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Abstract

In this paper a recursive control theoretic smoothing spline approach is pro-
posed for reconstructing a closed contour. Periodic splines are generated through
minimizing a cost function subject to constraints imposed by a linear control sys-
tem. The optimal control problem is shown to be proper and sufficient optimality
conditions are derived for a special case of the problem using Hamilton-Jacobi-
Bellman theory.

The filtering effect of the smoothing splines allows for usage of noisy sensor
data. An important feature of the method is that several datasets for the same
closed contour can be processed recursively so that the accuracy can be improved
stepwise as new data becomes available.

1 Introduction

In this paper we focus on the problem of reconstructing closed contours from noisy and
sparse samples.

Data smoothing is a classical problem in system and control history [1,3]. Smooth-
ing splines were introduced in the 1960s. As opposed to interpolating splines, smooth-
ing splines pass close to, rather than through interpolation points, providing a filtering
or smoothing effect. A comprehensive overview is given in [4] and [5], where splines
are studied in a statistical setting. In mathematical statistics, the aim of the smoothing
spline is generally to fit a curve to a data set so that the errorbetween the curve and the
data has nice statistical properties, for instance that it is normally distributed.

Control theoretic smoothing splines were first introduced in [10], and are further
studied in for instance [11, 12, 15]. In [16] the smoothing spline problem is studied
using Hilbert space methods. [6] is, to the extent of the authors’ knowledge, the first
book to give a complete overview of the field. The aim of control theoretic smoothing
splines is to find a trade-off between faithfulness to a givendata set and control gain.
This is motivated by for instance trajectory tracking applications, where exact tracking
of way points often calls for undesirable large accelerations.

A nice property of smoothing splines is robustness. [13] observes that smoothing
splines are in some sense band limited so that small changes in one data point will
mainly affect the spline in a neighborhood of that point.

The focus of this paper is control theoretic smoothing splines with a periodicity
constraint. A recursive approach is developed, where the estimate of the underlying,
closed curve is improved stepwise as new data sets are recovered.



2 Related Work and Contributions

We note that recursive approaches to constructing splines have been investigated in [23]
and [29]. In the field of robotics, recursive cubic B-spline methods for path planning
have been presented in [21] and [22]. However, little work has been done in this direc-
tion with control theoretic splines. A notable contribution is presented in [6]. While
the recursive smoothing spline problem formulated in [6] includes previous curve esti-
mates, the formulation in the present paper only includes them implicitly.

Control theoretic smoothing splines may be viewed as point-to-point LQ optimal
control problems with dynamic constraints. Point-to-point LQ optimal control prob-
lems have been investigated in for instance [24] and [25], where [24] treats the optimal
output-transition problem for linear systems while [25] considers LTI continuous-time
systems with affine constraints in initial and terminal states.

[14] investigates a point-to-point LQ optimal control problem under the assump-
tion of dynamic constraints with a stochastic uncertainty.This paper examines a similar
LQ problem, with the important distinction that we optimizeover all periodic solu-
tions. Again, results for periodic LQ problems can be found in papers dating back to
the 1970s, [8,9], but these do not cover the point-to-point problem.

In the field of mathematical statistics, early contributions on periodic smoothing
splines include [26]. Until recently, little work had been done on periodic, control
theoretic smoothing splines. Notable contributions have however emerged during the
past few years. [28] studies applications of control theoretic smoothing splines to mo-
bile robotics, and poses a problem where the periodicity constraint depends on input
data. In [27] periodic, control theoretic smoothing splineproblems are solved using
Hilbert Space methods. In the current paper, optimality conditions for such splines are
examined using Hamilton-Jacobi-Bellman theory for optimal control problems.

3 Outline

The paper is organized as follows. In Section 4, we state the contour estimation prob-
lem formally and propose a closed form and a recursive point-to-point LQ formulation
for estimation of closed contours. In Section 5 we discuss optimality conditions for the
periodic smoothing spline problem. Some simulation results are reported in Section 6,
and a concluding summary is provided in Section 7.

4 Problem statement and motivation

Consider the problem of reconstructing continuous, smooth, closed curves inR2 from
noisy and sparse measurement data. This problem arises for instance in mapping appli-
cations and trajectory tracking for mobile robots. In this section we pose two optimal
control problems that aim to find the best estimate of an underlying, closed curve given
noise contaminated samples from the curve. First, we introduce a closed form optimal
control problem that yields a first estimate of the underlying curve and then a modified,
recursive problem. A formal problem statement follows.



