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Flow through Channels with Deformable
Obstructions

John Samuelsson, Mentors: Prof. Beverley McKeon and Dr. Mitul Luhar

Abstract—In this project, the static and dynamic deformation
of deformable obstructions in confined flows was investigated via
laboratory experiments. Flexible polyethylene walls of varying
thickness were placed normal to the water flow in the Cann
Water Tunnel, with flow speed estimated using Digital Particle
Image Velocimetry, DPIV. The deformation was then captured
using digital videography across a range of flow speeds.

Unlike flexible bodies in unconfined flows, the Cauchy num-
ber, Ca, was not able to predict posture in steady state wall
deformation. However, a modified Cauchy number taking the
increase in velocity due to flow confinement into account, Ca∗,
was sufficient for predicting posture for all wall lengths not
exceeding the channel width. For walls of length longer than
the channel width, self-similarity was broken and the deflected
height of the flap converged to a constant value. That value was
also predictable by Ca∗.

Experiments indicated that dynamic deformation occurs when
Ca∗ is typically larger than 3000 and the Reynolds number,
Re, typically larger than 10000. The dynamic deformation was
in the form of monofrequent oscillations with clear harmonic
tendencies. The oscillations were vortex-induced with a Strouhal
number, St, of 0.12.

I. INTRODUCTION

MANY internal flows of biological and engineering
interests are characterized by the presence of de-

formable obstructions, see Figure 1 [Vogel, 1996]. In such
cases, interaction between the fluid flow and the flexible
obstruction can produce a rich range of static and dynamic
behavior.

Recent analytical and experimental studies have considered
the static reconfiguration of flexible structures in unconfined
flows [Alben et al., 2002; Gosselin et al., 2010; Luhar and
Nepf, 2011]. In these studies, the behavior of flexible bodies
has been shown to depend on a dimensionless parameter
known as the Cauchy number, Ca, which is defined as the
ratio of the aerodynamic or hydrodynamic force on the flexible
structure and the restoring force due to structure stiffness
[Luhar and Nepf, 2011].

However, the primary goal of these studies has been to
characterize the reduction in aerodynamic or hydrodynamic
drag that results from the reconfiguration of flexible structures
[Alben et al., 2002]. The effects of placing such flexible walls
in confined channels, such that the structures obstruct the
flow, have not been considered. To address this gap, the flow
and deformation of a flexible body confining the flow were
examined via laboratory experiments.

Our hypothesis was that in confined flows, where we expect
a greater interaction between the body confining the flow and
the fluid, the Cauchy number is not enough to predict behavior,

but one also needs the confinement ratio,

Q =
h

w
, (1)

where h is the deflected height of the body and w is the
channel width. Other parameters that might have an influence
in their own right include rigidity, R [Nm2], and flow velocity
along the tunnel, u [ms ], of the fluid. Throughout this paper,
the coordinate system found in Figure 3 will be used. That
is, x points along the length of the tunnel, y points in the
direction perpendicular to the sidewall over the width of the
channel, and z points from the bottom upwards. The (x, y, z)
components of the velocity field of the fluid is defined as
u = (u, v, w).

Figure 1. Model over investigated configuration. w represents channel width,
h deflected height, l flap length and U the free stream velocity. The black
line represents the flexible body bending by drag force, the initial state of the
flap is vertical.

Background Theory

This section provides a brief review of the model developed
by Luhar and Nepf (2011) describing the steady state posture
of a flexible flap in an unconfined flow. This model is used to
generate posture predictions in the following sections. The flap
is modeled as a blade pin jointed at the bed with a free tip, see
Figure 2. We use the curvilinear coordinate system shown in
the same figure, in which s is the coordinate going along the
flap from the base, so that s = 0 represents the bed and s = l
the tip. θ(s) represents the angle with the vertical plane and
U the free stream velocity. Observing force balance for the
part of the blade from s∗ to the tip, where s∗ is any value of
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Figure 2. Model over flap in bent state. Picture to the left shows forces and
torque acting on a small part ds of the flap. Picture to the right shows a
schematic over the curvilinear system and inset used to derive mathematical
model [Luhar and Nepf, 2011].

