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Abstract

In this paper we derive a set of constraints that are sufficient to guarantee maintained connectivity in a leader-follower multi-
agent network with proximity based communication topology. In the scenario we consider, only the leaders are aware of the
global mission, which is to converge to a known destination point. Thus, the followers need to stay in contact with the group
of leaders in order to reach the goal. In the paper we show that we can maintain the initial network structure, and thereby
connectivity, by setting up bounds on the ratio of leaders-to-followers and on the magnitude of the goal attraction force
experienced by the leaders. The results are first established for an initially complete communication graph and then extended
to an incomplete graph. The results are illustrated by computer simulations.

1 Introduction

Distributed control of networked systems is an im-
portant issue in a number of applications, including
multi-agent robotics (Mazo et al. (2004), Loizou and
Kyriakopoulos (2008), Dimarogonas and Kyriakopoulos
(2008), Arsie and Frazzoli (2007)), networked sensor
and health maintenance (Mehyar et al. (2007), Xiao
and Boyd (2003), Martinez et al. (2007)) and formation
control (Jadbabaie et al. (2003), Olfati-Saber (2006),
Ji and Egerstedt (2007), Arcak (2007)) just to name a
few. One way in which the user can interact with such
systems is through so-called leader (or anchor) agents,
whose dynamics need not conform to those of the non-
leader (follower) agents. In this paper we study such
systems, i.e., systems where a selected subset of the
agents are following a task-level controller encoding the
transport of the network from one location to another.
The rest of the agents are executing a simple local
interaction-based control strategy for keeping the team
together. The reason why such a heterogeneous network
configuration is desirable is that it frees up resources by
only insisting on a select subset of agents being able to
tell global positions and/or positions relative to partic-
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ular landmarks, thus limiting the required sensor load
of the remaining agents. This was for instance the case
in Smith et al. (2009), in which a collection of mobile
sensor nodes where to traverse long distances before
assembling the desired sensing configuration.

While many issues regarding controllability and stabil-
ity of leader-follower networks have been addressed re-
cently in, for instance, Tanner (2004), Rahmani et al.
(2008), the issue of how the ratio of leaders-to-followers
affect connectivity is a novel topic. In Couzin et al.
(2005), the authors presented extended numerical re-
sults on the subject, but in this paper we treat the prob-
lem from an analytical standpoint. Moreover, a lot of
results have appeared recently regarding maintaining
connectivity in networks of homogeneous agents directly
through the control law. These include Ji and Egerstedt
(2007), Schuresko and Cortes (2007), DeGennaro and
Jadbabaie (2006), Notarstefano et al. (2006), while di-
rect control laws are also used in Zavlanos and Pappas
(2008) in an heterogeneous network. On the contrary,
in this paper we provide indirect metrics to guarantee
connectivity maintenance and rendezvous in a leader-
follower network. These metrics are the leader to follower
ratio and the parameters of the goal attraction function.
It is well known that a general connectivity analysis of
an arbitrary network is extremely complex, but in the
current paper we show how network structure can be
used to obtain interesting results for some special classes
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of networks for the rendezvous objective. The approach
is demonstrated on two classes of networks and for these
networks particular theoretical results are obtained. For
instance, we show the somewhat counterintuitive result
that, more followers are sufficient to guarantee connec-
tivity and rendezvous. Although the current paper in-
volves the rendezvous objective, it is our goal to use
the indirect approach for connectivity maintenance pro-
posed here for other global objectives in future endeav-
ors. The work presented in this paper is an extension of
the work presented in Dimarogonas et al. (2008).

The paper is organized as follows: in Section 2 we in-
troduce the considered framework and present the ap-
proach. In Sections 3 and 4 we demonstrate the proposed
approach on two examples of connected networks and in
Section 5 the theoretical results from Sections 3 and 4
are illustrated in simulations. Finally, in Section 6, the
results of the paper are summarized.