Given a data set D= {(ti ,zi) : i = 1, ...,N}, where zi = z(ti), ti ∈ [0,T] and z(T) =
z(0). If zi = y(ti) + ξi are noise contaminated samples from a closed continuous
curve, whereξi is a symmetric, zero-mean white noise, how to find the curve y(t) that
best represents the data?

We view this as an optimal control problem, wherey(t) is the output of a dynamic
system whose control inputu(t) should be properly designed.

4.1 Closed Form

The following closed formL2 smoothing problem yields an estimate ofy(t) while
minimizing the control effortu(t).

Problem 4.1

min
u∈L2[0,T]

J(u,x) =
1
2

∫ T

0
u(t)′Q−1u(t)dt+

1
2

N

∑
i=1

(ti − ti−1)(zi −Cx(ti))
′R−1(zi −Cx(ti))

(1)

s.t. ẋ = Ax+Bu (2)

x(0) = x(T), (3)

wheret0 = tN −T, andti > ti−1 for i = 1, . . . ,N. The constraints (2) - (3) consist of
an n-dimensional ODE with relative degreen and periodic boundary condition. The
resulting smoothing spline is given byy(t) = Cx(t). The system

ẋ = Ax+Bu
y = Cx

(4)

is referred to as the spline generator of (1). Thus the soughtcurvey is the output of

ann-tuple integrator with state variablex, controlled by an inputu = xn = x(n)
1 , thenth

derivative ofx1. The dimension of the spline generator determines on which derivative
to impose the smoothing penalty. As the magnitude of the second derivative ofx1(t) is
proportional to the curvature ofx1(t), n = 2 is a natural choice. Throughout the paper,
the following numerical values are used.

A =

[

0 1
0 0

]

, B =

[

0
1

]

, C =
[

1 0
]

,

Q = 1, R0 = 1/ε2, T = 2π .

(5)

Let us have a closer look at the cost function (1). The integral imposes a penalty
on large magnitude of the inputu(t), corresponding to the curvature of the curve
y(t) = Cx(t) = x1(t). The sum punishes large deviations of the curvey(t) from the
data(ti ,zi). In other words, the solution of Problem 4.1 is in some sense the optimal
compromise between smoothness of the output curve and faithfulness to the data set.
The magnitude of the smoothing parameterε > 0 determines how much credibility
is given to measurement data. In the next section it is shown how a modification of
Problem 4.1 allows for a recursive approach to the contour estimation problem.



4.2 Recursive Form

As the data is noise contaminated, the resulting spline fromone data setD may give
a poor estimate of the underlying curve. If new data becomes available over time, im-
provements of the estimate can be made by solving a recursiveform of Problem 4.1.
Here, the optimal controluk−1(t) from the previous iteration is used in iterationk to-
gether with new data(tk

i ,zk
i ).

Problem 4.2

min
uk∈L2[0,T]

Jk(uk,xk) =
1
2

∫ T

0
(uk(t)−uk−1(t))′Q−1(uk(t)−uk−1(t))dt+

1
2

N

∑
i=1

(tk
i − tk

i−1)(z
k
i −Cxk(tk

i ))
′R−1(zk

i −Cxk(tk
i )) (6)

s.t. ẋk = Axk +Buk (7)

xk(0) = xk(T). (8)

Introduce the notation

z̃k
i = zk

i −xk−1
i (tk

i )

x̃k(t) = xk(t)−xk−1(t)

ũk(t) = uk(t)−uk−1(t).

(9)

At iterationk, the spline solution ˜xk of Problem 4.2 is an adjustment of the curvexk−1

based on the new data(tk
i ,zk

i ). Substituting for the variables (9) in (6) and (7) - (8), we
obtain

min
ũk∈L2[0,T]

Jk(ũk, x̃k) =

∫ T

0
ũk(t)′Q−1ũk(t)dt+

1
2

N

∑
i=1

(tk
i − tk

i−1)(z̃
k
i −Cx̃k(ti))

′R−1(z̃k
i −Cx̃k(ti)) (10)

˙̃xk = Ax̃k +Bũk (11)

x̃k(0) = x̃k(T), (12)

which are identical to (1) - (3). Therefore, solution methods and optimality conditions
for Problem 4.1 and Problem 4.2 are identical. The curve estimate at iterationk can
now be written

xk = x1 +
k−1

∑
j=2

x̃ j (13)

wherex1 is the spline solution to Problem 4.1 for the first batch of data. In the next
section, optimality conditions for this smoothing problemis discussed.



