A'f(x,u). (18)

Definition 3 TheH-minimal control u* is defined as

u*(x,A) éargrrl]in H(x,u,A) (19)

Definition 4 TheHamilton-Jacobi-Bellman equation is

ov(t,x) o OV(EX)\ V(LX)
— H(x,u (x, e ), x > (20)

The following proposition is proved in [8]:
Proposition 2 Suppose that

1. The control g generates a periodic solutiorof (15)- (17).



2. There exists a continuously differentiable solutidih,¥) of (20) such that
V(O,X)*V(T,X) :C(T)v (21)
where Gt) is a real function.

Then, y is optimal to(15) - (17)if

ur =u’ (XT, %) ) (22)

Next, optimality conditions are first stated for a periodizo®thing problem with con-
tinuous data and a general expression for the optimal coistgiven. Finally, the
optimal control for Problem 4.1 in the limi — o is derived.

5.2.2 Optimality Conditions: Continuous time, continuousdata

Consider the following problem:

Problem 5.2
Jin () = 5 / (t) + (z(t) — Cx(t)RX(z(t) —Cx(t))] dt  (23)
sit. X = Ax+Bu (24)
x(0) = x(T). (25)

This may be viewed as a smoothing problem with continuowsaggtor as a problem
of tracking a curve given by(t). Optimality conditions for problems of this type were
derived in [8]. A review of the results follows. For brevityyroughout this section
we use the notatiox; andVy to denote the partial derivatives ¥t The Hamiltonian
corresponding to (23) is

H(X,u,A) = %U’Q‘lqu %X’C’R‘lef XC'R1z+ %Z'R‘ler/\’(Aer Bu). (26)

TheH — minimal control ¢ is derived as

JH(X,u,A)

= Qlu+BA = u'=-QBA, (27)

sou*(x7,Vyx) = —QB'. Then the Hamilton-Jacobi-Bellman equation is

vy = %VX'BQBVF %X’C’R‘lCXJr XC'R 1z— %z R 1z—VjAx (28)
In [8] the following form forV (t,x) is proposed for Problem 5.2:

V(t,x) = %XIPX+XI¢’+S. (29)



Here, ¢, P ands should be chosen so that (28) is satisfied, ¥iid, x) — V(T,x) =
C(T) for some real functiof(t). FurthermoreP is a symmetric, positive semidefinite
matrix. The derivative¥; andVy are

W= Pt XPRH XPR KX (48 (30)
Vy = Px+o. (31)
Then, since
ur = u*(x, Vi) = —QB (Px+ ) (32)
we get

1 = Axr + Bur = Axr — BQB(Pxr + @) = (A— BQBP)xr —BQB¢@.  (33)

Somewhat tedious calculations yield, after plugging in)(381) and (32) into (28),
thatP, ¢ ands must satisfy

P = —AP-PA+PBQBP-CRIC (34)
¢ = —(A—BQBP'¢+CR !z (35)
§ = %(p/BQB’cp—%z’R’lz (36)
P(T) = P(0) (37)
o(T) = @0 (38)
S(T) = s(0)—C(T). (39)

In [8] the constant, positive definite soluti®hto thealgebraicRiccati equatio® = 0
is chosen. For the special case (23) - (25), with linear dyesiand continuous data,
the trivially periodicP satisfies the optimality conditions.

Moreover, forP constant and positive definite and wghB andQ as defined by (5),
all eigenvalues oA — BQBP have negative real part. In fact, it is observed in [8] that
this holds for all matrice&\, B,C,Q~* andR~! = D'D such that(A, B) is controllable
and(A,D'C) is observable, an@ ! positive definite. It follows that no eigenvalues of
(I —eABQBPT) and(l — e~ (A-BQBP)'T) are equal to 1 or -1. Hence (33) and (35) have
unique, T -periodic solutions.

In order to generalize to scenarios with discrete dBtapust however be time-
varying. To the extent of the authors’ knowledge, necessangitions for existence of
periodic solutions to Riccati-type equations are gengdifficult to find.

5.2.3 Optimality Conditions: Continuous time, discrete daa

We restate Problem 4.1 for the reader’s convenience:
Problem 5.3

min_ J(u,X) / t)dt+
uel,[0,T] 2

pd

(t —ti_1)(2(t) — Cx(t))'R™*(z(t;) —Cx(t;))  (40)

NI~



st. X = Ax+Bu (412)
x(0) = x(T). (42)

Note that here, we represent the datas samples of a functiazft) at timest;. Due to
the periodicity constraint, it is not trivial to find optimi conditions for this problem.
A similar problem is studied in [14]. There, the cost funatie of the form

N-1

20 (Wi+l|z(ti+1) —Cx(ti+1)|2‘f‘xti+1 Oia(t, X, U)dt) (43)

whereg;(t, x,u) contains, in addition to the-quadratic term, cross terms feandu
and linear terms irx andu. [14] assumes dynamic constraints of the form (41) but
includes a multiplicative stochastic uncertainty. Furtlige initial valuex(0) is fix.