2 System and Problem Statement

Consider N agents evolving in R
2. We use single inte-

grator agents whose motions obey the model:

ẋi = ui, i ∈ N = [1, . . . , N ]

We assume that the agents belong either to the subset of
leaders, N l, or to the subset of followers, N f , where N l∪
N f = N , N l∩N f = ∅ and the number of agents in each
set is given by |N f | = Nf and |N l| = Nl respectively.
Due to shortcomings of the sensors, each agent has a
limited sensing zone of radius ∆ > 0. At any given time,
the set of agents located within the sensing zone of agent
i ∈ N are referred to as the neighbors of agent i, Ni =
{j ∈ N : |xi − xj | ≤ ∆}. Each agent has knowledge of
the relative coordinates of all its neighbors, but can not
detect or communicate with agents outside its sensing
zone. To keep track of the active communication links
we introduce a communication graph, G = {V,E}, that
describes the group topology. G = {V,E} consists of a
set of vertices, V = {1, ..., N}, representing the team
members, and a set of edges, E = {(i, j) ∈ V ×V |i ∈ Nj}
representing the active inter-agent communication links.
Note that both Ni and G are time-varying.

In the application considered in the current paper, the
objective of the agents is to reach a common goal defined
by a set of position coordinates, d. Unlike the leaders,
the follower agents are not aware of the position of the
goal, so in order to reach d they must stay connected,
either directly or indirectly, with the set of leaders. In
this paper we focus on the case where the communica-
tion graph has some well-defined structure. We present a
framework for connectivity analysis and show how it can
be used to guarantee connectivity of the time-varying
communication graph G(t).

The key to the connectivity analysis is the observation
that, under some assumptions on differentiability and

boundedness of motion, two initially connected agents
are guaranteed to remain connected if the time derivative
of the distance between the agents is negative in the
critical case where the inter-agent distance is equal to
∆. We start by introducing a notation for the distance
between two arbitrary agents i and j. Let

δij = δji = |xi − xj | =
√

(xi − xj)T (xi − xj) ≥ 0.

Since we are considering a physical system we can as-
sume that xk(t) is a continuous function for any agent

k ∈ N . The time derivative δ̇ij is not directly defined
when δij = 0 so here we shall instead consider the time
derivative of δ2

ij ,

dδ2
ij

dt
= 2δij δ̇ij = 2(xi − xj)

T (ẋi − ẋj), (1)

which has the same sign as δ̇ij for all δij > 0 but is
defined on all of R

2. Hence, a sufficient condition for

agent i and j to remain connected is
dδ2

ij

dt
≤ 0 when

δij = ∆. Obviously, δ̇ij depends on the motion of agents
i and j.The dynamics of the followers are given by the
standard Laplacian consensus equation, meaning that
each agent moves in the direction of the average position
of its neighbors. For an arbitrary follower agent i ∈ N f

we have:

ẋi = −
∑

k∈Ni

(xi − xk) = −Nixi +
∑

k∈Ni

xk. (2)

The dynamics of the leaders are also based on the Lapla-
cian consensus equation, but include an additional goal
attraction term which aims at dragging the team to
the pre-defined goal position x = d. For agent i, define
δi = |d−xi|. The dynamics for an arbitrary leader agent
i ∈ N l are thus given by

ẋi = −Nixi +
∑

k∈Ni

xk + F (xi, d), (3)

where F (xi, d) is the goal attraction function

F (xi, d) =

{

f(δi)
d−xi

δi
δi > 0

0 δi = 0.
(4)

At any given position xi 6= d, the direction of F (xi, d)
is towards the goal and the magnitude is decided by the
continuous scalar function f(δi) ≥ 0. f(δi) is depending
only on agent i’s distance to d and can be designed to suit
the application. The continuity of F (xi, d) is guaranteed

by requiring f(0) = 0 and limδ+→0
f(δ)

δ
< ∞, such that

limx+→d F (x, d) = F (d, d) = 0. A simple example of
a possible goal attraction function that satisfies these
requirements is f(δ) = δ.