Remark 1 It is intuitively easy to see that using the closed form (Problem 4.1) and in-
creasing the number N of data points, the spline output should approach the underlying
curve if the noise is symmetric. If such a data set is available, this may be an option. In
many applications, however, new data may arrive at different points in time, calling for
an update of the estimate. This is for instance the case when data is collected by teams
of cooperating autonomous vehicles. As k increases, the error of the spline estimate
with this recursive formulation decreases only slightly slower than when increasing N
for the closed form. In the extreme, a further motivation forthe recursive formulation
is that as N→ ∞, Problem 4.1 may experience numerical instability in implementation.

5 Properness and Optimality

Problem 4.1 is a continuous time problem with discrete data and periodic boundary
conditions. Such problems, without the periodic constraint, have been widely studied
in the literature, see for example the books by Bryson and Ho [1], Leondes [2] and
Jazwinski [3]. However, as far as we know, it is difficult to find results concerning the
periodic case. In this section, we investigate conditions for solving this problem. We
begin by studying the proper periodicity conditions.

5.1 Proper periodicity conditions

In this section, we adopt the notations used in [7]. LetJ̄∗ = J(ū∗, x̄∗) in Problem 4.1,
whereū∗ is any constant function.

Definition 1 The optimal control problem isproper if there exists an admissible con-
trol ū(·) such that

J(ū(·), x̄(·)) < J̄∗. (14)

In this context, proper periodicity conditions refers to conditions establishing whether
an optimal, periodic control problem is proper or not. The following proposition estab-
lishes that Problem 4.1 is proper for all but a special case ofdata input.

Proposition 1 For distinct sampling angles[t1, . . . ,tN], Problem 4.1 is proper if and
only if ∃ i, j ∈ [1,N] such that zi 6= zj .

Proof The proof is constructed by showing that a particular, time varying, periodic
controlū(t) = αû(t) satisfies (14). For details, see Appendix A.

�

Next, we discuss optimality conditions for Problem 4.1.



5.2 Optimality Conditions and Hamilton-Jacobi-Bellman Theory

In the following, sufficient optimality conditions for Problem 4.1 are examined using a
Hamilton-Jacobi-Bellman approach. A set of differential equations are derived leading
to an expression of the optimal controlu. It should be noted that for the particular
choice of system matrices (5), straightforward and well known approaches for regular
smoothing splines are applicable [5]. The purpose of this section is to analyze smooth-
ing splines from a control perspective and suggest solutions for more complex spline
generators.

First, a brief review of the Hamilton-Jacobi-Bellman theory is given in Section 5.2.1.
Then, in Section 5.2.2, sufficient optimality conditions are given for the special case
of Problem 4.1 where the input is a continuous curve. Finally, the discrete data case is
discussed in Section 5.2.3.

5.2.1 Optimality Conditions for a General Periodic Control Problem

Consider the problem

Problem 5.1

min
u∈L2[0,T]

J(u,x) =

∫ T

0
L(x(t),u(t))dt (15)

s.t. ẋ = f (x,u) (16)

x(0) = x(T). (17)

Some definitions of useful concepts follow.

Definition 2 TheHamiltonian of (16) is

H(x,u,λ ) , L(x,u)+ λ ′ f (x,u). (18)

Definition 3 TheH-minimal control u∗ is defined as

u∗(x,λ ) , argmin
u

H(x,u,λ ) (19)

Definition 4 TheHamilton-Jacobi-Bellman equation is

∂V(t,x)
∂ t

= −H

(

x,u∗
(

x,
∂V(t,x)

∂x

)

,
∂V(t,x)

∂x

)

. (20)

The following proposition is proved in [8]:

Proposition 2 Suppose that

1. The control uT generates a periodic solution xT of (15) - (17).



2. There exists a continuously differentiable solution V(t,x) of (20)such that

V(0,x)−V(T,x) = C(T), (21)

where C(t) is a real function.

