
Mechanism Design for Auctions

Vadim Ovtchinnikov

September 30, 2009

Abstract

Mechanism design, the science of building economic systems, has been impressively suc-
cessful. It has been used to create the auctions in which the FCC sold frequency licenses for
over 100 billion dollars. Used to design the mechanisms for selling internet advertising, an
industry with revenues of 8 billion dollars annually. In this paper, four interesting auction
designs have been coded in Python and AMPL. Combinations of each design are simulated
across different environments, measuring efficiency, revenue, surplus, and running time. Con-
clusions are drawn as to which combinations of these designs are best suited for different
situations.

1 Introduction

Auctions are mechanisms to trade goods between sellers and buyers by offering commodities up for
a bid, taking the bids, and then selling them to the winner of the auction. Historically the word
auction is derived from Latin augere and means ”to increase” or ”augment”, it lives up to this
name because the mechanism is designed to increase the flow of wealth through the auction. Like
the latin language, it has a long history, recorded as early as in 500 [4] B.C . With the beginning
of the Internet era, this form of commodity trading increased in popularity, but also in complexity.
The idea of one- good; multiple buyer auctions of a good being sold at the strike of the hammer,
must be extended when the desire is for example selling advertisements spots on TV channel.

Suppose that some seller wants to reach out to small group of customers. If he advertises in a
niche TV program his chances selling the product will increase. For example, if a company sells
golf clubs, it wants to place commercial ads in a sports related program, that attracts golfers.
This reaches a large population of potential buyers. Other types of advertisers preferences can be
expressed in the number of impressions one spot attracts on a certain TV program. For example
the advertiser is selling milk and wants to reach a broad audience. We can make this even more
complicated if we include combinatorial preferences, for example, when the buyer is willing to buy
both spot A and B, but if he can not get them both, he would like C instead.

A real world example of a complicated auction, the simultaneous multiple round auction, was
first used by the Federal Communications Commission (FCC) in 1995 and copied around the world.
The SMR has been used to sell over US $100 billion in spectrum licenses. Keyword auctions in
Internet advertising, an industry that has annual revenue of US $8 billion, is being used in display
advertising as well. Many companies have begun to employ mechanism design, notably Google
and Yahoo!

1

2 Discussion

We implemented four interesting designs. Resource Allocation Design (RAD) [1]. This design can
be compared to a sealed-bid auction. The second one is Combinatorial Clock (CC) [2], where sellers
specify their valuations for the product and the auction runs automatically with robo-bidders with
a fixed price increment. The price is increased until the demand for the products is less or equal to
the supply. The third design is CC+WD, where WD stands for ”Winner Determination” and is run
in conjunction with CC. It takes in a collection of ”remembered bids” instead of an environment,
and generates a collection of ”accepted bids” which imply an allocation. It is used in conjunction
with CC to allocate excess supply to increase revenue. The final design is a combination of
RAD+CC+WD, where after RAD the starting price is determined, and from there CC is run in
conjunction with WD.

These four methods are implemented in the program language AMPL [5], an algebraic model-
ing language used for optimization programming. AMPL can be used to solve linear-, non-linear-
and integer-programming, discrete variables is necessary when we are dealing with auctions. Gen-
eration of the environment was also made for two different cases: First a one-seller, multiple-
bidders environment and second the TV advertisement environment. In order to generate statis-
tics, we randomly generated 100 different environments with Python [3], and ran the four designs
for each and every draw. Data of Efficiency, Revenue, SellersSurplus, BuyersSurplus and
NumberofIterations were analyzed by creating plots and averages.

(1) One seller, multiple buyers Results show that RAD+CC+WD is the best choice in
this case. It has the highest Efficiency, Revenue, SellersSurplus and BuyersSurplus (See
defenition, (3.5)). The computational burden is also low.

(2) TV advertisement environment In this environment, RAD gives the best Efficiency,
but only thanks to high BuyersSurplus, SellersSurplus is 0%. Sellers have no profit, and therefore
RAD can be omitted from the analysis. The CC+WD and RAD+CC+WD have both good values,
but RAD+CC+WD has better values per iteration.

For these two different environments, the conclusion is that the RAD+CC+WD auction design
gives highest values per iteration, and therefore preferable.

3 METHODS

3.1 The Supply Side

There are M commodities: i = 1, ...,M . Each commodity offers Qi units at a reservation price
ρi. Each unit of commodity i generates gi units of an attribute, a vector with additional infor-
mation that can differ commodities from one another. For TV environments can the numbers of
impressions/viewers for a certain spot i be stored in gi.

