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Abstract— Increased penetration of renewable energy sources
poses new challenges for the power grid, mostly due to their
inherent variability. In the presence of such variability, reliable
operation of the grid will require increased amounts of ancillary
services. We consider a case where wind generators are the
primary energy source with energy storage and spinning re-
serves from conventional sources available to provide ancillary
services. The problem is formulated as a risk-mitigated optimal
power flow (OPF) problem, where the objective is the scheduling
of spinning reserves to minimize the cost of ancillary services
and a chance constraint is used as the risk-mitigating factor
that compensates for uncertainties in generation and load. This
OPF with energy storage dynamics is solved as a finite-horizon
optimal control problem that we apply to several case studies
using the topology of the IEEE 14 bus benchmark system. We
then extend the framework to investigate the optimal distribu-
tion of storage capacity across different network topologies. The
results of the case studies quantify the need for ancillary services
and suggest a strategy for their scheduling and placement.

I. INTRODUCTION

There is a rapidly growing interest in replacing fossil
fuel based power generation with renewable energy sources.
These sources are desirable, not only for being more eco-
logically sustainable, but also due to increasing fossil fuel
prices caused by diminishing supplies [1]. The integration
of renewables to the power grid is currently being accel-
erated through a number of government mandates [2] and
incentives aimed at making the electricity grid ”greener”.
Grid integration can take place both at the transmission level,
with mainly large wind farms or solar power installations, or
at distribution level, typically with residential photovoltaic
panel installations. In either case, a high penetration of solar
or wind power poses a number of challenges primarily due
to the intermittent availability of such sources. It is widely
accepted that substantial changes to the power grid will be
needed for penetration levels above 20% [3], [4], [5]. One of
the key strategies to address these challenges is to introduce
large-scale energy storage to the grid. When used effectively,
these storage systems can minimize the amounts of spilled
energy [4], [5], [6], [7] as well as provide high quality
ancillary services and increase transmission capacity [8].

The role of energy storage in power systems has been
extensively investigated. An early simulation study in 1981
[9] confirmed the benefits of quickly dispatchable batteries
for peak-shaving and power regulation. More recently, [10],
[11] and [12] have studied the extent to which grid integrated
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storage can address the challenges posed by renewable
energy sources. One important question that arises in moving
toward a power system with large-scale energy storage is
how to distribute the storage capacity across the network.
Although this problem was addressed in [8] and [13], the
studies did not include analysis within an optimal power
flow setting. In addition, most of the existing literature
lacks temporal analysis. Given the variability in time that
is characteristic to many renewable energy sources, and
the fact that storage systems reduce the requirement for
instantaneous power balance, temporal analysis covering the
entire operating time line is critical. Specifically, such studies
are necessary to evaluate the types of new, more flexible, grid
operating paradigms that will be needed to deal with a high
penetration of wind power, which is highly random and can
not be controlled in the same way as conventional generators
[14], [8], [15].

The power industry with mainly conventional generation
has dealt with potential failures due to random events such
as line or generator failures using deterministic, worst-case
dispatch [4]. In this strategy the system operator schedules
generation according to the N-1 contingency criterion, ac-
cording to which all N possible contingencies, i.e. failures or
outages of lines or generators, are gone through, allocating
reserves to meet operating criteria in all possible cases of
only N-1 functioning units. This conservative strategy for the
planning of reserves has thus far also successfully accounted
for any load variability [16]. However, if these deterministic
criteria for the allocation of reserves are directly applied to
renewable energy sources with their high level of uncertainty,
a large amount of operating reserves provided by conven-
tional generators will be needed and the potential benefits
in terms of reductions in green house gas emissions may be
overshadowed [4].

The need for new operating criteria has led to considerable
research activity. For example, the authors of [15] compare
the N-1 contingency criterion to other operating criteria
based on generation and load variability. Partly probabilistic
operating criteria, including e.g. the loss-of-load probability
(LOLP), were introduced in the market clearing algorithm
of [16] and the concept of stochastic security was developed
further in [17]. The authors of [4] propose a risk-limiting
dispatch formulation that limits the LOLP using real-time
information about generation and loads, which they presume
will be available in a ”smart grid”. Other approaches using
altered OPF formulations with intermittent generation are
studied in [18] and [19], but these studies do not include
energy storage.

