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1 Abstract

With standard network communication protocols, if a packet is lost in transmis-
sion it needs to be resent, and the data can only be reconstructed once every
packet is received. This becomes tedious when a large portion of the packets
are lost due to disturbances. A possible solution to this problem is Multiple De-
scription Coding (MDC), where each of the packets (“descriptions”) on their own
allow the receiver to partially reconstruct the transmitted data. In this paper, we
suggest the use of Sparse Linear Regression Codes (SPARC) as a way of creating
an MDC. The SPARC naturally splits each codeword into multiple sections, and
the encoder can then minimize the expected distortion for scenarios when differ-
ent subsets of these sections are received. Since it is unknown to the encoder how
many descriptions will be received, our code minimizes expected distortion with
respect to the packet loss distribution. Further research is needed to establish
its theoretical relationship with, and possible convergence to, the rate-distortion
function. Our simulations suggest that the proposed coding algorithm achieves
promising performance both when a large and a small portion of the descriptions
are received.

2 Introduction

This paper deals with a new approach for Multiple Description Coding (MDC).
It is a solution to the problem of delays due to packet loss, which is discussed
below. With standard network protocols data that is to be sent over a network
is split into smaller parts, called packets. Each packet is then sent across the
network individually. This introduces the problem of packet loss, where one or
more packets is lost during transmission. The receiver then has to tell the sender
to resend those specific packages. Until every packet is received, the data can
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Figure 1: Schematic figure of a MDC with two descriptions. There are three non
trivial scenarios, either description one, two or both are available to the decoder.
These are then used to reconstruct the encoded data with different distortions
Dy, Dy and Dy respectively.

not be reconstructed. This works very well if we want to make sure that exactly
what is sent is what is received and we have few packet losses. But if the network
has a lot of disturbances, and a significant portion of the packets are lost in each
transmission, then this becomes tedious and we have to wait for very long to
reconstruct any data.

The fundamental idea of Multiple Description Coding is allowing partial re-
construction of the data [1]. That is, if only a subset of the packets, also called
descriptions in this context, are received, then the receiver can still reconstruct
the data, with some extra distortion. The problem of MDC then becomes how to
construct the codes such that each code on its own contains enough information
about the original data in order to reconstruct it as well as possible, and so that
the descriptions together allow good reconstruction without too much redundant
information. There exist theoretical codes that do this today, however they are
rarely used in practice. This is because in order to get good performance, they
have very high computational complexity.

In this paper we use the idea of Sparse Linear Regression (SPARC) for Mul-
tiple Description Coding. A SPARC encodes the information of the data into a
vector B which is sparse. This process is described in detail in Section 3. Because
of the way B is defined it can naturally be split into sections, which can be seen
as descriptions on their own. Exactly how this is done is elaborated on in Sec-
tion 4. What is new about this code is that it has a polynomial computational
complexity.

Our results show that SPARC indeed can be used for MDC and they achieve
distortion that is near the optimal rate-distortion curve for a single Gaussian
source when split into two descriptions. When the code puts equal probability
on any number of descriptions being received, it still performs close to optimal
regardless of the number of packets received. Details of the performance are
given in Section 5.
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Figure 2: Design of the matrix A and vector 5. Each entry in A isi.i.d. generated
from a Gaussian. The non zero values in § are all equal to ¢ (¢; = ¢3 = ... =
cp = c).

3 Sparse Linear Regression Coding

A SPARC for a single i.i.d. Gaussian source is defined by its N x ML design
matrix, A, which has i.i.d. N(0,1) elements. Here n is the encoding block
length and M and L are constants that partition A into L sections of M columns
each, see Figure 2. A codeword can be expressed as Af, where [ is a column
vector of length ML, with exactly one nonzero element in each of the L sub-
vectors of length M. Thus § has one non zero entry in 1 < m < M, one in
M+ 1<m <2M, and so forth. All non zero values of 3 take the same value,
here denoted by ¢, which is defined by

1— 6_2R
=\ — (1)

where R is the target rate of the code. Figure 2 describes the design of A and a
vector 3.

The format of 5 means that every codeword is defined by the L elements that
are non-zero. There are M choices for each of the L non-zero entries, which gives
a total of M* possible codewords. If these are to be encoded with a rate R, we
get the relationship:

MY = et (2)

For a block of i.i.d. measurements X from the source, the encoder attempts
to find (3, the 5 with lowest expected distortion by

B = argming || X — Ap|| (3)
where B is the set of possible f:s. If the distortion is still larger than the target
distortion D, then the encoder declares an error. To construct a reproduction X
of X, the decoder multiplies the vector § received from the encoder by A:



X = AB. (4)

The authors of [2] showed that this coding algorithm achieves the rate distortion
function when the block length n goes to infinity. In [3] the authors demon-
strated a SPARC-algorithm that achieves the rate distortion function with the
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4 Designing an MDC Using SPARC

In order to use Sparse Linear Regression Coding for Multiple Description Cod-
ing (MD-SPARC) with k descriptions, we define k subsections with a = L/k
sections each. We treat each of these subsections of 3 as a description. In a
regular SPARC, we find 8 according to (3). This is equivalent to minimizing the
distortion when all subsections of beta (descriptions) are received. When coding
an MDC, we do not only care about this case, but also the case when only a
subset of the descriptions is received. The distortion when a certain subset is
used for reconstruction is:

D; = [|X — ABi|)? (5)

where 3; (1 € P(k), the set of possible subsets of k-descriptions) describes the
subsections of B that are received, and A; is the matrix of corresponding sections
of A. Instead of minimizing (3) we now want to minimize the weighted sum of
achieved distortions under different packet loss scenarios. Let the weight when
subset ¢ is received be \;. These weights should be set equal to the probability
of receiving that subset of descriptions. We now have the encoding function

B =argmingg > A|IX — AiBi]|% (6)
1€P(k)

To exhaustively search the space B of possible 3:s has complexity M¥*, which
according to (2) is exponential in n. We therefore have to find another algorithm
for finding 5. In [3], the authors use a greedy algorithm, which has polynomial
time complexity for the same problem. They also show that this algorithm
approaches the rate distortion curve as the block length goes to infinity. With
slight modification we therefore define the algorithm by first initializing 8 as the
solution to the problem:

Bo = argmin e pue||8])° + al|[AB — X||? (7)
Bo = (al + ATA) " ATX, (8)

Here « is a Lagrange multiplier determining the weight between a low norm and
proximity to being an exact solution. Then all elements but the largest in each
section are set to zero, and the largest is set to ¢ according to (1).



Data: Vector to encode X, design matrix A, number of sections L,
priorities of distortion A, target rate R, Lagrangian parameter a.
Result: Encoded vector B
B=(aI + ATA) " ATX;
for each of L sections in 8 do
set all but largest entry to zero;
set non-zero value to ¢ from (1)
end
while § hasn’t converged do
for each of L sections in § do
for each of M entries in section do
set all elements in section but one to zero;
compute distortion from (9);
end
keep choice of non-zero element with lowest distortion;
end

end
Algorithm 1: Encoding of MD-SPARC

5 Simulation results

The algorithm was implemented using Python and the NumPy package for ma-
trix handling. For our experiments, n-dimensional data was generated from a
N (0, 1) source, encoded and decoded using the algorithm, and then the distortion
was calculated. This was repeated many times to get an average performance.
When the number of descriptions is fixed to two, there are three non trivial
scenarios, as illustrated in Figure 1. The rate was set so that receiving two
descriptions corresponds to rate 1. If only description one or two is used for
reconstruction, then the rate achieved is 0.5. Setting the block length to n = 10,
the regular SPARC algorithm was run with exhaustive search over all possible
B:s. These distortions are therefore optimal for any SPARC method with the
block length n = 10. They are shown as black dots in Figure 3 and 4. The greedy
approach from Algorithm 1 was then used to simulate the performance of MD-
SPARC. The different values of A\ correspond to prioritizing different numbers of
descriptions used for reconstruction. The encoder tries to find:

B = argmingeg A (D + Ds) /2 + (1 — A)Dy. (9)
Here A = 0 corresponds to only minimizing the distortion when both descriptions
are used for reconstruction, A = 1 minimizes the distortion when only one de-
scription is used, and A = 0.5 places some weight on both scenarios. The results
of these simulations are shown in Figure 3. As expected, the algorithm per-
forms best for one description when A = 0 and best for two when A = 1. When
A = 0.5, the algorithm performs somewhere in between for both scenarios. Since
the greedy algorithm has a lower time complexity than the optimal SPARC using



SPARC reconstruction distortion as function of number of descriptions.
Block size 10 and averaged over 100 simulations.
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Figure 3: Distortion of reconstructed data encoded using MD-SPARC. Data was
encoded using a block length of n = 10. The black dots in correspond to the
optimal SPARC distortion with a block length of n = 10. The value of lambda
determines if the algorithm was optimized for using one description (A = 0) or
two descriptions (A = 1) for reconstruction. The choice of A = 0.5 places some
weight on both scenarios.

exhaustive search. The block length could be extended to n = 50. The results
of these simulations are shown in Figure 4. Due to this increase in block length
the algorithm is able to achieve comparable distortion to the optimal SPARC.

The algorithm can also be used to encode images. The pixels were split into
8% 8 blocks which were encoded separately. First the Python package scikit-image
loaded the pixel intensities as a scalar from 0 to 1, these were then normalized by
subtracting the mean and dividing by the standard deviation. Then they were
encoded by the MD-SPARC with four descriptions. At the receiving end, the
intensities were decoded and the normalizing process was reversed. Any values
that ended up outside the allowed interval of [0, 1] were assigned to the closest
endpoint of the interval. An example of resulting reconstructions is depicted in
Figure 5. The quality of the reconstruction clearly increases with the number of
descriptions.

6 Discussion and future work

The encoding algorithm seems to be approaching the rate distortion function as
the block length n goes to infinity. One question for future work would involve
theoretical evaluation to see if it approaches the optimal rate distortion bound.
The greedy algorithm in this paper uses a slightly different method than the one
from [3]. It is possible that there is some better choice of the non-zero coeflicients
such that the distortion approaches the optimal bound.

We also see that when A = 0.5 the distortion is close to that of the algorithm
with optimal choice of lambda for each of the scenarios. This is a good attribute



SPARC MDC reconstruction distortion as function of number of descriptions.
Block size 50 and averaged over 100 simulations.
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Figure 4: Same graph as in Figure 3, but the MD-SPARC data was encoded
using a block length of n = 50.

Figure 5: Reconstruction of an image encoded using the MD-SPARC. The far
left is the original image. Then from left to right the reconstruction is dependent
on one, two, three and four descriptions respectively.



of the algorithm, which seems to persist when the block length is increased.
Using Sparse Linear Regression is clearly a viable method for Multiple De-
scription Coding. It has polynomial time complexity and simulations still sug-
gest that the distortion approaches the rate distortion curve as the encoder block
length tends to infinity. However this needs to be evaluated theoretically.
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