3.2 The Demand Side

There are J buyers: j = 1, ..., J . Each buyer is characterized by a budget Bj, a payoff function
uj =

∑
βj

i x
j
i + µj (bidders cash distribution, uj = Bj), and constraints αj

ix
j
i ≤ yj

i ,
∑

i α
j
ix

j
i ≤ Zj,

where xj
i is the amount j receives of i, y maximum number of commodities buyer j wants from

2

buyer i, Z maximum number of commodities buyer j wants from all the sellers i, µj is the amount
of cash that j has left, and αj

i is a parameter that can be used to introduce buyers that values
commodities with additional information (gi "= 1).

3.3 Environments

An environment is
{M, Q1, ..., QM , ρ1, ..., ρM , g1, ..., gM , J, B1, ..., BJ , β1

1 , ..., β
J
M , α1

1, ..., α
J
M , y1

M , ..., yJ
M , Z1, ..., ZJ}. For

a given (M, J) there are 3M + J(3M + 2) parameters to generate.

3.3.1 Environment Generation

A reasonably general framework was programmed to handle different kind of environments. The
generalization was made for two possibilities.

(1) very simple We should generate environments with 1 seller of 1 item with Q1 = 2, g1 = 1
and ρ1 ∈ [0, 100], 5 buyers with yj

1 = 1, Zj = 1, αj
1 = 1, Bj = 500 and βj

1 ∈ [75, 200]

(2) TV ad environments Two types of buyers: Spot buyer values spots from different programs
the same and Impression buyer have a yen for having a high numbers of viewers/imoressions per
spot.

4 programs: For each program i,

Spots: Qi ∈ [60, 110]
Impressions/spot: gi ∈ [30, 80]
Reserve price/spot: ρi ∈ [300, 800]

6 buyers: 3 spot buyers, 3 impression buyers

Spot buyers: For each of these j

Budget: Bj ∈ [25000, 40000]
Max/spot: bj ∈ [450, 900]
Max spots: Zj ∈ [45, 70]
Note that: βj

i = bj, yj
i = Zj, αj

i = 1,∀i.
Impression buyers: For each of these j

Budget: Bj ∈ [25000, 40000]
Max/impression: bj ∈ [8.5, 12]
Max impressions: Zj ∈ [2000, 5000]
Note that:βj

i = bjgi, αj
i = gi, yj

i = Zj,∀i.

3

3.4 Maximum Surplus Calculation

We assume utilities are quasi-linear in money. That is, we have a general equilibrium setup. In
this case, given an environment, the maximum surplus calculation is:

max
x

∑

j

∑

i

(βj
i − ρi)xj

i (1)

subject to

αj
ix

j
i ≤ yj

i ,∀i, j (2)
∑

i

αj
ix

j
i ≤ Zj,∀j (3)

∑

i

xj
i ≤ Qi,∀i (4)

xj
i integer, ∀i, j (5)

By assuming that the buyers have infinite amount of money we obtain the upper bound for gains
from trades, Maximum Surplus. This is a logical way of obtaining an upper bound for the maxi-
mization problem, done in one shot (Pi = ρi for ∀i) and without disturbing the number of items
each buyers wants (2)&(3). Notice that this is equivalent to omitting the budget constraints from
RAD calculation (3.6.1). Efficiencies can be computed using Maximum Surplus as a reference
value.

3.5 Outputs

Sellers Surplus Indicates how well sellers did in the auction, how much they gained from trading
their commodities. For example, if one seller have a reserve price, ρ = 5 on an object. That is the
least price he will consider selling the object for. A winner is determined by the auction at the
price P = 7. Then SellersSurplus = P − ρ = 7− 5 = 2.

Buyers Surplus The buyer, in the previous example placed a bid of β = 12, his gain from trade
will be the SellersSurplus = β − P = 12− 7 = 5.

Gains From Trade SellersSurplus + BuyersSurplus = GainsFromTrade, the total gain of
both sides. In the example it would be, SellersSurplus + BuyersSurplus = 2 + 5 = 7.

Efficiency GainsFromTrade/MaximumSurplus = Efficency

Revenue Is the the price times allocation, how much money was paid in the auction. In the
example Revenue = P [j, i] ∗ x[j, i] = 7 ∗ 1 = 7

Number of Iterations Every time we are forced to solve an maximization problem counts as
one iteration.