In this paper, we consider an OPF problem with stor-



age dynamics as a finite-horizon optimal control problem.
Risk-limiting constraints are used to study the operational
impacts of variability in generation and loads in terms of
the need for spinning reserves and energy storage units.
The spinning reserves are assumed to be dispatchable con-
ventional generators, e.g. gas turbines, with short ramp up
periods. Energy storage is distributed across the network
and the inflow/outflow at each time is described through
simple charge/discharge dynamics. We consider a case where
generation from intermittent wind sources is taken to be
the primary source, supplemented by these reserves and
storage units. We also briefly address the problem of storage
placement in networks and study how this is affected by
topology and transmission constraints.

This paper is organized as follows. The next section
describes the problem setup. Section III introduces the risk-
limiting optimal power flow, which is studied through a series
of cases studies that are outlined in Section IV. The results
of these studies are then presented through the examples in
Section V. Finally, we provide a summary and discuss some
directions for future work.

II. PROBLEM SETUP

Consider a network with a set of buses, N . The set G ⊂ N
of generation buses is connected by transmission links to
the set L ⊂ N of load buses, i.e., N = G ∪ L. This section
describes the power flow in this network when the generation
gk(t) for k ∈ G and load (demand) di(t) for i ∈ N are given
and stochastic. The problem of interest is the scheduling of
ancillary services and storage over some finite time horizon
T at time steps t ∈ T := {0, 1, 2, . . . , T − 1}. For sim-
plification we use the linear DC power flow approximation,
where the network’s transmission links are modeled through
the susceptance matrix B, where Bij = Bji is the line
susceptance between buses i and j.

A. Power Flows

The real power flow from bus i to bus j at time t ∈ T is

Pij(t) = |Vi(t)||Vj(t)|Bij sin(θi(t)− θj(t)),

where i, j ∈ N , |Vi(t)|, θi(t) are respectively the voltage
magnitude and angle at bus i. This expression is simpli-
fied using the linear DC power flow approximation which
assumes the voltage magnitudes at all nodes in N are
identically equal to the base voltage Vo = 1 for all t ∈
T and that the voltage angle differences are small i.e.,
sin(θi(t) − θj(t)) ≈ θi(t) − θj(t) for all i, j ∈ N . The
resulting expression is

Pij(t) = Bij [θi(t)− θj(t)] , (1)

where by abuse of notation we use Pij(t) to represent the
linear approximation. The small angle assumption imposed
in (1) can be enforced by requiring

|θi(t)− θj(t)| ≤ Θ, for i, j ∈ N and t ∈ T . (2)

The line power capacity limits p̄ij restrict heating of the lines
and enforce network stability requirements [20] so that the

Fig. 1. The in- and out-flow of power at bus i ∈ N . For i ∈ L, gi(t) =
and si(t) = 0, where ”≥ 0” indicates the positive direction of the flow.

simplified power flow between nodes i and j at each t ∈ T
is such that

|Bij(θi(t)− θj(t))| ≤ p̄ij , for i, j ∈ N . (3)

Consider a system where ancillary services are provided
as spinning reserves sk(t) co-located with generators k ∈ G.
At time t ∈ T the reserves are bounded as

0 ≤ si(t) ≤ Si(t), (4)

where Si(t) is the amount of reserves scheduled at time t,
as further discussed in Section III.

If we denote the power flow into the energy storage unit
located at every bus i ∈ N at time t ∈ T by ri(t),
where ri(t) can either be negative (charging) or positive
(discharging), then the power flow in and out of the energy
storage unit at each t ∈ T is constrained as

Rmin
i ≤ ri(t) ≤ Rmax

i , (5)

where Rmin
i < 0. The energy level of the storage at bus

i ∈ N and each t ∈ T is then related to the charge/discharge
rate through the difference equation

bi(t) = bi(t− 1) + ri(t), (6)

with initial condition bi(0) = b0 ≥ 0. The storage level is
bounded by each unit’s maximum capacity Emax

i such that

0 ≤ bi(0) +

t∑
t̃=0

ri(t̃) ≤ Emax
i , (7)

for each i ∈ N and every t ∈ T . We also require the energy
storage level at the final time to be at least as much as at the
beginning of the interval, which is captured by

bi(0) ≤ bi(0) +

T∑
t̃=0

ri(t̃) ≤ Emax
i , for i ∈ N . (8)

Figure 1 the shows in- and out-flows for a bus i ∈ N at
each t ∈ T .

