
Test Design Based on Model Mismatch for
Controlled Systems

Rebecka Winqvist
Mentor: Richard M. Murray, Co-mentor: Sofie Haesaert

September 2018

Abstract—Finding safety and functionality guarantees for so-
phisticated safety-critical, cyber-physical systems such as intel-
ligent robots, autonomous vehicles and cyber-physical infras-
tructures is imperative. Recently developed frameworks enable
automated synthesis of controllers and allows for a reduction
in design faults. These methods rely on accurate models of
systems with specifications expressed in temporal logics. Albeit
being verified on a model of the system, the controller must
also be tested on the true system. This project investigates the
possibility and efficiency of designing tests based on the model
mismatch, i.e. the model’s deviation from the true system, with
the aim to introduce a new method for designing tests to verify
the robustness of the controller. This paper describes a possible
testing approach and the first step that have been taken towards
reaching this goal. The approach involves adapting model based
testing tools used in software testing for control systems and
applying them on a small scale autonomous parking system. No
executable test cases have yet been produced, but algorithms for
finding sensitive transitions in the system and exploiting those
transitions have been developed and are presented in this paper.

I. INTRODUCTION

The idea of describing and verifying control systems with
respect to Linear Temporal Logic (LTL) specifications origi-
nates from the domain of software and hardware verification,
where such methods have proven great success [1]. The
Python-based TuLiP toolbox employs similar formal methods
for synthesizing controllers that come with behavioral guar-
antees over models of continuous systems with respect to
specifications expressed in LTL [2] [3]. The design process
thus relies on accurate descriptions (models) of systems and
their behavior. However, since the dynamics of most Cyber-
Physical Systems (CPS) rarely is precisely known, models are
often built on empirical approximations based on data obtained
from the system. It is therefore critical to test and verify correct
behavior of the designed controller on the true system, albeit
the controller already being verified on the model. TuLiP does
not yet, however, provide testing of their designed controllers,
and one of the intentions with this project is to contribute to
that.

As of today, there exists some preliminary research on
testing of dynamical (stochastic) systems. For example, in [4],
they present a Statistical Model Checking (SMC) method for
determining the probability that a system satisfies a certain
temporal logic property with a certain confidence. In [5],
however, they argue that for some applications that calculated

probability might not be sufficient information. Instead they
propose a different approach that, in addition to SMC, also
distinguishes between system designs that satisfy the property
to varying degrees. Both methods utilize the notion of robust-
ness for Metric Temporal Logic (MTL) and can be applied to
both stochastic systems and finite state systems.

Model Based Testing (MBT) is a test generation technique
proven successful in software testing. The method relies on
models of the System Under Test (SUT) when deriving test
cases [6]. In this project, the possibility of adapting MBT
tools for designing tests for control systems is investigated.
Essentially, the approach involves investigating which transi-
tions in the abstract finite-state model of the system are more
sensitive to mutations in the model and then exploiting these
transitions by feeding different disturbance sequences into the
controller. In particular, Linear Time Invariant (LTI) reactive
systems described by the following form are considered in this
project

x(t+ 1) = Ax(t) +Bu(t) + Ed(t)
y(t) = Cx(t) +Du(t) + Fd(t)

(1)

where x(t) is the current state of the system, u(t) the current
input to the system, y(t) the output of the system, and d(t)
the exogenous disturbances.

II. LINEAR TEMPORAL LOGIC

Temporal logic is a formalism for specifying and verifying
properties of reactive systems. LTL is a modal temporal logic
suited for specifying linear time properties, with modalities
referring to time. Using LTL, relations between the states
of a system can be expressed in a mathematically precise
notation, that is, the relative order of events can be specified
[7]. However, LTL cannot be used to specify precise timing of
those events. For example, “The ball hits the ground once it has
been dropped” would be a supported statement, whereas “The
ball hits the ground three seconds after it has been dropped”
would not.