Let us now state a result that is later needed to prove con-
nectivity. The following Lemma guarantees the bound-
edness of solutions of the closed-loop system:

2

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received August 28, 2009 07:49:00 PST



Lemma 1 Let G be a nonempty graph consisting of fol-
lowers and leaders with dynamics decided by (2) and (3).
Define Ω to be the convex hull of the agents in G and the
goal position d, Ω = Co(G∪d), and let Ω0 denote the con-
vex hull at time t = 0. Now assume that none of the agents
in G are connected to any agents xk, k /∈ G, and that there
exists a constant fmax such that f(|d− x|) ≤ fmax < ∞
for all x ∈ Ω0. Then the trajectories of all agents in G
will remain within Ω0 as t → ∞.

Proof: We will show that for an arbitrary agent i ∈ G,
positioned on the boundary of Ω, the motion is either on
the boundary of Ω or pointing inside the polytope Ω. To
do this we follow the outline in Ji et al. (2008), where
a similar problem is considered. If i ∈ N f the motion
is given by (2). If Ni = 0 the agent will not move at all
and the proof is trivial. Now consider the case Ni > 0.
By setting α = N−1

i and rearranging the terms we can
show:

αẋi = −xi +
∑

k∈Ni

xk

Ni

.

Apparently the motion of follower i is directed towards
the mass center of the subgraph Ni ⊆ G, which, thanks
to convexity, is known to lie either on the boundary or
in the interior of Ω. From the definition of convexity we
can also conclude that the motion of follower i must lie
within Ω. Now assume that i ∈ N l. The motion is now
given by (3) and (4). If xi = d the analysis is equivalent
to the case where i ∈ N f . If Ni = 0 the agent will,
depending on the magnitude of f(δi), either not move at
all, or move directly towards the goal located at d. Since
d is in Ω and since Ω is convex, we see that in either case
agent i will remain in Ω. If Ni > 0 and xi 6= d we define
β = (Ni + f(δi)/δi)

−1. Then we get:

βẋi = −xi + β
(
Ni

∑

k∈Ni

xk

Ni

+
f(δi)

δi

d
)
.

The motion of agent i is directed towards a convex com-
bination of the mass center of the subgraph Ni ⊆ G and
the goal d. By definition, this convex combination lies
within the convex hull of G ∪ d, and therefore, by the
convexity of Ω, the motion of agent i is within Ω. Since
the motion of any agent on the boundary of Ω is either
on the boundary of Ω or directed into the interior of Ω,
we can conclude that no agent will ever enter outside the
convex hull defined by the initial positions of the agents
and the goal d. Hence, Ω0 is an invariant set. ♦

The next Theorem states that the closed-loop system
converges to the goal position d if the communication
graph remains connected:

Theorem 2 Let the closed loop dynamics be given
by (2) and (3). Let x(0) ∈ Ω and assume that the
communication graph G(t) remains connected. Then,
limt→∞ xi(t) = d for all i ∈ N .

Proof: Equations (2) and (3) are written in stack
vector form as ẋ = −(L ⊗ I2)x + F̄ (x, d), where

x = [x1, . . . , xN ]T , L is the Laplacian of G(t) and
F̄ (x, d) = [F̄1(x, d), . . . , F̄N (x, d)]T is a vector in which
F̄i(x, d) = 0, if i ∈ N f and F̄i(x, d) = F (xi, d), if i ∈ N l.
Let d̄=[d, ..., d]T ∈ R

2N and define a new set of coordi-
nates z =x− d̄. It follows that ż =−(L⊗I2)x+F̄ (x, d)=
−(L ⊗ I2)(z + d̄) + F̄ (x, d) = −(L ⊗ I2)z + F̄ (z, 0). By
taking V = 0.5zT z as a candidate Lyapunov func-
tion we get V̇ = zT ż = −zT (L ⊗ I2)z + zT F̄ (z, 0) =
−zT (L ⊗ I2)z −