4

3.6 Auction Processes

3.6.1 RAD

RAD is a sealed-bid auction.
RAD takes {M, Q1, ..., QM , ρ1, ..., ρM , g1, ..., gM , J, B1, ..., BJ , β1

1 , ..., β
J
M , y1

M , ..., yJ
M , Z1, ..., ZJ , α1

1, ..., α
J
M}

and produces an allocation x∗ ∈ 'JM and a set of prices P ∗ ∈ 'M

The allocations We choose x∗ to solve:

max
x

J∑

j=1

M∑

i=1

[βj
i − ρi]xj

i (6)

subject to

αj
ix

j
i ≤ yj

i ∀i, j (7)
M∑

i=1

αj
ix

j
i ≤ Zj ∀j (8)

M∑

i=1

βj
i x

j
i ≤ Bj ∀j (9)

J∑

j=1

xj
i ≤ Qi ∀i (10)

xj
i integer, ∀i, j (11)

The prices Prices, P ∗, are computed after x∗ is computed in the previous section. For each
program i,

Ai = min
j∈W i

βj
i (12)

Di = max
j∈Li

βj
i (13)

Ci = max{Di, ρi} (14)

P ∗
i = min{Ai, Ci} (15)

where j ∈ W i if x∗ji > 0 and (16)

j ∈ Li if αj
ix

∗j
i < yjβj

i ,
∑

i

αj
ix

∗j
i < Zj, and

∑

i

βj
i x

∗j
i < Bj (17)

Notes

• The RAD allocation problem differs from the maximum surplus problem because of (9).

• In pricing, the issue is which j to min or max across.

For (12) include all j such that X∗j > 0.

For (13) there exist individuals who would have been willing to have more i. These do not
include those with the binding constraints αj

ix
∗j
i = yj

i ,
∑

i α
j
ix

∗j
i = Zj, and

∑
i β

j
i x

∗
i = Bj.

5

Example 1.1

Simple environment, homogenous commodities
One seller (M = 1) Five buyers (J = 5)
Q1 = 2 β = [70, 90, 85, 84, 72]T

ρ1 = 80 Bj = 100 for all j = 1, 2, ..., 5
RAD Auction
Revenue = 80 ∗ 1 + 80 ∗ 1 = 160
BuyersSurplus = (90− 80) + (85− 80) = 15
SellersSurplus = (80− 80) + (80− 80) = 0

Figure 1: RAD

Equation (6) will be fulfilled if the first commodity is sold to the highest bidder and the second
one to the next highest bidder, to increase the buyers gains from trade (see Figure 1). The RAD
is designed to be a one shot auction were the commodities are sold for the reservation price ρ, so
the seller is not gaining from the trades.

3.7 CC with robo-bidders

CC is an iterative auction. This is treated as a sealed-bid auction by using robo-bidders in the
CC: that is, let each buyer express their environment and then bid for them. This turns CC into
a sealed-bid version.

CC takes {M, Q1, ..., QM , ρ1, ..., ρM , J, B1, ..., BJ , β1
1 , ..., β

J
M , y1

M , ..., yJ
M , Z1, ..., ZJ} and produces

an allocation x∗ ∈ 'JM and a set of prices P ∗ ∈ 'M

CC proceeds in rounds, τ = 1, ... where for round τ

• CC posts prices P (τ)

• Each buyer submits a bid qj(τ). (See the next subsection.)

• We save the bidder’s bid in this round τ , (P (τ), qj(τ)), to the data base.
6

• If
∑

j qj
i (τ) ≤ Qi for all i then go to WD.

Note: If WD is not running then CC stops at this time. The price is P (τ) = P ∗ and the
allocation is x∗j = qj(τ).

• P i(τ + 1) = (1 + d)P i(τ) if
∑

j qj
i (τ) > Qi

• P i(τ + 1) = P i(τ) if
∑

j qj
i (τ) ≤ Qi

• Go to next round τ + 1 of CC

3.8 Robo-bidders

When CC requests bids from the bidders, here is the problem the computer solves for each j.
Assume that bidders are straight-forward, that is, they report honestly and will want to bid
honestly.

The jth bidders bid is: (Bj, βj
1, ..., β

j
M , αj

1, ..., α
j
M , yj

M , ..., yj
M , Zj).

