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1 Introduction

The possibility of creating a system that acts like a human being has long
been a goal of researchers. Just a few years ago scientists managed to create a
computer capable of playing chess better than any human being and now the
next step is the make a system that can perform human tasks in a less controlled
environment. These kinds of robotic systems will eventually revolutionize the
way we live, taking care of repetitious and tedious tasks such as cleaning, cooking
and even driving the car.

The DARPA Grand Challenge(DGC) is a step in this direction, and consists
of creating a car that can autonomously drive 175 miles through the Nevada
desert in less than 10 hours. The challenge, sponsored by DARPA (defense
advanced research project agency), had its first competition last year (2004),
resulting in the best vehicle finishing just over 7 miles of the 140 mile course.
However, during the time from last year, several new teams have entered the
challenge and much needed scientific progress has been made.

2 Alice

The Caltech contribution to DGC 2005, Alice, is a project driven mainly by
undergraduates from Caltech and SURF students from around the world. The
vehicle is a off-road adapted Ford E-350 with several additions in the form of
actuators for steering and throttle control, as well sensing capabilities. The
sensing consists of 5 Ladars (Laser Detection and Ranging), and 5 black and
white cameras, one of which is used for road following.

From all the sensing data a height map is created, and using methods sim-
ilar to image processing methods, this data is converted too allowable speeds.
If, for example, a certain segment of the height map seems to be bumpy, the
corresponding allowable speed is lowered. Finally, this speed map is send to a
module responsible for planning an optimal route through the terrain.

3 Road following

The vehicle would be fully operational without knowledge about roads and
other man-made objects in its vicinity; all that is needed is detection of height



differences in its vicinity. The information added by a road detection system
however lets the vehicle travel faster and in a more human fashion.

For example, consider a human driver traveling in an off-road environment.
While driving on a road a human makes the implicit assumption that the surface
is relatively flat and that the road does not end abruptly on the other side of
a hill. Using the same assumptions in an autonomous vehicle makes it possible
to drive significantly faster and to avoid getting into dead ends.

3.1 Problem formulation

A general road following algorithm developed and implemented by Christopher
Rasmussen[1] was used on Alice. The algorithm takes image data from a cen-
trally mounted camera on the vehicle, calculates the dominant directions of the
textures in the image and, from this, derives the vanishing point of the road. In
combination with this data, distance measurements from the Ladars where used
to calculate the width of the road and the lateral offset of the road compared
to the vehicle.

All this processing results in a number of control points, relative to the
vehicle, that specify the position and the width of the road ahead. The goal
of this report is to explain how this information was integrated into the overall
system and how the vehicle was made to react correctly on road information.

3.2 Road painting

There are two main ways of integrating road data into the overall architecture.
The first one tested consists of sending the detected road points straight to the
vehicle trajectory system, thus making the vehicle drive straight down along
the center of the road. The problem with this approach however, is if there is
a big obstacle in the middle of the road. Obviously there are ways to abort
the road following if obstacles are detected etc, however other scenarios can be
constructed in which the complexity of this approach grows.

Instead the method used in the final race configuration consists of painting
the road into the map as a speed bonus. This makes use of the underlying
framework with a speed map generator and a planner, and just merges the new
information into the existing system, thus avoiding the need for special case
treatment of obstacles etc.

3.2.1 Road rasterization

The data supplied to the road painting algorithm was a series of points and
corresponding road widths in those points; this data was then transformed to
a polygon representing the road. As the road width varied, so did the width
of the polygon, the problem however was to determine in which direction to
measure the width of the road. The simplest solution, used in the painting of the
vehicles corridor, is to use circles centered in the road points with the diameter



Fig. 1: Polygon generation from road control points

corresponding to the width of the road. The problem with this approach is the
computational expense of rasterizing circles.

Therefore a different approach was followed. If we consider the direction of
the road in a point pi to be that of the directional vector between pi−1 and pi+1,
it is easy to extend the width of the road perpendicular to this vector and then
join these edge points to create the road polygon, see figure 1.

As for the rendering part of the rasterization, the polygon was splited into
convex sections by only considering the 4 points from pi and pi+1 in each iter-
ation. Then for each convex section a standard scan-line-conversion algorithm
was used to render it into the map.

3.2.2 Uniform vs sloped road

The next problem was to determine how the speed bonus was to be painted.
During the first trials the road was painted with a uniform speed bonus, this
however made it unclear for the planer where to place the vehicle lateral within
the road, resulting in driving performance very close to the roads edge. To
improve upon this, the algorithm was altered such that the speed bonus was
proportional to the distance (actually the square of the distance for computa-
tional optimality) from the road center. This is easily achieved by using some
vector algebra.