B. DC power flow approximation

The DC power (or load) flow approximation is a standard
simplification of the actual power flow used to obtain a
linear formulation of OPF (see e.g. [21] for derivations).
The problem formulation presented herein makes use of DC
power flow’s three main assumptions, which are

(i) the resistance R of each line is negligible,
(ii) the voltage angle differences θi − θj are small, and



(iii) the voltage variations across the network are suffi-
ciently small to assume a flat voltage profile.

The applicability of the DC power flow model are ad-
dressed in a recent study by Purchala et al. [22]. They
conclude that assumption (i) is valid for the high X/R
(line reactance to resistance) ratios generally found in high
voltage transmission lines [23]. The particular ratios for the
IEEE 14 bus benchmark example (see [24]) that we use
in the case study presented in Section IV were computed
and verified to meet the criterion discussed. The authors
of [22] further indicated that the small angle assumption,
enabling the linearization of the trigonometric functions
in the power flow equations, is also generally applicable
for transmission grids. In the present work, the angles are
explicitly constrained to be sufficiently small through (2).
This angle constraint also limits the power transmission,
which also aids in limiting voltage variations across the
network to comply with assumption (iii). Clearly, use of DC
power flow does not allow direct study of voltages or reactive
power and the extension of this study to a full AC OPF
problem is a topic of ongoing work.

C. Risk mitigation strategy

Under normal operating conditions, the total power in-flow
at every bus has to match or exceed the total power out-flow
at all times, i.e.,

gi(t) + si(t) ≥ di(t) + ri(t) +
∑
j 6=i

Bij [θi(t)− θj(t)] (9)

for i ∈ N and t ∈ T . In traditional power systems reserve
capacity is allocated according to the N-1 contingency crite-
rion described earlier. This strategy ensures that the condition
(9) is fulfilled even when a generator fails but this may not
be the best approach in a system with a high penetration of
renewables. To study such a system our risk-limiting optimal
power flow problem considers an alternative risk measure,
the so-called loss-of-load probability (LOLP). To this end,
let us define the margin Mi(t) between the power in-flow
and the power out-flow at bus i ∈ N at time t ∈ T as

Mi(t) :=gi(t) + si(t)

−

di(t) + ri(t) +
∑
j 6=i

Bij (θi(t)− θj(t))

 .
As discussed above, gi(t) and di(t) are given and treated
as random variables, which from an operating perspective
may correspond to random wind and load forecasting errors.
The probability distributions of these random variables is
discussed below. Let εi be a given scalar which is a bound
on the desired reliability level, i.e., a bound on the LOLP at
bus i. Then, a probabilistic operating criterion is

Prob {Mi(t) ≥ 0} ≥ 1− εi (10)

for all i ∈ N and times t ∈ T . Note that this probability is
taken over all possible realizations of di(t) and gi(t).

The inequality (10) is a so-called chance constraint (see
e.g. [25], [26]); which is generally hard to handle and not

directly amenable to numerical optimization. Therefore, we
now reformulate this constraint to a deterministic version
using the theory and partly the notation given in e.g. [27].

Consider the random variable a, of which the linear trans-
formation is constrained to be smaller than some variable b
with a probability larger than η, i.e.,

Prob
{
aTx ≤ b

}
≥ η. (11)

If a is normally distributed with mean µ and covariance Σ
it holds that

Prob
{
aTx ≤ b

}
= Φ

(
b− µTx√
xT Σx

)
.

We therefore have

Φ

(
b− µTx√
xT Σx

)
≥ η

and by rearranging we have that

b− µTx ≥ Φ−1(η)||Σ1/2x||2 (12)

is an equivalent formulation to (11), in which Φ−1 is
the inverse cumulative distribution function of the normal
probability distribution and η ≥ 0.5 is the confidence level.