An LTL formula, ϕ, follows a specific syntax and may be
constructed from atomic propositions, Boolean connectors and
the two basic temporal modalities© (pronounced “next”) and
U (pronounced “until”) according to the following grammar
[7]

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1 U ϕ2 (2)

where a ∈ AP is an atomic proposition. ∧ and ¬ can be
used to derive all other Boolean connectives and the temporal

©a

a U b

♦a

�a

arbitrary a arbitrary arbitrary

a ∧ ¬b a ∧ ¬b b arbitrary

¬a ¬a a arbitrary

a a a a

Fig. 1. Simpler LTL formulas and their respective state sequences.

modalities ♦ (pronounced “eventually”) and � (pronounced
“always”). Figure 1 presents a few simpler LTL formulae and
their respective state sequences.

The semantics of an LTL formula, ϕ, are defined by the
following language

Words(ϕ) =
{
σ ∈ (2AP)ω | σ |= ϕ

}
(3)

where σ is referred to as a word in the 2AP alphabet. A word
σ = σ1, σ2, . . . , with suffix σ(t) = σt, σt+1, . . . , satisfies a
specification ϕ iff σ(t) satisfies ϕ for all t. Below follows the
semantics for the syntax of LTL [8]

σ |= true

σ |= a iff a ∈ σ1, i.e., σ |= a

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |=©ϕ iff σ[1 . . .] = σ1, σ2, . . . 6|= ϕ

σ |= ϕ1 U ϕ2 iff ∃j ≥ 0. σ[j . . .] |= ϕ2 and
σ[i . . .] |= ϕ1, for all 0 ≤ i < j

As stated above, LTL formulas are not well suited for
describing any precise timings for events. That could, however,
be desirable in some applications, e.g. when specifying the
dynamics of a real-time system [8]. One subset of LTL,
supporting such statements, is the General Reactivity (1)
(GR(1)) form, on which the formulas are written as follows

ϕ = (ϕe → ϕs) (4)

where ϕe is an assumption of the environment in which the
system operates, and ϕs the specifications the system must
fulfill. These are described by the LTL formulas

ϕe = θeinit ∧
∧
i∈Ie

�ψe
i ∧

∧
k∈Ke

�♦Je
k = ϕe

i ∧ ϕe
t ∧ ϕe

g (5)

and

ϕs = θsinit ∧
∧
i∈Is

�ψs
i ∧

∧
k∈Ks

�♦Js
k = ϕs

i ∧ ϕs
t ∧ ϕs

g (6)

respectively, where ϕi are the initial conditions, ϕt the safety
or transition statement, and ϕg the fairness and goals state-
ment. The safety statements specify what properties should

home

lot

Fig. 2. The 3x2 workspace for the car in the case study. The two labels
home and lot encapsulate two different areas and act as atomic propositions.

always be true, while the goals statements, ϕe
g and ϕs

g , specify
the desired evolution of the states of the environment and the
system, respectively [9] [10].

III. TESTING LTL FOR AUTONOMOUS PARKING

In this section we will focus on the development of testing
routines for a specific application in autonomous parking.
Consider as a case study the following example on autonomous
parking provided by the TuLiP toolbox. The example considers
a car operating in the continuous 3x2 workspace depicted in
Figure 2. The dynamics of the car are described by

x(t+1) = Ax(t)+Bu(t)+Ed(t) = x(t)+ u(t)+ d(t) (7)

where

x(t) ∈ [0, 3]× [0, 2]

u(t) ∈ U = [−0.1, 0.1]2

d(t) ∈ D = [−0.01, 0.01]2.

The two labels home and lot in Figure 2 encapsulate two
different areas in the workspace and act as atomic propositions,
which evaluate to true whenever x(t) ∈ [0, 1] × [0, 1] and
x(t) ∈ [2, 3]× [1, 2], respectively.

The control system is reactive, meaning it interacts with the
environment it operates in. In this case study, the environment
generates a park signal to which the car should respond. The
signal is represented by the atomic proposition park that
evaluates to true whenever the park signal is turned on.