(40) may be viewed as a special case of (43), where some taemem@oved.
Removing the stochastic terms from the dynamic constraihéscontrol problem in
[14] is the same as Problem 5.3 except for the boundary @intdr In [14], using
functionsV; of the form (29), the following relations are obtained (wheve have
substituted for the notation in the current paper):

R = —-AR-RA+RBQBR (44)
R(tiva) = Realtiva) + (i —6)CRC (45)
@ = —(A-BQBR)q (46)
@ltiy) = @) — (G —t)CR 2(ti) (47)
§ = 50/BOEg (49)
s(tiz1) = S+1(ti+l)+%(ti+l—ti)z(ti+l),R_lz(ti+l)- (49)

On the intervalt;,ti;1] the resulting optimal control is
Ui = —QB'(Rx+q). (50)

The authors believe that Proposition 2 can be generalizedidos for a piecewise
continuous function of the form

V(xt) =E:Vi(xat)[H(t—ti)—H(t—ti+1)] (51)
=
whereH (t) is the Heaviside step function aidx,t) has the property
V(x,0)—V(x,T) =C(T). (52)
This would imply that the piecewise continuous control

urn =Ui(t) tettiyzg], i=0,...,N—-1 (53)



is optimal to Problem 5.3 if there exist solutions to (44)9)4uch that

P(T) = P(0) (54)
®(T) = @0 (55)
S(T) = s(0)—C(T), (56)

with P(t), ¢(t),s(t) defined analogously witk (x,t) in (51). Although simulation re-
sults support this claim, a proof is yet to be constructed. éaker result is stated in
the following proposition.

Proposition 3 As N— oo, and under the assumption th@#)- (56) hold, ur y defined
by (53) converges to 1 defined by32).

Proof The proof follows from the definition of the derivative. Sepgendix B for
details.

Remark 2 With a clever choice of discretization of Problem 5.8ywcan be computed
as the solution of an unconstrained, quadratic programnpngpblem, avoiding the
difficulty of finding solutions t¢44) - (49). This is discussed in further detail in [17],
[18], [19] and [20].

6 Simulations

In this section, we show an example of curve estimation witthfem 4.1 and Prob-
lem 4.2. We letyre(t) denote the underlying curve whilg(t), uk (t)) denotes the
optimal smoothing solution at iteratida Fork = 1 the closed form (Problem 4.1)
was used, and fdk = 2,3,... the recursive form (Problem 4.2), yielding the control
ﬁ#)N(t) (9). Throughout the simulations, a noi&es N(0,0.05) was added to the sam-
plesz of yire(ti) to simulate measurement noise. An example is shown in Fifoe
k=1,5,10. As expected, the resulting conttaly (53) is periodic with breaks at the
interpolation pointg;. It is also worth noting that als grows, the magnitude af<{t)
decreases as a consequence of the error convergence.

To further evaluate the recursive problem, a study of eromvergence was per-
formed for Problem 4.2. For reference, Problem 4.1 was sdiwean increasing num-
ber of data point®l. Denote byyX(t) andRX the solution and error of Problem 4.2 at
iterationk and letyN andRN denote the solution and error of Problem 4.1 Kbdata
points. The errors are computed as

RO — /O'T(y(?(t)—ytrue(t))zdt. (57)

Results are shown in Figure 2. Mean value®RbandRN are plotted for 25 test cases.
Fork=1,...,100 Problem 4.2 was solved witk) = 15 data points at each iteration,
while Problem 4.1 was solved witR(k) = 15k data points. Figure 2 shows that the
performance of the recursive problem is almost as good dsoftthe closed form,
without the drawbacks discussed in Remark 1.



1500 . .

1000

5001

—uTilde®(t)

-150 ; ; ; ; ; ; t
-150 -100 -50 0 50 100 150 200

_1§£%0 -100 -50 0 50 100 150 200

Figure 1: An examplelLeft: Estimatey(t) (dashed) are shown atiteratidas 1,5,10
and compared with the underlying cung.e and the sampled input dafs, z ) (stars).
Right: The corresponding controls; y, 0%\ and#%,. The interpolation points at
t = t; are marked with circles. 7 7

7 Conclusions

In this paper we introduced a recursive smoothing splineaaah to estimation of
closed curves ilR?. We derived periodic smoothing splines recursively fronspo
data by solving an optimal control problem for a linear systelt was shown that
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Figure 2: Convergence result for Problem 4.2 for increasirfgolid) compared to
Problem 4.1 for increasiny (dashed).

a simple, linear transform makes the recursive problemtic@nto the closed form
problem and that the problem is proper generically. Opfimabnditions were ex-
amined using Hamilton-Jacobi-Bellman theory and simatetidemonstrate satisfying
error convergence for the recursive method.
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A Proof of Proposition 1