If we assume the wind generation gi(t) and load di(t) to
be normally distributed with means and covariances ḡi(t),
ΣG

i and d̄i(t), ΣD
i respectively, then

µT (t) = −(ḡi(t)− d̄i(t)),

and

b = −ri(t) + si(t) +
∑
j

Bij(θi(t)− θj(t))

for each bus i ∈ N and t ∈ T . Finally, defining M i(t) :=
b−µTx allows us to apply (11) and (12) to the risk-limiting
constraint (10) to obtain the following deterministic version
of (10)

M i(t) ≥ Φ−1(1− ε)||(ΣG
i + ΣD

i )1/2||2 (13)

for i ∈ N , t ∈ T .
Remark 1: A normal distribution is a standard assumption

for load prediction errors [28]. Although, statistical models
for wind power outputs often use Weibull distributions [7],
[29] a number of studies in the literature approximate this
behavior with a Gaussian, e.g. [16] and [30].

III. RISK-LIMITING OPF

The objective of the optimization problem described herein
is the scheduling of reserves and storage units while minimiz-
ing the cost of their usage over the finite time horizon T , the
planning horizon. We also assume that there is some reserve
period t = 0, . . . , (TR−1), TR < T for which the maximum
reserve levels Si(t) at buses i ∈ G are pre-determined. Then,
the optimization program determines reserve levels Si(t) for
t = TR, . . . , T − 1 and use si(t) of the reserved capacity at
times t ∈ T , at all i ∈ G in order to ensure that the LOLP
criterion is satisfied. Figure 2 illustrates the planning horizon
and the reserve period.



Fig. 2. The planning horizon and the reserve period at operating time
t = 0. The reserve period is the time for which the ancillary services
are pre-allocated prior to the optimization, which takes place over the full
planning horizon.

Let the cost of allocating spinning reserve capacity outside
the reserve period be given by

cR(S) :=
∑
i∈G

T−1∑
t=TR

Hi(Si(t), t) (14)

and the cost of using reserve power be

cs(s) :=
∑
i∈G

T−1∑
t=0

hi(si(t), t). (15)

Additionally, we define the cost of storage use cB(r),
which can be used to represent e.g. losses due to charg-
ing/discharging inefficiencies.

Given some reserve period 0 < TR < T , stochastic loads
di(t), renewable generation profiles gi(t), transmission ca-
pacities p̄ij(t), initial storage levels bi(0), storage capacities
Emax

i , storage rate limits Ri, pre-allocated reserve levels
over the reserve period Si(0), . . . , Si(TR), and a risk level
εi, the risk-limiting OPF problem with energy storage is

min cs(s) + cR(S) + cB(r) (16)

subject to (2)−(8) and (13) over the decision variables
ri(t), θi(t) for i ∈ N and t ∈ T , si(t) for i ∈ G and t ∈ T
- and Si(t) for i ∈ G and t = TR, . . . , T − 1.

A. Optimal storage placement

This framework can also be applied to investigate the
optimal distribution of storage throughout the network. This
requires the presented problem formulation to be slightly
altered. Previously, the storage capacity Emax

i at each bus
i ∈ N in (7) was pre-determined whereas this quantity is
a decision variable in the in the optimal placement prob-
lem. In this modified formulation the total storage available
constrains the sum of these decision variables, i.e.∑

i∈N
Emax

i ≤ Etot, (17)

while the storage charge/discharge rate is still limited ac-
cording to (5). This optimal storage placement problem then
distributes a given amount of storage capacity with given
power ratings over all of the available buses under the
constraints (3) - (8), (10) and (17) while minimizing the cost
function (16).

IV. CASE STUDIES

We study the risk-limited OPF problem using topology of
the IEEE 14 bus benchmark system [24], which is represen-
tative of a portion of the Midwestern US transmission grid.
This section describes the data sources and parameters used
for the example instances of the problem that are discussed
in Section V. The optimization problem was implemented
numerically as a semi-definite program in MATLAB and
solved for various cost functions and reserve periods using
YALMIP [31].