The safety statement and goal statement for the system are
given as the GR(1) formulas

ϕt =((¬park ∧©¬park)⇒©¬lot) ∧
((park ∧©park)⇒©¬home) (8)

and

ϕg = (�♦(park ⇒ lot)) ∧ (�♦(¬park ⇒ home)) (9)

respectively. The formula in (8) states that the car is not
allowed to visit the parking lot in the next time instant unless
the park signal has been turned on in at least the previous
two, nor is is it allowed to visit home in the next time instant
if the park signal has been turned on in the previous two.
The formula in (9) simply tells the car to move towards lot
whenever the park signal is turned on and move towards home
whenever it is turned off.

Fig. 3. The discrete abstraction, consisting of five different partitions, of the
workspace in the case study. Here, lot and home are represented by the cells
numbered with 0 and 1, respectively.

A. TuLiP controller synthesis
Based on the dynamics in (7) and the specifications in

(8) and (9), a controller has been designed using the TuLiP
toolbox. In the synthesizing process, TuLiP first constructs
a finite transition system of the system, also known as the
abstraction process. Simply put, TuLiP divides the workspace
into multiple partitions and finds feasible transitions between
them. The abstraction process is proposition preserving, mean-
ing that all continuous states within a cell in the discrete
abstraction satisfy the same set of propositions as in the
continuous state space [2]. The discrete abstraction of the
workspace in the case study is depicted in Figure 3 and the
associated discrete transition system in Figure 4. The cells in
the abstraction are described as polytopes as follows

Si = {x | Lix ≤Mi}. (10)

The controller consists of two parts; one high-level (dis-
crete) part responsible for path planning and one low-level
(continuous) part responsible for computing the control input
sequences. The high-level part is represented by a Finite
State Machine (FSM) with the nodes representing the internal
states of the controller. The edges represent the transitions
between the internal states and contains information about
which system state the controller will steer into and the
associated park signal causing the action. The full system with
the two-layer controller is depicted in Figure 5.

IV. METHODOLOGY

It is widely known that the aim of testing is to either prove
that the system does not behave correctly, or to gain confidence
that it does. The approach in this paper focuses on the former,
namely to try to get the synthesized controller to fail to fulfill
the specifications in (6), by using model based testing.

A. Model Based Testing
Model based testing is a software testing technique for

automatic generation of test cases. MBT relies on models of

0 1

24

3

Fig. 4. The finite transition system associated with the discrete abstraction
in Figure 3.

Car

High level controller

Low level controller
u

x

d

park

Fig. 5. Block diagram of the system with the two-layer controller.

the System Under Test (SUT) or the environment and is mainly
used for functionality testing. A simplified description of the
MBT process using models of the SUT is depicted in Figure
6.

As of today, there exist several methods for applying model
based testing. In [6], they present a taxonomy of different
approaches and below follows a summary of how MBT is
thought to be adapted to fit the goals of this project:
• Model notation - The notation used to describe the

model. For testing control systems, we chose a transition-
based notation, as this notation focuses on describing
the transitions between the states in the system, which
allows for the usage of the finite transition system shown
in Figure 4.

• Test selection criteria - The test selection criteria is a
description of what properties of the system the test
should cover. As a selection criteria, we will work with
a mutation coverage fault-based criteria, as this criteria
is particularly practical when the model is a description
of the SUT. The process using this criteria consists of
mutating the original model and then generate tests to
distinguish differences between the two models.

• Test generation technology - Model checking would be
used as test generation technology. Model checking is a
technology used to falsify or verify properties of a system

Model SUT

Test case
spec.

Executable
tests

Description of

Derived from

Abstract
versions of

Run against

Fig. 6. Simplified flowchart of the MBT test generation process.

by exhaustively and automatically check whether a model
meets a certain specification.

Based on this, we have chosen an approach consisting of the
following two steps

1) find the transitions in the abstract finite-state model most
sensitive to mutations in the model,

2) exploit the above transitions by applying different distur-
bance input sequences to the system.