∑

i∈N l&xi 6=d δif(δi). Both terms are
negative semidefinite. Due to the eigen-properties
of L ( see for instance Godsil and Royle (2001)),
the first term, −zT (L ⊗ I2)z, is strictly negative
unless z1 = z2 = · · · = zN which also implies
x1 = x2 = · · · = xN . The second term is negative unless
zi = 0,∀i ∈ N l. Thus, V̇ is negative definite for any
given connected graph. Since the connection topology
can only change finitely for a given set of agents, V̇
has an upper bound that itself is negative definite, thus
the time invariant quadratic function V can be used
as a common Lyapunov function (Liberzon (2003)) for
the system in hand, and we conclude that zi → 0, or
equivalently xi → d, for all i ∈ N . ♦

By virtue of the above Theorem, agents converge to the
desired goal configuration as long as the communication
graph remains connected over time. This result will be
used in the following sections.

3 Complete Graph Case

In this section, we assume that all agents are initially
within the sensing zone of one another. Hence, the ini-
tial graph G(t) is complete and of course, connected.
The dynamics for followers and leader agents are given
by (2) and (3) respectively, where the neighboring set
for both leader and follower agents is the complete set
of all agents, N . In the sequel, we derive sufficient con-
ditions for the graph to remain complete as the leaders
drag all followers towards the desired target point d.

Follower-follower connections: Consider the dis-
tance between two arbitrary followers i, j ∈ N f . (2)
inserted in (1) gives

dδ2
ij

dt
= 2(xi − xj)

T (ẋi − ẋj) = −2Nδ2
ij .

We see that δ2
ij is exponentially decreasing, δ2

ij → 0, so
we can conclude that if the the two followers are initially
within each others sensing zones, they will remain con-
nected as t → ∞ given that all other inter-agent links
hold.

Leader-leader connections: Now consider instead the
distance between two arbitrary leaders i, j ∈ N l. It can
easily be shown that in the special case where one of the
considered leaders is located at d (where F (x, d) = 0), δij
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is decreasing. In the general case where xi 6= d, xj 6= d,
(1) and (3) give after some simplification,

dδ2
ij

dt
≤ −2Nδ2

ij − 2
(
f(δi) − f(δj)

)
(δi − δj). (5)

The inequality in (5) is derived by considering the worst-
case scenario where (d − xi)

T (d − xj) = δiδj . The first
term on the right hand side of (5) is always negative.
The second term is negative regardless of δi and δj if we
require f(δ) to be a monotonically increasing function,

f ′(δ) ≥ 0, ∀δ ≥ 0. (6)

In other words, assuming that all other inter-agent links
hold, any two leaders that are initially connected will
remain so if condition (6) is satisfied. Note that this is
a conservative bound. (The case xi = xj = d is not
considered since we are primarily interested in the limit
case δij = ∆.)

Leader-follower connections: For the case i ∈
N f , j ∈ N l, we have

dδ2
ij

dt
= −2Nδ2

ij − 2(xi − xj)
T F (xj , d).

From the equation above it is easy to see that if the
goal attraction term is zero, as is the case when xj = d,
δij will be decreasing. If xj 6= d we can use −δijδj ≤
(xi − xj)

T (d − xj) ≤ δijδj to obtain

dδ2
ij

dt
≤ −2Nδ2

ij + 2f(δj)δij .

Apparently f(δ) must be bounded above such that in
the critical case, δij = ∆, the attraction to goal can not
be stronger than the inter-agent attraction. We will now
make use of Lemma 1. Let fmax be the largest value
that f(δj) assumes within the convex hull defined by the
agents initial positions and the goal position d. Then
|f(δj)| ≤ fmax for all t ≥ 0 and

fmax ≤ N∆ (7)

is a sufficient condition to guarantee that
dδ2

ij

dt
≤ 0 if

δij = ∆, i.e. that any initially connected pair consisting
of one leader and one follower will remain connected
at all times. Possible choices of f(δ) are discussed in
Section 5.