A. Wind generation data

The IEEE 14 bus test case contains five generator buses.
Generation profiles for these were created using data from
five Southern Californian locations provided by the National
Renewable Energy Laboratory (NREL) [32]. At each lo-
cation, the data at 10 minute intervals for five individual
wind turbines during July 2006 was averaged. The statistics
for an average July day were then computed using the 31
days of data. The generation curves, which can be seen in
Figure 3, were then scaled for the total produced energy
over the 24 hour period to match the total demand, i.e.∑

i∈N
∑T

t=0(gi(t) − di(t)) = 0. That is, we assume the
installed wind capacity is sufficient to cover the average
demand. The top panel of Figure 3 shows the average
generation profiles for the 5 generation buses.

B. Load data

Load profiles were created using normalized demand data
from 14 typical feeders [33] for the month of July 2010.
The data was interpolated to obtain points separated by ten
minute intervals to match the wind generation data. Statistics
were obtained by averaging of the 31 days of the month for
each of the 14 load buses.

The demand curves as well as the covariances were then
scaled to the IEEE 14 bus test case, letting its static demand
values correspond to the peak values of the curves. The
bottom panel of Figure 3 shows the resulting demand profiles
for each bus.

C. Risk and uncertainty parameters

The LOLP is limited by the constraint (13). We call the
right hand side as the confidence margin for each bus because
it represents how much extra supply that is needed to produce
the desired confidence level 1− εi in (10). This depends on
the assumed risk level ε and the combined covariance of
generation and load. Figure 4(a) illustrates the multiplicative
factor Φ−1(1− ε) in (13) as a function of ε.

Figure 4(b) illustrates confidence margin’s dependence on
the scalar variance given as a percentage of the nominal
generation (2 p.u., representative of the total generation),
with constant load variance (here set to 5% of 2 p.u.) and
risk level ε = 5%. Although this plot only represents an
illustrative simplification of the relation used in the case
studies it demonstrates how the generation variance affects
the confidence margin. The covariances over time during a
one day planning horizon are computed using a full month
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Fig. 3. Generation profiles for the five generator buses based on five
Southern Californian wind farms (upper). Demand data for 14 typical
feeders (lower). The data represents the generation and demand for an
average day in July. These figures are plotted with hourly sub-sampling
of the data.

of statistics. This procedure results in a very large standard
deviation, which is partially due to the data’s large intra-day
fluctuations that includes days when the generators were out
of use. Therefore, we reduce the variance in our data using
a model based on the one suggested in [34]. Even with this
modification, wind power prediction for a given planning
horizon is generally more accurate than the data used herein,
see e.g. [35]. The curve in Figure 4(b) shows that this
overestimate of the variance means that the results obtained
here will be conservative. The use of more accurate wind and
load prediction models in the proposed problem formulation
will be able to improve the predictions for ancillary service
and storage requirements. This is a topic of ongoing research.
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Fig. 4. (a) The multiplicative factor Φ−1(1 − ε) from equation (13)
as a function of the risk level ε. This function is the inverse cumulative
distribution function of the normal probability distribution function and gives
the size of confidence intervals at different levels.(b) The confidence margin,
i.e. the right hand side of equation (13), as a function of the variance in
generation relative to the nominal generation 2 p.u. with load variance = 0.1
p.u. and ε = 5%

V. RESULTS AND DISCUSSION

In this section we apply the described risk-limiting OPF,
(16) subject to (2)−(8) and (13), and illustrate the roles
of storage units and spinning reserves in the system. We
present cases with different reserve periods. Solutions to
the optimal placement problem for different topologies and
storage capacities are also presented. For all of the examples,
we take the risk level ε = 5% and the bound in (2) to
Θ = 10◦, unless otherwise indicated.

A. Example I

We first consider the case where spinning reserves are
pre-allocated for the entire planning horizon, i.e. the reserve
period in Figure 2 is TR = T . The spinning reserve limit
is set to Si(t) = 1 p.u. for all i ∈ G and t ∈ T . The cost
function (16) is applied using quadratic functions H(Si(t), t)
and h(si(t), t), and a linear function cB(ri(t)), with constant
coefficients that are equal at all buses i ∈ G. We assume
the storage units have maximum charge (discharge) rates
Rmax

i = −Rmin
i = 0.5 p.u. with capacity Emax

i = 1.5
p.u. for all i ∈ N for Example I and II.