Then, uT is optimal to(15) - (17) if

uT = u∗
(

xT ,
∂V(t,xT)

∂x

)

. (22)

Next, optimality conditions are first stated for a periodic smoothing problem with con-
tinuous data and a general expression for the optimal control is given. Finally, the
optimal control for Problem 4.1 in the limitN → ∞ is derived.

5.2.2 Optimality Conditions: Continuous time, continuousdata

Consider the following problem:

Problem 5.2

min
u∈L2[0,T]

J(u,x) =
1
2

∫ T

0

[

u(t)′Q−1u(t)+ (z(t)−Cx(t))′R−1(z(t)−Cx(t))
]

dt (23)

s.t. ẋ = Ax+Bu (24)

x(0) = x(T). (25)

This may be viewed as a smoothing problem with continuous dataz(t) or as a problem
of tracking a curve given byz(t). Optimality conditions for problems of this type were
derived in [8]. A review of the results follows. For brevity,throughout this section
we use the notationVt andVx to denote the partial derivatives ofV. The Hamiltonian
corresponding to (23) is

H(x,u,λ ) =
1
2

u′Q−1u+
1
2

x′C′R−1Cx−x′C′R−1z+
1
2

z′R−1z+ λ ′(Ax+Bu). (26)

TheH −minimal control u∗ is derived as

∂H(x,u,λ )

∂u
= Q−1u+B′λ ⇒ u∗ = −QB′λ , (27)

sou∗(xT ,Vx) = −QB′Vx. Then the Hamilton-Jacobi-Bellman equation is

Vt =
1
2

V ′
xBQB′Vx−

1
2

x′C′R−1Cx+x′C′R−1z−
1
2

z′R−1z−V′
xAx. (28)

In [8] the following form forV(t,x) is proposed for Problem 5.2:

V(t,x) =
1
2

x′Px+x′φ +s. (29)



Here,φ , P ands should be chosen so that (28) is satisfied, andV(0,x)−V(T,x) =
C(T) for some real functionC(t). Furthermore,P is a symmetric, positive semidefinite
matrix. The derivativesVt andVx are

Vt =
1
2

ẋ′Px+
1
2

x′Pẋ+
1
2

x′Ṗx+ ẋ′φ +x′φ̇ + ṡ (30)

Vx = Px+ φ . (31)

Then, since
uT = u∗(x,Vx) = −QB′(Px+ φ) (32)

we get

ẋT = AxT +BuT = AxT −BQB′(PxT + φ) = (A−BQB′P)xT −BQB′φ . (33)

Somewhat tedious calculations yield, after plugging in (30), (31) and (32) into (28),
thatP, φ andsmust satisfy

Ṗ = −A′P−PA+PBQB′P−C′R−1C (34)

φ̇ = −(A−BQBP)′φ +C′R−1z (35)

ṡ =
1
2

φ ′BQB′φ −
1
2

z′R−1z (36)

P(T) = P(0) (37)

φ(T) = φ(0) (38)

s(T) = s(0)−C(T). (39)

In [8] the constant, positive definite solutionP to thealgebraicRiccati equatioṅP = 0
is chosen. For the special case (23) - (25), with linear dynamics and continuous data,
the trivially periodicP satisfies the optimality conditions.

Moreover, forP constant and positive definite and withA, B andQas defined by (5),
all eigenvalues ofA−BQB′P have negative real part. In fact, it is observed in [8] that
this holds for all matricesA,B,C,Q−1 andR−1 = D′D such that(A,B) is controllable
and(A,D′C) is observable, andQ−1 positive definite. It follows that no eigenvalues of
(I −eA−BQB′PT) and(I −e−(A−BQB′P)′T) are equal to 1 or -1. Hence (33) and (35) have
unique,T-periodic solutions.

In order to generalize to scenarios with discrete data,P must however be time-
varying. To the extent of the authors’ knowledge, necessaryconditions for existence of
periodic solutions to Riccati-type equations are generally difficult to find.