Let p0 and p1 be the start respectively end points of the road segment, and
let q be the point currently painted. The square of the distance is then simply



given by:

d2 =

∣∣∣∣∣(q − p0) −
(p1 − p0) · (q − p0)

|p1 − p0|2
(p1 − p0)

∣∣∣∣∣
This algorithm worked fine in most situations, however when the width of

the road varied a lot, some problems occurred. As only the distance from the
roads centerline is considered, all information about the actual width of the
road is discarded. On a wide road, it does not matter very much if the vehicle
if of by 1m from the center line of the road, thus the speed bonus should still
be large. However on a narrow road, 1m off to the side could mean that we are
driving dangerously close to the edge of the road. The next improvement of the
algorithm was therefore to paint the speed bonus in proportion to the distance
from the center line relatively to the width of the road. In the same way as
above, the equation for this can be derived straight from linear algebra.

Let as before p0 and p1 be the start respectively end points of the road
segment, and let q be the point currently painted. Let also r0 and r1 represent
the half width (radius) of the road in point p0 and p1 respectivly. As we already
have an equation for the distance from the center line, we need to determine
the width of the road in the specific point. For this we assume the boundary of
the road is a straight line and therefore the width of the road is proportional to
how far along the road segment we are. The distance along the road segment
can be calculated as:

t =
(p1 − p0) · (q − p0)

|p1 − p0|2

Thus the radius at q is:
r = r0 + t(r1 − r0)

And the relativ distance, rd, is calculated as:

rd2 =
d2

r2

All these computations where further optimized such that each point rendered
only required 8 multiplications and 1 division.

3.3 No road data

Once the road was painting correctly and the vehicle was able to track the road
through the information painted into the map, a new problem arose. What
happens if the vehicle goes off-road, or the road turns too quickly for the follow-
ing algorithm to keep track of it? The first part, implemented by Christopher
Rasmussen, consisted of calculating the Kullback-Leibler divergence between
the dominant orientation distribution in the image, and the expected random
distribution. Using this measurement, a number of thresholds where derived
from test data and the algorithm was able to detect the no-road situation.

The second issue, with rapidly turning roads, was initially handled with the
above approach; however the inertia in the algorithm did not always allow the



road painting to be turned off until it was to late. Therefore the information in
the RDDF was used instead. Under the assumption that, when driving on dirt
roads, the RDDF center line somewhat follows the road curvature, said curva-
ture was calculated over the following 30m and if the curvature was greater then
the maximal road curvature detectable, the road painting was instantaneously
turned off. The result of this being that the car slowed down additionally when
approaching a steep curve.

4 Results

During testing, impressive following was achieved using the road following al-
gorithm, with stretches of up to 15 miles of dirt roads followed completely
autonomous. The exact performance of the road following algorithm is very
hard to estimate as it is a part of a larger system, and not the only thing giving
commands to the vehicle. From inspection of test logs and during tests, the al-
gorithm seemed to perform very well during daylight conditions on normal dirt
roads. The main problems that where uncovered were during sunrise/sunset
when shadows, especially from the vehicle itself, produced spurious dominant
orientations and at one occasion even sent the vehicle running of into the side
of the road.

The other problem uncovered was that of driving on big open areas. When no
clear road was present, but there was still texture on the ground, the dominant
orientations picked up by the algorithm were not always consistent, sending the
vehicle swirling over the plains.

5 Further improvements

The main disadvantage of the road following algorithm is its inability to track
a curving road, although the vanishing point gives a good general ide of the
road, it is not enough when driving on winding roads. Another related problem
is that of tracking merging and splitting roads, when the road ahead splits up
into two roads, the algorithm currently chooses one of them on random. An
alternative here would be to either track both of the road segments, or to use
information present in the RDDF to decide on which segment to track.

6 Conclusion

Although the performance of Alice on race day, 21st of 23 teams, was not as
good as we had hoped for, it was interesting to work on the project. Although
the project was a research project, much of the work was not pure research.
It felt like the project more resembled a real life engineering project in that
respect, with a solid deadline and a hunt for solutions that worked well enough
and that could be implemented fast and reliably. It has therefore been a great
experience which extends beyond what you normally learn in the classroom,
and has given a taste of real life engineering projects.



Apart from this, the main lesson learned on the Caltech DGC 2005 team is
the importance of clear leadership. Many of the decisions needed to be taken,
where not taken by the people responsible or at the time when they where
needed. Much unneccessary work was performed because the decisions on can-
celing projects were delayed, as nobody wanted to be the one terminating a
projekt. Further the testing process was not as methodical as would have been
needed. Instead of testing every component separately in simulation and fixing
every little unexpected behavior as it came up, the testing was more of a ”happy
hacking”. The vehicle was driven 2h out into the desert, everything was started
up just to discover that something was not working. Several 100s of man hours
of work where probably lost due to people having to sit around in the desert just
waiting for one module to get fixed. Once the vehicle was running, unexpected
errors where often treated with a ”lets restart” comment, without noting the
exact reason for the problem or even trying to actively isolate the error. All
this resulted in a system that felt very unstable and unreliable. For example
the comment when starting the Ladar drivers that 3-4 initial errors were to be
expected (if starting at all), is not what you expect from a system suppose to
run for 10h without human intervention.
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