Figure 5(a) illustrates the result of the risk-limited OPF.
The bottom panel enables a comparison of the upper two
to the total generation-load balance and illustrates the con-
fidence margin and the fulfilment of the operating criterion
(13). Here it is clear that the generation exceeds the demand
until t = 10 h. During this time the storage charges as is
seen in the center panel of Figure 5(a). Later in the day, the
energy is discharged to, together with the spinning reserves,
compensate for the generation deficits and the confidence
margin given by the risk-limiting constraint, seen in the
bottom panel of Figure 5(a).

It should be noted that the storage capacity is not fully
used in this example. This is because the surplus energy in
the first hours is not sufficient to fully charge the storage
and compensate for the confidence margin. As expected, the
storage is not charged with power generated by the spinning
reserves because that would increase the cost function value.

B. Example II

In this case, we study the problem with a reserve period of
6 hours, i.e. TR = 1

4T , with pre-allocated limits of Si(t) = 1
p.u. for all i ∈ G and t = 0, . . . , TR − 1. The top and center
panels of Figure 5(b) shows that this scenario leads to the
use of the allocated spinning reserves during t < TR to
fully charge the storage units. The storage units then contain
enough energy to enable a minimal usage of reserves later in
the day. This behavior can be explained through the nature
of the cost function cR(s, S) defined in (14). This function
penalizes the use of spinning reserves outside of the reserve
period, when t > TR. It should be noted that the spinning
reserve use in the center panel of Figure 5(b) is piecewise
constant, since we are using a quadratic cost function.

The use of reserve capacity during off-peak hours to
charge energy storage units is reasonable from a market per-
spective if there is a lot of high efficiency storage available,
as for example in regions where pumped storage is abundant.
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Fig. 5. Results of optimization program (a) with reserve horizon equal to the planning horizon and (b) with reserve period TR = 6h. The figures show
storage levels (usage) at each of the 14 buses (top) and spinning reserve usage at the five generator buses (middle) compared to the total generation-load
balance and the operating criterion (bottom), where < · >tot denotes

∑
i∈N < · >.

As mentioned in the introduction, this strategy may also
be advantageous from a congestion management perspective
depending on the placement of the storage. The inclusion
of storage efficiencies in the formulation will better simulate
the trade-off between reserves and storage and is a subject
of ongoing research.

C. Optimal placement problem

To investigate the optimal placement problem introduced
in Section III-A, we study simple grid topologies. This allows
us to more easily isolate the effects of transmission and
network constraints on the distribution of storage across
the network. We expect the insights gained in this simple
setting to be transferable to general network topologies.
Figure 6 shows the two 4-node Y-shaped and the 3-node ∆-
shaped topologies that were selected for this investigation.
The properties of these networks are again modeled by the
susceptance matrix B, where a low susceptance implies a
long transmission line. Long lines are of particular interest
as they can model the wide separation between generation
and load that is expected to become important as more
geographically isolated wind farms are added to the grid [36].

The generation and demand curves used in this study are
sinusoids shifted by π/2, with equal loads at all buses and
a generation that covers the total demand over the time
period of 24 hours. Sinusoids were chosen to approximate
the shapes of the real demand and generation profiles in
Figure 3. The assumed uncertainty in load and generation are
30% and 50% of the peak values respectively. Figure 7(a)
shows the simplified generation and load profiles in the upper
panel. The lower panel of Figure 7(a) displays a characteristic
storage use result, obtained for the topology in Figure 6(a)
with Etot = 5 p.u. and the voltage angle difference from (2)
is set to Θ = 5◦.