Theorem 3 Let the closed loop dynamics of the system
be given by (2) and (3), where d represents the coordinates
of the goal. Assume that the communication graph G(t) is
initially complete and that both (6) and (7) hold. Then,
G(t) remains complete for all t ≥ 0 and, by Lemma 1, all
agents will converge to d.

4 The incomplete graph case

In this section, we analyze a special case of incomplete
graphs. It is still assumed that both the subset of lead-

ers and the subset of followers initially make up com-
plete graphs, but it is no longer assumed that all fol-
lowers are connected to all leaders. In order to describe
this scenario we introduce some additional notation. Let
N f

i = Ni ∩ N f and N l
i = Ni ∩ N l be the subsets of

agent i’s neighbors that belong to the group of follow-

ers and the group of leaders respectively, |N f
i | = Nfi,

|N l
i | = Nli. Thus, for an arbitrary follower i ∈ N f in

the incomplete graph, N f
i = N f while N l

i ⊆ N l. For
an arbitrary leader j ∈ N l we instead have N l

j = N l,

N f
j ⊆ N f . Using this notation, the dynamics of follower

i are described by

ẋi = −
∑

k∈N f

(xi − xk) −
∑

k∈N l
i

(xi − xk), (8)

while the dynamics of leader j are given by

ẋj = −
∑

k∈N l

(xj − xk)−
∑

k∈N f

j

(xj − xk) + F (xj , d). (9)

The computations in this section follow the outline in
Section 3.

Follower-follower connections: Similar to the previ-
ous section, we start by considering the connection be-
tween two arbitrary followers i, j ∈ N f . Both followers
have links to all other follower agents and possibly, but
not necessarily, links to some or all of the leader agents.
The sets N l

i and N l
j may be disjunct or overlapping. De-

fine N l
c = N l

i ∩N l
j ⊆ N l to be the set of leaders that fol-

lowers i and j have in common, |N l
c | = Nlc. Note that if

k ∈ N l
i then |xi − xk| ≤ ∆. For the two followers we get

dδ2
ij

dt
≤ −2(Nf+Nlc)δ

2
ij + 2(Nli+Nlj−2Nlc)∆δij .

The inequality above is derived from mathematical con-
straints and is valid even though physical constraints
may sometimes make it impossible to obtain strict equal-
ity. Note also that (Nli + Nlj − 2Nlc) ≥ 0. Requir-

ing
dδ2

ij

dt
≤ 0 when δij = ∆ leads to the constraint

Nli +Nlj ≤ Nf +3Nlc, which is satisfied for all follower-
follower connections, regardless of the topology, for ev-
ery graph that has

Nf ≥ Nl. (10)

Leader-leader connections: Let us now consider the
connection between two arbitrary leaders i, j ∈ N l. Fol-
lowing the notation in the follower-follower case, we let

N f
c = N f

i ∩N f
j ⊆ N f be the set of followers that i and

j have in common, |N f
c | = Nfc. We get

dδ2
ij

dt
≤−2(Nl + Nfc)δ

2
ij + 2(Nfi + Nfj − 2Nfc)∆δij

+2(xi − xj)
T
[

F (xi, d) − F (xj , d)
]

. (11)
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In a network where the follower agents are in majority,
the attraction exerted by the group of followers may be
large enough to cause a link between two leader agents
to break. For this reason, the function f(δ) must be de-
signed such that the net effect of the goal attraction on
a pair of leader agents is a term that aims at bring-
ing the two agents closer together. We shall investigate
the case δij = ∆ closer. Define α to be the angle be-
tween j and d, as seen by i (see Figure 1). Then, for

α

d
δi

δj δij

xi

xj

Fig. 1. Analysis of leader-leader stability in an incomplete
network.

an arbitrary choice of xi we have xj = xi + ∆ē, where

ē =
xj−xi

∆ . The dependence between δi and δj follows
from the law of cosines, such that for a given α we get
δj =