5.2.3 Optimality Conditions: Continuous time, discrete data

We restate Problem 4.1 for the reader’s convenience:

Problem 5.3

min
u∈L2[0,T]

J(u,x) =
1
2

∫ T

0
u(t)′Q−1u(t)dt+

1
2

N

∑
i=1

(ti − ti−1)(z(ti)−Cx(ti))
′R−1(z(ti)−Cx(ti)) (40)



s.t. ẋ = Ax+Bu (41)

x(0) = x(T). (42)

Note that here, we represent the datazi as samples of a functionz(t) at timesti . Due to
the periodicity constraint, it is not trivial to find optimality conditions for this problem.
A similar problem is studied in [14]. There, the cost function is of the form

N−1

∑
i=0

(

wi+1|z(ti+1)−Cx(ti+1)|
2 +

∫ ti+1

ti
σi+1(t,x,u)dt

)

(43)

whereσi(t,x,u) contains, in addition to theu-quadratic term, cross terms forx andu
and linear terms inx andu. [14] assumes dynamic constraints of the form (41) but
includes a multiplicative stochastic uncertainty. Further, the initial valuex(0) is fix.

(40) may be viewed as a special case of (43), where some terms are removed.
Removing the stochastic terms from the dynamic constraints, the control problem in
[14] is the same as Problem 5.3 except for the boundary constraints. In [14], using
functionsVi of the form (29), the following relations are obtained (where we have
substituted for the notation in the current paper):

Ṗi = −A′Pi −PiA+PiBQB′Pi (44)

Pi(ti+1) = Pi+1(ti+1)+ (ti+1− ti)C
′R−1C (45)

φ̇i = −(A−BQB′Pi)
′φi (46)

φi(ti+1) = φi+1(ti+1)− (ti+1− ti)C
′R−1z(ti+1) (47)

ṡi =
1
2

φ ′
i BQB′φi (48)

si(ti+1) = si+1(ti+1)+
1
2
(ti+1− ti)z(ti+1)

′R−1z(ti+1). (49)

On the interval[ti , ti+1] the resulting optimal control is

ui = −QB′(Pix+ φi). (50)

The authors believe that Proposition 2 can be generalized toallow for a piecewise
continuous function of the form

V(x, t) =
N−1

∑
i=0

Vi(x,t)[H(t − ti)−H(t− ti+1)] (51)

whereH(t) is the Heaviside step function andV(x,t) has the property

V(x,0)−V(x,T) = C(T). (52)

This would imply that the piecewise continuous control

uT,N = ui(t) t ∈ [ti ,ti+1], i = 0, . . . ,N−1 (53)



is optimal to Problem 5.3 if there exist solutions to (44) - (49) such that

P(T) = P(0) (54)

φ(T) = φ(0) (55)

s(T) = s(0)−C(T), (56)

with P(t),φ(t),s(t) defined analogously withV(x,t) in (51). Although simulation re-
sults support this claim, a proof is yet to be constructed. A weaker result is stated in
the following proposition.

Proposition 3 As N→ ∞, and under the assumption that(54)- (56)hold, uT,N defined
by (53)converges to uT defined by(32).

Proof The proof follows from the definition of the derivative. See Appendix B for
details.

�

Remark 2 With a clever choice of discretization of Problem 5.3, uT,N can be computed
as the solution of an unconstrained, quadratic programmingproblem, avoiding the
difficulty of finding solutions to(44) - (49). This is discussed in further detail in [17],
[18], [19] and [20].

6 Simulations

In this section, we show an example of curve estimation with Problem 4.1 and Prob-
lem 4.2. We letytrue(t) denote the underlying curve while(yk(t),uk

T,N(t)) denotes the
optimal smoothing solution at iterationk. For k = 1 the closed form (Problem 4.1)
was used, and fork = 2,3, . . . the recursive form (Problem 4.2), yielding the control
ũk

T,N(t) (9). Throughout the simulations, a noiseξi ∈ N(0,0.05) was added to the sam-
pleszi of ytrue(ti) to simulate measurement noise. An example is shown in Figure1 for
k = 1,5,10. As expected, the resulting controluT,N (53) is periodic with breaks at the
interpolation pointsti . It is also worth noting that ask grows, the magnitude of ˜uk(t)
decreases as a consequence of the error convergence.