Given the prices P (τ) we choose qj(τ) to solve:

max
qj

M∑

i=1

[βj
i − P i(τ)]qj

i (18)

subject to

αj
i q

j
i ≤ yj

i ∀i (19)
M∑

i=1

αj
i q

j
i ≤ Zj (20)

M∑

i=1

Pi(τ)qj
i ≤ Bj (21)

qj
i integer, ∀i (22)

Example 1.2

Simple environment, homogenous commodities
One seller (M = 1) Five buyers (J = 5)
Q1 = 2 β = [70, 90, 85, 84, 72]T

ρ1 = 80 Bj = 100 for all j = 1, 2, ..., 5
CC Auction, with price increment 4
GainsFromTrade = (B + S)/(B + S + C) = (2 + 8)/(2 + 8 + 5) = 2/3 < 1
Revenue = 88 ∗ 1 = 88
BuyersSurplus = (90− 88) = 2
SellersSurplus = (88− 80) = 8

In the CC auction, equation (18) must be satisfied. That means maximizing the surplus for each
and every buyer such that constraints (19)-(22) are fulfilled and run the auction until the demand
are less or equal the the capacity. The figure illustrates how the price is increased two times, until
it reaches P = 88, we have the demand less or equal to the capacity, one commodity is allocated
to the highest bidder, the other one remains unsold (see Figure 2). The area C is not contributing
to the gains from trade.

7

Figure 2: CC

3.9 WD

WD is a sealed bid auction run in conjunction with CC. It takes in a collection of ”remembered
bids”, instead of an environment, and generates a collection of ”accepted bids” which imply an
allocation. It is used in conjunction with CC to allocate excess supply to increase revenue.

Note that if t = 1 is the last CC round, then we just skip WD and use the CC allocation for
the outcome of the auction.

A remembered bid is [τ, P j
1 (τ), ..., P j

M(τ), xj
1(τ), ..., xj

M(τ)]. This is to be thought of as what j
bids (i.e., was willing to buy) in round τ of the clock when prices were P (τ). For τ = 1, ..., t (τ is
the set of all the rounds and t is the last round), there will be a max of tJ bids in the remembered
set. Let xj = 0 for those rounds in which j did not bid, then there will be t bids for each j. Let
δj(τ) = 1 if j’s bid is accepted from iteration τ. Otherwise, δj(τ) = 0.

WD solves the following problem: choose [δj(τ), yj
i (τ)],∀i, j, τ to maximize

8

max
z,δ

∑

j,i,τ

(P i(τ)− ρi)zj
i,τ (23)

subject to
∑

j,τ

zj
i,τ ≤ Qi,∀i (24)

zj
i,τ ≤ xj

i (τ)δj(τ) (25)
∑

τ≤t

δj(τ) ≤ 1 (26)

δj(τ) ∈ {0, 1} (27)

zj
i,τ is an integer. (28)

and if xj(t) "= 0, then δj(τ) = 0,∀τ < t. (29)

The idea is to take all past bids (including the current winning ones from CC) and pick those that
would maximize seller’s surplus, to be able to partially fill with past bids: this is the reason for
the z and constraint (25). Using only one past bid per bidder: this is constraint (26). And, not
using past bids of current winners: this is constraint (29).

Once WD is computed, the decision point is to go back to CC or stop. Stopping rule is if no
winner from CC at t has been displaced in WD. Let y∗ be the solution to the above problem.

If zj∗
i,t = xj

i (t) for all i, for all j such that xj
i (t) "= 0 for some i, then stop. The winning allocation

is z∗ and the winners pay P i(τ) for zj∗
i (τ).

Otherwise,
let P i(t + 1) = P i(t)(1 + d) if there is a j such that zj∗

i,t < xj
i (t), and

let P i(t + 1) = P i(t) if zj∗
i,t = xj

i (t) for all j such that xj
i (t) > 0.

Then return to CC. Start there with round t + 1 and P (t + 1).

Example 1.3
Notice that in Example 1.2, the CC design fails to allocate all the commodities which is not
beneficial for the seller. We introduce a Winner Determination block, which maximizes the sellers
surplus by using past bids as environment.

Simple environment, homogenous commodities
One seller (M = 1) Five buyers (J = 5)
Q1 = 2 β = [70, 90, 85, 84, 72]T

ρ1 = 80 Bj = 100 for all j = 1, 2, ..., 5
CC+WD Auction
GainsFromTrade = 1
Revenue = 88 ∗ 1 + 84 ∗ 1 = 172
BuyersSurplus = (90− 88) + (85− 84) = 3
SellersSurplus = (88− 80) + (84− 80) = 12

There is three past rounds to chose the allocation from. Round number three, (t = 3) had a bid
for one of the commodity for the highest price, P = 88. By accepting this bid, we maximize sellers

9

Figure 3: CC+WD

surplus. Second item had a bid in second round, (τ = 2). Sellers surplus will be maximized if
we fixate that item to next-highest or third-highest bidder (see Figure 3). Hopefully the item will
go to next highest-bidder, because it maximizes even the buyers surplus and do not generate a
side-market. In the computer implementation of the problem the second item will be allocated
to next highest bidder, but only thanks to the indexation of the bid-vector. To really create a
fair auction WD-block can be modified to also maximize the sellers surplus, but this increase the
computational burden.