For all of the cases tested, any uneven distribution of
storage over the network favored a larger share being placed
on the generator bus. Therefore to describe the results in this

(a) (b) (c)

Fig. 6. Simplified topologies used to study optimal storage placement. (a)
and (b) are 4-bus networks with one generator at bus 1 and 2 respectively
and three load buses. (c) is a 3-bus topology with one generator at bus
1 and two symmetrically placed loads. The line impedances, in this case
purely reactive, are indicated on the lines. The susceptance of the lines is
the inverse of the reactance.

section we discuss the percentage by which the generator
bus storage capacity exceeds the average capacity at the
other buses. Figure 7(b) depicts this quantity for a number of
different test settings. It shows that the advantage gained by
placing more storage at the generator bus is largely a function
of the power flow constraints. This dependence is illustrated
by altering the angle bound Θ in (2). A larger angle Θ = 10◦

permits a larger power flow and results in more evenly
distributed storage than Θ = 5◦, (note: both angles are well
in the limits of the small angle assumption). The diagram in
Figure 7(b) also illustrates the strong dependence on the total
storage capacity. The topology also plays a role, for example
the one in Figure 6(a) favors placing storage at the generator
bus more than the other topologies that were analyzed here.

These results can be interpreted as follows. Since the DC
power flow represents a lossless system, having to transmit
power through the network does not have any disadvantages.
Therefore when there is enough capacity, an even distribution
of the storage is preferable because it can maximize the
total power rate delivered by the storage units when the
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Fig. 7. (a) Simplified generation and demand schemes used to study the optimal placement problem and a typical storage usage scheme. (b) Result of
placement problem for topologies given in Figure 6 given as the percentage with which the storage capacity at the generator node exceeds the capacity
at the other nodes (on average), with different total capacities and power flow constraints. ”Top (a)”, ”Top (b)” and ”Top (c)” refer to the topologies of
Figure 6(a)-6(c) respectively.

rate is independent of the capacity (as in the current study).
However, when the transmission capacity is limited such that
the peak generation can not be transmitted, it is advantageous
to store the energy at the same bus as it is generated. The
storage then releases the power when there is no congestion.
This strategy is increasingly favored as the storage capacity
and isolation (distance from the other nodes) of the generator
bus is increased, as illustrated by the results for topology
(a), which has the longest distance to the load buses. The
corresponding topology (b), but with the generator at bus 2,
enables transmission of power through more than one line
and less storage is needed at the generator. For these reasons,
buses with very high loads and highly interconnected nodes
may also be strategic for storage placement.

VI. SUMMARY AND POTENTIAL EXTENSIONS

We have formulated an optimal power flow problem with
risk-limiting constraints to study the scheduling of spinning
reserves and energy storage as a finite-horizon optimal con-
trol problem. Our formulation models the pre-allocation of
spinning reserves for a portion of the planning (optimization)
horizon.

A natural extension of this work would be a receding
horizon implementation, where the pre-allocation for some
reserve period is determined at each update. This type of im-
plementation would also benefit from some data forecasting
technique for both wind levels and demand. Such a frame-
work may be useful in studying different market strategies
for pre-allocation of ancillary services. For example, day-
ahead versus hour-ahead markets could be compared through
changing the reserve period described in Figure 2.

We investigated the effects of wind and load variability
on the scheduling of spinning reserves and storage units on
the IEEE 14 bus benchmark system. We modeled an extreme
case with wind as the primary energy source and compensate

for the variability using reserves that are allocated based
on probabilistic operating criteria. The reserve requirements
computed in our study represent a worst-case scenario be-
cause there is no wind or load forecasting included in our
model. The inclusion of an accurate model of wind prediction
and its errors are topics of ongoing study as is the inclusion
of time correlations for the wind and load data.

Two important next steps are the extension of this frame-
work to an AC power flow setting and the introduction of
storage efficiencies, which would allow cost benefit analysis
of different storage technologies. Both of these extensions
would be beneficial in the storage placement problem that
was introduced here. Our results for that problem demon-
strated the dependence of the storage placement on trans-
mission line limits and network congestion. In the lossless
DC power flow model co-locating storage with wind thus
seems to be a preferable strategy. Although, the authors
of [8] also advocate co-locating wind and storage for the
sake of increased transmission capacity, they indicate that
the value of the storage as an ancillary services provider is
higher when co-located with the loads. Investigation of such
a scenario would be better carried out in an AC setting were
transmission losses and voltage drop can be included in the
analysis. The extension of the placement problem to the AC
framework is part of our ongoing research.
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