B. Set of feasible initial states

Consider the feed-forward system in (1) and its correspond-
ing discrete finite transition system in Figure 4. Given the set
S = {S0,S1, . . . ,S4} of discrete controlled states and a fixed
time horizon N , Sj is said to be reachable from Si, written
Si Sj , if there exists a control signal sequence

u(0), u(1), . . . , u(N − 1) ∈ U

such that for any sequence of disturbances

d(0), d(1), . . . , d(N − 1) ∈ D

the following holds

{x(0), x(1), . . . , x(N − 1)} ∈ Si and x(N) ∈ Sj
where x(i) represents a continuous controlled state obtained
in one of the cells in Figure 3.

By rewriting the expression of x(t) to

x(t) = Atx(0) +

t−1∑
k=0

(AkBu(t− 1− k) +AkEd(t− 1− k))

it can be seen that Equation (7) can be written as [11]

L

[
x(0)
~u

]
≤M −Gd (11)

where

L =


LiA LiB 0 . . . 0
LiA

2 LiAB LiB . . . 0
...

LjA
N LjA

N−1B . . . LjAB LjB



G =


LiE 0 0 . . . 0
LiAE LiE 0 . . . 0

...
LjA

N−1E LjA
N−2 . . . LjAE LjE



Fig. 7. The set S0 containing the feasible initial sets for the transition S2
S0. Here, S0 constitutes the entire cell S2 when N = 5.

~u =


u(0)
u(1)

...
u(N − 1)

 , M =


Mi

Mi

...
Mj

 .
where Li comes from (10).

The set S0 containing the feasible initial states, x(0), from
which Si Sj , can then be obtained by projecting (11) onto
to dim(x(0)). In Figure 7, S0 for the transition S2 S0 in
the case study, with N = 5, is plotted.

C. Critical disturbances

To find the transitions in the system most sensitive to model
mutations, one could investigate how the set S0 behaves when
the model changes, and especially how it alters with respect
to increased disturbances. From Equation (11), it is clear
to see that the greater the matrix multiplication Gd is, the
more narrow the boundaries of the polytope become. Thus,
by introducing a slack vector ε and solving the following
optimization problem

minimize
ε

min(εi)

s.t. ε =M − L
[
x(0)
~u

]
+Gd

d ∈ D

(12)

one would obtain the critical disturbances most likely to
breach the polytope. The goal is to increase the chance of
the controller failing by feeding these disturbances into the
system.

D. Transition triggering

A transition in the system is exploited by being repeatedly
triggered. By frequently revisiting the same discrete state in
the finite transition system, the chances of the car being steered
into an unfeasible continuous state within that partition, i.e.,
such that x(0) /∈ S0, increases. In other words, by repeating
the same sensitive transition several times, an error in the

Fig. 8. Comparison between using Dijkstra’s algorithm for computing the
park signal sequence and randomizing it.

controller is more likely to be found. To induce such a behavior
in the system, a tweaked version of Dijkstra’s algorithm is used
to find a park signal sequence that would cause these actions.

Dijkstra’s algorithm is an algorithm for finding the shortest
paths from a given source vertex, s ∈ V , to every other vertex
in a weighted, directed graph G = (V,E). A summarized
version of the algorithm is presented below; cij represents
the weight on the edge (i, j), yi represent the shortest path to
vertex i and pi its precursor.

1) Create an empty set to hold all visited vertices and a set
containing all unvisited vertices;

2) initialize the distances to ys = 0 and yj =∞;
3) find the closest vertex, i, that has not yet been visited;
4) investigate every edge, (i, j), from i and if yi+ cij < yj ,

update the distance to vertex j to yj = yi + cij and set
pj = i;

5) add vertex i to the set of visited vertices;
6) return to step 3 unless all vertices have been visited.