s from 0 to l, we have two forces at work: the restoring force
due structure stiffness, V ∗(s∗), and drag fD(θ), see Figure
2. Observing a part of the flap ds (see Figure 2), the torque
balance equation gives,

1

2
ds(T (s) + T (s+ ds))−M(s) +M(s+ ds) = 0

⇒ T (s) ∼= −
dM(s)

ds

M(s) = EI
dθ

ds
⇒ T (s) = −EI d

2θ

ds2
,

where E is the elastic modulus of the flap, I the second
moment of inertia with respect to the bending axis assuming
plain bending, T the shear force and M the internal torque
[Ludh, 2000]. In the inset in Figure 2, V ∗ is the shear force
at s = s∗ so

V ∗ = T (s∗) = −EI d
2θ

ds2
|s=s∗ .

The form drag exerted by the fluid on the body is represented
by

fD =
1

2
CDρAU

2,

where ρ is the density of the fluid and A the area normal to
the water flow [Blevins, 1984]. Assuming skin friction to be
negligible in relation to form drag, we neglect the velocity
component tangential to the flap and only include the velocity
component normal to the flap. The drag for a part ds of the
flap is then

fD =
1

2
CDρbdsU

2 cos2(θ),

where b is the depth of the flap and CD the drag coefficient.
The steady state force balance equation for the vector compo-
nent normal to the wall for the inset is then,

n : V ∗ + fD = 0

−EI d
2θ

ds2
|s=s∗ +

l∫
s∗

1

2
CDρbU

2 cos2(θ) cos (θ − θ∗) ds = 0

Figure 3. Experimental setup. The flap is being held in place by two angle
bars, one at each side, pierced by two screws. Schematic not to scale.

Normalizing the s-coordinate via ŝ = s
l , so that ŝ = 0

represents the base and ŝ = 1 the tip of the flape, we have

−EI
l2
d2θ

dŝ2
|ŝ=ŝ∗ +

1∫
ŝ∗

1

2
lCDρbU

2 cos2(θ) cos (θ − θ∗) dŝ = 0.

−d
2θ

dŝ2
|ŝ=ŝ∗ +

l3CDρbU
2

2EI

1∫
ŝ∗

cos2(θ) cos (θ − θ∗) dŝ = 0.

By letting the Cauchy number, Ca, be represented by

Ca =
l3CDρbU

2

2EI
(2)

we get the final expression of the force balance equation,

−d
2θ

dŝ2
|ŝ=ŝ∗ + Ca

1∫
ŝ∗

cos2(θ) cos (θ − θ∗) dŝ = 0.

For a wall of rectangular cross section, I = 1
12bt

3 and
our Cauchy number becomes Ca = 6l3ρbCD

Et3 [Sundström et
al., 1998]. This equation can be solved numerically using
an iterative shooting method with the boundary conditions
θ(0) = 0 and dθ

dŝ |ŝ=1 = 0. Doing so yields the angle θ
at all positions along the blade and by that the posture is
determined. Since Ca is the only parameter needed to solve
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l
w

Flow velocities, u [ cm
s

]

1/4 21.1* 10.5* 4.7* 13.3** 9.4**
7.3** 4.2** 17.3*** 13.4*** 7.7***

2/4 11.9* 5.3* 15.1** 7.6** 3.4**
13.9*** 6.2*** 4.4*** 11.6**** 26.5****

3/4 18.7* 5.9* 16.7** 7.4** 3.7**
13.7*** 6.8*** 23.9**** 6.3**** 14.2****
20****

1 11.6* 3.7* 10.4** 4.6** 8.5***
4.3*** 4.1**** 7.5**** 20.6****

5/4 8.0* 7.2** 13.3*** 5.9*** 23.1****
10.4**** 7.3**** 5.6**** 3.3****

6/4 6.0* 17.0** 5.4** 9.9*** 4.4***
17.3**** 7.7**** 5.5**** 4.3**** 2.5****

Figure 4. Obtainable measuring points in (Ca, l
w
)-space for different walls.