Proof

From the dynamical constraints (2) it is obtained that

X(t) = eMx(0) + /0 t =SBy(s)ds (58)
which, inserting the matrices and vectors of (5), is
x1(t) \ [ x1(0) +tx2(0) + [3(t —s)u(s)ds
( Xo(t) ) - ( Xz(0)+fé?1(s)ds ) (59)

At the terminal time, we obtain

x1(T) \ _ ( %2(0)+Tx(0)+ Jg (T —s)u(s)ds
( x;(T) ) - ( ' X2(0) + fOTOu(s)ds ) (60)



and sincex(0) = x(T) this yields

1 /T
_?O

.
/Ou(s)ds = 0 (62)

It follows from (62) that the only feasible constant contiol* = 0. Foru® =0, the
spline isx; =z= £ N, 7. Therefore)* = J(0,2)

Denote byxi(t) the interpolating, periodic, cubic spline that interpekathe points
(z — Z). This spline exists and is unique for distinct sampling asgl and if there is
at least ong; # zin the setxi(t) #z

It follows thatui(t) = %;(t) is well defined, non-zero and lies in the feasible region
of Problem 4.1. Now letr € R and consider

Xz(O)

(T —s)u(s)ds (61)

a?

A o T2 £ g o 2
M(a) = J(ad(t), ag(t)+2) = 7/0 at) dt+7z‘(ti—ti,l)(zi—axl(ti)—ij -

—/ 2dt+— (tfti,l)(lfa)z(zifijz. 63)

The derivativd (a) ata =0 is

z

dgixa):a /OTa(t)zdtfsz(lfOO (ti—ti-2)(E-2°=

N

fs?zl(t—t. 1)(z—2°<0. (64)

It follows that there exists ao* such thaf (a*) < I'(0).

|
B Proof of Proposition 3
Proof
Lett =t;1, At = (tj1 —t). Note that if (54) - (55) hold, it follows that
urn(T) = urn(0), (65)

Therefore, if we can show that (44) - (47) correspond to (385p) in the limitAt — 0O,
the proposition is proved.

Convergence forP
From (44) and (45) we get
R(t) = —APR(1)-R(1A+R(1)BQBR(1) Te[t,t+At] (66)
R(t+At) P 1(t+At) +AtC'RIC. (67)



From the definition of the derivative, we obtain

R(t+At) —R() Pa(t+At) + AMIC'R™IC - R(t)

RO = Jm, At = Am, At
- Ra(t+A) —R(t) | o
A:TO At +C ¢ (68)
Using (66) we arrive at the equality
jim B2 =RO _ yp_patpBOBR-CRIC (69)
At—0 At
We manipulate the left hand side of (69):
fim P2t +20 RO _
At—0 At
lim Pi1(t+At) —Ria(t) + R(t+At) —R(t) + B4a(t) — R(t +At) _
At—0 At
: 5 o () —R{E+AY) -
eat R g TR = vang60) )
: : . Bii(t) —Rig(t+At) — AMCRIC _
Rt A +A|:TO At -
: . Paat)=Pia(t+At) L :
P+ B fim PRl 8o g g B (70)
At—0 At
= AlimoﬁI = -AR-PA+RBQBR-CRIC. (71)
Also, from (67) it follows that
AIETOP'(t +At) = Ra(t). (72)
Convergence forg
From (46) and (47) we get
a(t) = —(A—BQBR)a(1) Teltt+Al] (73)
@t+A) = @u1(t+A) —ACR 1zt +At). (74)

From the definition of the derivative, we obtain

@t +AD) —q(t) _ o @t - ACR 't +AY — ()

am = fim, At ks At
i @tFAY—at) o
= AI:TO A C'R z(t). (75)
Using (73) we arrive at the equality
jim 8108 =@0) o\ popRm)yat)+CR ). (76)

At—0 At



With the same reasoning as in (70)

Ant+4AH —a)

A At =4 (77
= Altimoqh = —(A-BQBR) @ +CR ). (78)
Also, from (74) it follows that
Jim q(t+At) = @a(t). (79)
Convergence fors
From (48) and (49) we get
§(1) = %gq’BQB(g TE[t,t+At] (80)
st+At) = sop(t+At)+ }Atz(t + AR Iz(t + Ab). (81)

2

From the definition of the derivative, we obtain

S(EHA) —s(t) _ | Saat+a0+ IAtz(t + AR 1z(t + At) — s (t)

. _ i i
s A:TO At ALO At

o Seat+AY)—s) 1

= AI{TO A + 2z(t) R™*z(t). (82)

Using (80) we arrive at the equality

im @1 (t+AH) —q(t
At—0 At

1 1 _
) _ qu’BQB’cg — Ez(t)’R L. (83)
Again, with the same reasoning as in (70)

sa(t+4H) —s(t)

AltITO At -5 (84)
lim § = }qq’BQB’ }z(t 'Rzt (85)
a2 a3 ) )

Also, from (81) it follows that

AETOS(tJrAt) =s41(1). (86)