For a more exhaustive description see [12].
Figure 8 depicts the number of times the desired transition

is taken for different horizon lengths. The result show that
Dijkstra’s algorithm outperforms the randomized results. The
same phenomenon can also be seen in Figures 9 and 10, where
the car’s trajectories in the continuous workspace responding
to the different park signal sequences are plotted. In all figures,
the park signal sequence has been generated to trigger the
transition between the discrete states 2 and 0 in Figure 4.

V. SUMMARY AND FUTURE WORK

Up to this point, methods for both steps in the approach
presented in Section IV have been suggested. Due to shortage
of time, no actual executable test cases have yet been produced
or run on the system. However, for the small-case example
considered in this project, it may be possible to combine the
results obtained this far to manually test the controller for
certain transitions in the system.

There is still more work to be done on this project before
any conclusions can be drawn and a next natural step would

Fig. 9. The car’s trajectory in the continuous workspace when responding to
the park signal sequence generated by Dijkstra’s algorithm.

Fig. 10. The car’s trajectory in the continuous workspace when responding
to the randomized park signal sequence.

be to mutate the model of the car’s dynamics, for example by
introducing a weight, α ∈ (0, 1], to the input to the system as
follows

x(t+ 1) = x(t) + αu(t) + d(t).

and then investigate which transition in the system is more
sensitive to model changes, by comparing the sets of feasible
initial states for different transitions using the original model
and the mutated model. These transitions could then be
exploited by applying the calculated disturbances from (12)
to investigate if and for which values of α the controller fails.

ACKNOWLEDGMENTS

I would like to thank my mentor Richard Murray for
valuable inputs and discussions during this project, and my co-
mentor Sofie Haesaert for her immense support and assistance
throughout this summer. I would also like to thank Petter
Nilsson who acted as my stand-in co-mentor during the last
weeks of my stay.

REFERENCES

[1] T. Kirkpatrick. (2007) Edmund Melson Clarke. online. [Online].
Available: https://amturing.acm.org/award winners/clarke 1167964.cfm

[2] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with Tulip: The Temporal Logic
Planning toolbox,” in 2016 IEEE Conference on Control Applications
(CCA), Sept 2016, pp. 1030–1041.

[3] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. Murray, “Tulip:
A Software Toolbox for Receding Horizon Temporal Logic Planning,”
in 2011 International Conference on Hybrid Systems: Computation and
Control (HSCC). ACM, 2011.

[4] A. David, D. Du, K. Larsen, A. Legay, M. Mikučionis, D. Poulsen,
and S. Sedwards, “Statistical Model Checking for Stochastic Hybrid
Systems,” Electronic Proceedings in Theoretical Computer Science,
vol. 92, August 2012.

[5] H. Abbas, B. Hoxha, G. Fainekos, and K. Ueda, “Robustness-guided
temporal logic testing and verification for Stochastic Cyber-Physical
Systems,” in The 4th Annual IEEE International Conference on Cyber
Technology in Automation, Control and Intelligent. IEEE, 2014.

[6] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy of Model-based
Testing Approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, Aug. 2012. [Online]. Available: http://dx.doi.org/10.1002/stvr.456

[7] C. Baier and J. Katoen, Principles of Model Checking. 55 Hayward
Street, Cambridge, MA 02142: The MIT Press, 2008.

[8] J. Ouaknine and J. Worrell, “Some Recent Results in Metric Temporal
Logic,” in Formal Modeling and Analysis of Timed Systems, F. Cassez
and C. Jard, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 1–13.

[9] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1) Designs,”
in Proceedings of the 7th International Conference on Verification,
Model Checking, and Abstract Interpretation, ser. VMCAI’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 364–380. [Online]. Available:
http://dx.doi.org/10.1007/11609773 24

[10] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-Based Temporal Logic Motion Planning,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, April 2007,
pp. 3116–3121.

[11] T. Wongpiromsarn, “Formal Methods for Design and Verification of
Embedded Control Systems: Application to an Autonomous Vehicle,”
Ph.D. dissertation, California Institute of Technology, 1200 E. California
Blvd., May 2010.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