√

∆2 + δ2
i − 2∆δi cos α. Without loss of general-

ity we can assume that δi ≥ δj , and that consequently
−π

2 < α < π
2 and cos α ≥ 0. For the moment we also

assume that δj > 0. Combining δij = ∆ with (11) gives

dδ2
ij

dt
≤ 2(Nf−Nl)∆

2 + 2(xi−xj)
T
[

F (xi, d)−F (xj , d)
]

︸ ︷︷ ︸

γ

and after inserting xj = xi + ∆ē, γ can be simplified as

γ = −2∆
(f(δi)

δi

−
f(δj)

δj

)

δi cos α − 2
f(δj)

δj

∆2.

Requiring
dδ2

ij

dt
≤ 0 leads to the following condition for

connectivity

(f(δi)

δi

−
f(δj)

δj

)

︸ ︷︷ ︸

(∗)

δi cos α +
f(δj)

δj

∆ ≥ (Nf − Nl)∆.

From condition (10) it follows that the right hand side of
the equation is positive. Since f(δ) ≥ 0, the only term in
the above expression that may shift sign is (∗). The sign
and magnitude of (∗) depends both on the characteristics
of f(δ) and on the values of δi and δj in a way that
complicates analysis. Recall that, by assumption, δi ≥
δj . Also it is known that f(δ) ≥ 0 and that f(0) = 0.
Under these conditions (∗) ≥ 0, ∀δi, δj , is equivalent to
f(δ) being a convex function, f ′′(δ) ≥ 0. Due to page
limitations we here confine the analysis to the convex
case, which is independent of the initial positions of the
agents. Then the connectivity condition is satisfied if

f(δj)

δj

≥ Nf − Nl. (12)

By using l’Hôpitals rule, a lower bound for f(δ)
δ

can be

computed as limδ+→0
f(δ)

δ
= f ′(0). Apparently (12) will

be satisfied as long as

f ′(0) ≥ Nf − Nl. (13)

Note that from (10), Nf − Nl ≥ 0. In the special case
where we have δj = 0, the condition corresponding

to (12) becomes f(∆)
∆ ≥ Nf − Nl. This is obviously

satisfied for all convex goal-attraction functions that
satisfy (13).

Remark 1 If f(δ) is not convex, it is difficult to ana-
lytically obtain constraints on f(δ) that guarantee that
any leader-leader connection is maintained. However, for
a given function f(δ) ≥ 0 that is locally monotonically
increasing around d, it may be possible to find a circle,
centered in d, within which it is possible to show that
dδ2

ij

dt
< 0. If all agents are initially placed within that

circle it is still possible to state connectivity for t ≥ 0.

Leader-follower connections: Finally we derive what
it takes to keep the leader and the follower subgraphs
connected. Consider follower i ∈ N f and leader j ∈ N l.
Let fmax as before be defined as the largest value the goal
attraction function f(δj) can assume within the convex
hull of the initial positions of all agents in the network
and the goal position d. When xj 6= d we can obtain

dδ2
ij

dt
≤−2(Nfj + Nli)δ

2
ij + 2fmaxδij

+2(Nf − Nfj)∆δij + 2(Nl − Nli)∆δij .

Setting
dδ2

ij

dt
≤ 0 when δij = ∆ leads to

N

2
+

fmax

2∆
≤ Nfj + Nli, (14)

which can be seen as a lower bound on the number of
links connecting the leader and follower subgraphs. It is
easy to see that if xj = d, (14) will still be a sufficient
condition for the two agents to remain connected since
the effect of setting F (xj , d) = 0 will be a relaxation of
the inequality. Thus, if the leader and follower subgraphs
remain complete and if (14) holds for all initial links be-
tween leaders and followers, all connections in the graph
will be maintained.