3.10 Results

For each round, the following computations were made: RAD alone, CC alone, CC+WD and
RAD+CC+WD. The results were calculated and displayed for 100 rounds, Revenue, SellersSurplus
and BuyersSurplus, are divided with MaximumSurplus (3.4). Revenue is defined as price times
allocation, SellersSurplus and BuyersSurplus indicates how well seller respectively buyers did
in the auction, their profit from trades. By summing them together we get gains from trades. If
we divide it by maximum gains from trade we obtain efficiency.

The plots (see Appendix (6)) displays the distribution function p(k) =(number of objective less
or equal to k) ÷ (number of rounds), where k = 0, 1, ..., 100 represents the percentage.

We can see that the curves statistically dominate one another by being shifted to the right
without overlaps and therefore can be ranked as superior across the entire distribution.

10

Average for Simple environment, after 100 rounds
Designs Efficiency Revenue BuyersSurplus SellersSurplus NumberofIterations
RAD 14.0% 12.8% 14.0% 0.0% 1.00
CC 3.5% 3.8% 1.9% 1.5% 12.67
CC+WD 72.4% 68.2% 38.4% 34.0% 13.59
RAD+CC+WD 74.8% 69.8% 39.2% 35.6% 7.97

Average for TV advertisement environment, after 100 rounds
Designs Efficiency Revenue BuyersSurplus SellersSurplus NumberofIterations
RAD 73.2% 133.9% 73.2% 0.0% 1.00
CC 44.2% 106.6% 18.1% 26.0% 9.74
CC+WD 68.7% 175.7% 21.2% 47.5% 10.46
RAD+CC+WD 66.5% 155.9% 20.6% 45.9% 3.35

The number of iterations is the number of times we need to solve an optimization problem in order
to find an allocation.

3.11 Conclusions

We can clearly see from the averages that for the Simple environment, RAD+CC+WD is clearly
the best design, it’s domination across the hole distribution is also evident from the plots.

For the complex, TV advertisement environment we can see that RAD design has the highest
Efficiency, but only because of the high BuyersSurplus, in the long run sellers want show up for
an auction where there surplus is 0%, therefore this design can be left out from the analysis. We
can notice that CC design did allot better with the complex environment, compared to the simple
environment, and in fewer iterations. Less number of iterations is true for all the designs, which is
an interesting phenomena. The best averages are obtained from the CC+WD design, is also the
dominating one from the distribution plots (if we omit the RAD design). But RAD+CC+WD,
achieves almost as good averages but in less iterations, so if the computational burden is a problem
this design is 3 times faster then the RAD+CC+WD design.

The question of whether there exist even better computer implemented auction designs is still
open.

The next step to modify this designs is to introduce a double maximization in the WD block,
as mentioned in the Example 1.3. We need to prefer the maximization across the past bids not
only for the SellersSurplus, but also for the BuyersSurplus. It may increase the computational
burden rapidity. To obtain the difference in Efficiency-changed per number of iterations, we
need to run the tests.

4 Acknowledgments

Thanks to Prof. John Ledyard and co- mentor Guilherme de Freitas at California Institute of
Technology (USA) and Dr. Henrik Sandberg at Royal Institue of Technology (Sweden) for the
mentorship in this project.

5 Author Information

Vadim Ovtchinnikov
11

Undergraduate student, Master Engineering Physics
Royal Institute of Technology, Stockholm
vadimo@kth.se

12

6 Appendix

Table 1: Simple (left column) & TV advertisement (right column)- environment, distribution

13

References

[1] John Ledyard Christine DeMartini, Anthony Kwasnica and David Porter. A new and improved
design for multi- object iterative auctions. Management Science, 51(3):419–434, 1990.

[2] Anil Roopnarinec David Portera, Stephen Rassentia and Vernon Smitha. Combinatorial auction
design. Proceedings of the National Academy of Sciences, 100(19):11153–11157, 2003.

[3] Michael H. Goldwasser. Object-Oriented Programming in Python. Prentice Hall, 2008.

[4] Vijay Krishna. Auction Theory. Academic Press, 2002.

[5] David M. Gay Robert Fourer and Brian W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, Brooks, Cole Publishing Company, 2003.

14