To further evaluate the recursive problem, a study of error convergence was per-
formed for Problem 4.2. For reference, Problem 4.1 was solved for an increasing num-
ber of data pointsN. Denote byyk(t) andRk the solution and error of Problem 4.2 at
iterationk and letyN andRN denote the solution and error of Problem 4.1 forN data
points. The errors are computed as

R(·) =

∫ T

0
(y(·)(t)−ytrue(t))

2dt. (57)

Results are shown in Figure 2. Mean values ofRk andRN are plotted for 25 test cases.
Fork= 1, . . . ,100 Problem 4.2 was solved withN(k) = 15 data points at each iteration,
while Problem 4.1 was solved withN(k) = 15k data points. Figure 2 shows that the
performance of the recursive problem is almost as good as that of the closed form,
without the drawbacks discussed in Remark 1.
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Figure 1: An example.Left: Estimatesy(t) (dashed) are shown at iterationsk= 1,5,10
and compared with the underlying curveytrue and the sampled input data(ti ,zi) (stars).
Right: The corresponding controlsu1

T,N, ũ5
T,N and ũ10

T,N. The interpolation points at
t = ti are marked with circles.

7 Conclusions

In this paper we introduced a recursive smoothing spline approach to estimation of
closed curves inR2. We derived periodic smoothing splines recursively from noisy
data by solving an optimal control problem for a linear system. It was shown that
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Figure 2: Convergence result for Problem 4.2 for increasingk (solid) compared to
Problem 4.1 for increasingN (dashed).

a simple, linear transform makes the recursive problem identical to the closed form
problem and that the problem is proper generically. Optimality conditions were ex-
amined using Hamilton-Jacobi-Bellman theory and simulations demonstrate satisfying
error convergence for the recursive method.
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A Proof of Proposition 1

Proof

From the dynamical constraints (2) it is obtained that

x(t) = eAtx(0)+
∫ t

0
eA(t−s)Bu(s)ds, (58)

which, inserting the matrices and vectors of (5), is
(

x1(t)
x2(t)

)

=

(

x1(0)+ tx2(0)+
∫ t
0(t −s)u(s)ds

x2(0)+
∫ t
0 u(s)ds

)

. (59)

At the terminal time, we obtain
(

x1(T)
x2(T)

)

=

(

x1(0)+Tx2(0)+
∫ T
0 (T −s)u(s)ds

x2(0)+
∫ T
0 u(s)ds

)

, (60)



and sincex(0) = x(T) this yields

x2(0) = −
1
T

∫ T

0
(T −s)u(s)ds (61)

∫ T

0
u(s)ds = 0. (62)

It follows from (62) that the only feasible constant controlis ū∗ ≡ 0. For ū∗ ≡ 0, the
spline isx̄∗1 ≡ z̄= 1

N ∑N
i=1zi . ThereforeJ̄∗ = J(0, z̄)

Denote by ˆx1(t) the interpolating, periodic, cubic spline that interpolates the points
(zi − z̄). This spline exists and is unique for distinct sampling anglesti , and if there is
at least onezi 6= z̄ in the set, ˆx1(t) 6≡ z̄.

It follows thatû(t) = ¨̂x1(t) is well defined, non-zero and lies in the feasible region
of Problem 4.1. Now letα ∈ R and consider

Γ(α) = J(αû(t),α x̂(t)+ z̄) =
α2

2

∫ T

0
û(t)2dt+

ε2

2

N

∑
i=1

(ti − ti−1)(zi −α x̂1(ti)− z̄)2 =

α2

2

∫ T

0
û(t)2dt+

ε2

2

N

∑
i=1

(ti − ti−1)(1−α)2(zi − z̄)2. (63)

The derivativeΓ(α) at α = 0 is

∂Γ(α)

∂α
= α

∫ T

0
û(t)2dt− ε2(1−α)

N

∑
i=1

(ti − ti−1)(zi − z̄)2 =

− ε2
N

∑
i=1

(ti − ti−1)(zi − z̄)2 < 0. (64)

It follows that there exists anα∗ such thatΓ(α∗) < Γ(0).

�

B Proof of Proposition 3

Proof

Let t = ti+1, ∆t = (ti+1− ti). Note that if (54) - (55) hold, it follows that

uT,N(T) = uT,N(0), (65)

Therefore, if we can show that (44) - (47) correspond to (34) -(35) in the limit∆t → 0,
the proposition is proved.