The derivations of this section are summarized in the
following theorem:

Theorem 4 Assume that the communication graph G(t)
is initially connected and constituted of two complete sub-
graphs, the subgraph of leaders and the subgraph of fol-
lowers. The dynamics of the follower and leader agents
are given by (8) and (9) and the magnitude of the maxi-
mum goal attraction force that can be experienced by the
leader agents is fmax = maxx∈Co(G(0)∪d) f(|d − x|). As-
sume also that
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(A1) G(t) satisfies condition (10),
(A2) f(δ) is a convex function on Co(G(0) ∪ d) such

that (13) is true,
(A3) (14) holds for all initial links (i, j) such that i ∈

N l, j ∈ N f .

Then all links in G(t) will be maintained for t ≥ 0 and ,
by Lemma 1, all agents will converge to d.

It is not always be necessary that all connections be-
tween leaders and followers are maintained. In many ap-
plications one may simply want to ensure that the two
subgroups remain connected. In those cases the follow-
ing result is useful.

Corollary 5 Let G(t) be the communication graph in
Theorem 4 and let E∗ be a subset of the initial links
between the group of leaders and the group of followers.
Re-define the neighbor sets of the graph such that i ∈ N f

is considered a neighbor of j ∈ N l, and vice versa, if and
only if they are initially connected and the link (i, j) ∈
E∗. Then, if (A1) and (A2) are satisfied and it is possible
to find a subset E∗, |E∗| ≥ 1, such that condition (14)
is satisfied for all links in E∗, then all links in E∗ will
remain intact and the group of leaders and the group of
followers will remain connected with each other.

Proof: The proof follows directly from Theorem 4 and
from constraint (14). By definition, the links included
in E∗ are invariant, i.e. for each robot there exist a well
defined lower bound on the number of neighbors. If the
inequality (14) is satisfied for all robots for the lower
bounds on their number of neighbors, then the inequality
will hold even if additional non-invariant links are added
and removed. ♦

5 Simulations

In this section, the theoretical results of Section 3 and 4
are illustrated in a series of computer simulations. The
agents are assumed to have a sensor range of ∆ = 10
and the coordinates of the goal are set to d = [0 0]. In
the figures, leader agents are represented by dark dots,
follower agents are represented by lighter dots and the
goal is marked with an asterisk.

Complete graph
To start with, we investigate how the choice of goal at-
traction function, f(δ), affects the behavior of a group
of agents that start off with a complete communication
graph at time t = 0. The graph used in this example
consists of seven agents, two leaders and five followers.

Recall from Section 3, Eq. (6), that the goal attraction
function must be chosen as a monotonically increasing
function. In accordance with this constraint we can let
f(δ) be a linear function, f(δ) = βδ. With a proper
choice of weight β the connectivity graph will remain

0 5 10 15 20 25 30
−4

−2

0

2

4

(a) Simulation with condition (7) not satisfied. Connec-
tivity is broken.

0 5 10 15 20 25 30
−4

−2

0

2

4

(b) Simulation with condition (7) satisfied. Connectivity
is maintained.

Fig. 2. Initial positions and robot trajectories from simula-
tions with two leaders, five followers and initially complete
communication graphs.

complete and the agents will all converge to the goal.
For the agent configuration shown in Fig. 2(a) and 2(b),
β can safely be chosen as, for instance, β = 1, but if
the weight is chosen too large, the attraction to goal
experienced by the agents becomes larger than the inter-
agent attraction and the formation may be forced to
break. Fig. 2(a) shows the trajectories of the agents in
a simulation with β = 5. The trajectories clearly show
how the initial graph split into two separate subgraphs of
which only one eventually converges to d. This outcome
can be avoided by making sure that β is chosen such that
condition (7) is satisfied.

With a linear goal attraction function, the allowed
choices of β are implicitly depending on the initial po-
sitions of the agents, but with another choice of f(δ),
the dependence on the initial positions can be avoided.
One function that is both monotonically increasing,
thereby satisfying (6), and bounded above to satisfy (7)
is f(δ) = 2N∆

π
arctan(δ). If a simulation is run with the

same setup as before, but with the new, bounded, goal
attraction function, all agents will eventually converge
to goal. The trajectories of the robots are shown in
Fig. 2(b).