Convergence forP
From (44) and (45) we get

Ṗi(τ) = −A′Pi(τ)−Pi(τ)A+Pi(τ)BQB′Pi(τ) τ ∈ [t,t + ∆t] (66)

Pi(t + ∆t) = Pi+1(t + ∆t)+ ∆tC′R−1C. (67)



From the definition of the derivative, we obtain

Ṗi(t) = lim
∆t→0

Pi(t + ∆t)−Pi(t)
∆t

= lim
∆t→0

Pi+1(t + ∆t)+ ∆tC′R−1C−Pi(t)
∆t

= lim
∆t→0

Pi+1(t + ∆t)−Pi(t)
∆t

+C′R−1C. (68)

Using (66) we arrive at the equality

lim
∆t→0

Pi+1(t + ∆t)−Pi(t)
∆t

= −A′Pi −PiA+PiBQB′Pi −C′R−1C. (69)

We manipulate the left hand side of (69):

lim
∆t→0

Pi+1(t + ∆t)−Pi(t)
∆t

=

lim
∆t→0

Pi+1(t + ∆t)−Pi+1(t)+Pi(t + ∆t)−Pi(t)+Pi+1(t)−Pi(t + ∆t)
∆t

=

Ṗi+1 + Ṗi + lim
∆t→0

Pi+1(t)−Pi(t + ∆t)
∆t

= { using (67) }

Ṗi+1+ Ṗi + lim
∆t→0

Pi+1(t)−Pi+1(t + ∆t)−∆tC′R−1C
∆t

=

Ṗi+1 + Ṗi + lim
∆t→0

Pi+1(t)−Pi+1(t + ∆t)
∆t

= Ṗi+1+ Ṗi − Ṗi+1 = Ṗi . (70)

⇒ lim
∆t→0

Ṗi = −A′Pi −PiA+PiBQB′Pi −C′R−1C. (71)

Also, from (67) it follows that

lim
∆t→0

Pi(t + ∆t) = Pi+1(t). (72)

Convergence forφ
From (46) and (47) we get

φ̇i(τ) = −(A−BQB′Pi)
′φi(τ) τ ∈ [t,t + ∆t] (73)

φi(t + ∆t) = φi+1(t + ∆t)−∆tC′R−1z(t + ∆t). (74)

From the definition of the derivative, we obtain

φ̇i(t) = lim
∆t→0

φi(t + ∆t)−φi(t)
∆t

= lim
∆t→0

φi+1(t + ∆t)−∆tC′R−1z(t + ∆t)−φi(t)
∆t

= lim
∆t→0

φi+1(t + ∆t)−φi(t)
∆t

−C′R−1z(t). (75)

Using (73) we arrive at the equality

lim
∆t→0

φi+1(t + ∆t)−φi(t)
∆t

= −(A−BQB′Pi(t))
′φi(t)+C′R−1z(t). (76)



With the same reasoning as in (70)

lim
∆t→0

φi+1(t + ∆t)−φi(t)
∆t

= φ̇i . (77)

⇒ lim
∆t→0

φ̇i = −(A−BQB′Pi)
′φi +C′R−1z(t). (78)

Also, from (74) it follows that

lim
∆t→0

φi(t + ∆t) = φi+1(t). (79)

Convergence fors
From (48) and (49) we get

ṡi(τ) =
1
2

φ ′
i BQB′φi τ ∈ [t,t + ∆t] (80)

si(t + ∆t) = si+1(t + ∆t)+
1
2

∆tz(t + ∆t)′R−1z(t + ∆t). (81)

From the definition of the derivative, we obtain

ṡi(t) = lim
∆t→0

si(t + ∆t)−si(t)
∆t

= lim
∆t→0

si+1(t + ∆t)+ 1
2∆tz(t + ∆t)′R−1z(t + ∆t)−si(t)

∆t

= lim
∆t→0

si+1(t + ∆t)−si(t)
∆t

+
1
2

z(t)′R−1z(t). (82)

Using (80) we arrive at the equality

lim
∆t→0

φi+1(t + ∆t)−φi(t)
∆t

=
1
2

φ ′
i BQB′φi −

1
2

z(t)′R−1z(t). (83)

Again, with the same reasoning as in (70)

lim
∆t→0

si+1(t + ∆t)−si(t)
∆t

= ṡi . (84)

⇒ lim
∆t→0

ṡi =
1
2

φ ′
i BQB′φi −

1
2

z(t)′R−1z(t). (85)

Also, from (81) it follows that

lim
∆t→0

si(t + ∆t) = si+1(t). (86)
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