Incomplete graph
Let us now consider the case where the subgraph of lead-
ers and the subgraph of followers are complete but where
the full graph is not. In the remaining simulations, a
linear goal attraction function f(δ) = βδ is used. The
sensor range and the coordinates of the goal remain the
same as in previous simulations.

We start with an example with nine agents, four lead-
ers and five followers. The initial configuration used in
the simulations can be seen in Fig. 3(b) and 3(a). In this
configuration, the rightmost of the followers is outside
the sensing range of all the leaders while the reverse is
true for the leftmost of the leaders. The remaining seven
agents form a complete subgraph. With a goal attrac-
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0 5 10 15 20 25 30
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5

(a) Robot trajectories with condition (14) not satisfied.
Connectivity is temporarily broken.

0 5 10 15 20 25 30

−5

0

5

(b) Robot trajectories with condition (14) satisfied. Con-
nectivity is maintained.

Fig. 3. Initial positions and robot trajectories from simula-
tions with four leaders, five followers and initially incomplete
communication graphs.

tion function defined by β = 2, both conditions (10) and
(13) are satisfied, but because of the relatively large goal
attraction force, the inequality in condition (14) is vio-
lated for all existing leader-follower links. Despite this,
the simulation shows that all agents converge towards
the goal (see Fig. 3(a)), but a closer examination re-
veals that one of the leader-follower links is temporarily
broken. The link is later re-formed, but in order to pre-
dict this fortunate outcome of the simulation a thorough
analysis of the system would have been needed.

We now run the same simulation but with β = 1. In
this case, conditions (10) and (13) are both satisfied and
condition (14) is true for all existing links between the
leader and the follower group. According to Theorem 4,
this is sufficient to guarantee that all links in the initial
graph should be maintained. Simulations confirm the re-
sult. The trajectories of the converging robots are shown
in Fig. 3(b).

If β is decreased further, the condition for inter-leader
connectivity (13) will eventually be violated. Still, sim-
ulations show that all existing inter-agent links will re-
main intact. To understand why, remember that the
bounds derived in Section 4 are critical only in some
extreme situations. Consider for instance the graph in
Fig. 4. With this initial setup it is possible to choose β
such that the violation of (13) causes the leftmost of the
leaders to lose contact with the rest of the agents. Sim-
ilarly, it is possible to design a setup such that the vi-
olation of (10) causes one of the follower agents to lose
contact with its group. One example of this is illustrated
in Fig. 5. With five leaders and four followers, the ratio
of leaders-to-followers in this graph clearly violates con-

10 15 20 25 30
−2

0

2

Fig. 4. Example of setup where (13) is violated. The edges
represent existing inter-agent communication links.

dition (10), but with a proper choice of β, for instance
β = 1, it is possible to satisfy both the condition for
inter-leader connectivity (13) and condition (14) for all
leader-follower links. If the simulation is run with this
choice of β, the rightmost of the followers is immediately
disconnected. While a disconnected leader can still find
its way to the goal, a disconnected follower has no way
of localizing neither the other agents nor the goal. In
this particular example, the lost follower never regains
contact with the group and is left behind.

10 15 20 25 30
−2

0

2

Fig. 5. Example of setup where (10) is violated. The edges
represent existing inter-agent communication links.

6 Conclusions

In this paper we have examined how information on net-
work structure can be used in combination with geomet-
ric constraints to guarantee connectivity and rendezvous
to a common goal for a group of agents in a leader-
follower network with proximity based communication
topology. The geometric approach is demonstrated on
two networks with special structure on the initial topol-
ogy. For these networks we derived bounds on the ratio of
leaders-to-followers and constraints on the goal attrac-
tion function, f(δ), that were sufficient to secure connec-
tivity. The theoretical results were supported by illus-
trating computer simulations. Future work includes ap-
plying the suggested framework to networks with other
communication topologies. The use of different control
laws and other control objectives, such as for instance
grazing or herding, also remains to be examined.
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