Walls of thickness 0.002, 0.004, 0.006 inches are all of LDPE, the 0.015
ich wall is of HDPE. Conducted measurments are marked as stars in the
plot, stars with circles around them were made twice for different values of
rigidity (i.e. different walls) and flow velocities. * = wall thickness 0.002”, **
= wall thickness 0.004”, *** = wall thickness 0.006”, **** = wall thickness
0.015”.

the equation, and thus finding the posture, Ca is the sole
parameter governing posture. Another important observation
is that the length of the flap only goes into the equation via
the Cauchy number. Thus, if two flaps of different lengths have
the same Cauchy number, the deformation will be identical up
to a matter of scaling. In other words, the normalized height
of the flaps, hl , will be identical for the same Cauchy number.
Therefore we say that the bending is self-similar.

When the Cauchy number is larger than 1, the drag is
stronger in relation to structure stiffness and the flap bends
over more. As the flap becomes increasingly bent, the deflected
height h becomes smaller. Given that the bending is self-
similar, there is a one-to-one relationship between Ca, the
flap posture, and the scaled deflected height, hl . Therefore, hl
is a good metric for comparing deformation across all cases,
where a larger deformation means a smaller value of h

l .

II. METHODOLOGY

Experiments were conducted in the Graduate Aerospace
Laboratories of the California Institute of Technology, in the
CANN water tunnel. The water tunnel has a 15.7 × 14.5 cm
cross section, a 79 cm long test section and is fitted with
a variable speed pump. Throughout this study, a water level
of 13.0 cm was used. Prior to performing the deformable

Figure 5. Flow velocity vs pump frequency for different heights (to the left)
and the average flow velocity for given pump frequencies (to the right) along
with a linear least square fit. The points represents the average and the boxes
the standard deviation.

wall experiments, a velocity calibration of the GALCIT water
tunnel was made. The study used DPIV technique to find the
velocity field of the fluid. A 1 W continuous laser was used for
illumination and a 1280× 1024 pixel CCD camera was used
to record images at 60−100 frames/second (fps). The camera
was placed around 45 cm down the length of the test section.
The water was seeded with particles of density 1.1 g

cm3 (type
AgSL150-30-TRD, by Potters Industries). The images were
analysed and the velocity field of the fluid found by using
PIVlab software package [http://pivlab.blogspot.com].

Water Tunnel Calibration

PIV measurements were made at three different heights
above the bottom of the channel: z = 2, 6 and 10.5 cm and
at pump frequencies of 5–30 Hz with a linear unit step of 5
Hz, making a total of 18 measurements. The PIV algorithm
used Direct Cross Correlation (DCC) with a highpass filter of
size 15 pixels, and an interrogation area of 90 pixels. While
post processing the data, extremely deviating velocity vectors,
defined as those deviating more than 7 standard deviations rel-
ative to the surrounding vectors, were discarded and replaced
with vectors found from interpolation. A calibration image of
an object (a ruler) of known size was taken and uploaded at
each height to give physical dimensions to the flow. Mean flow
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Figure 6. Measurements and theoretical prediction with error bars of h
l

plotted to Cauchy number. In the picture below, the Cauchy number of the
measurements have been replaced with Ca∗ based on measured deflected
height h.

vectors were calculated over all the frames, and the average
flow velocity of all the cubes in the mean frame was taken as
the flow velocity u.

Static Deformation

The aim of the experiment was to investigate wall deforma-
tion when the wall is flexible and confining the flow, as well
as the transition from the unconfined to confined case. For
simplicity we wanted to make the experiment two dimensional
(2d − 2c), i.e. having no z-dependency in the flow and wall
deformation as well as keeping w at zero. This was achieved
by having the flexible wall ending just above the water surface.
To ensure that the water was not going over the wall and thus
leading to a non-zero w velocity, the wall extended 5 mm
above the water surface, see Figure 3. The change in flow
velocity u and confinement ratio q under the course of the
experiment led to small variations in water depth. However,
the maximum difference for relevent flow rates was around
2 mm, so having a 5 mm margin ensured water not flowing
over the wall. We assume that the z-dependency in the wall
deformation induced by having water pressure in the wetted

Figure 7. h
l

plotted to Ca∗ for all performed experiments, each point
represents one experiment. The marker represents wall length and the color
of the marker represents confinement raito.

portion and no pressure in the part above the water surface
is negligible, since the wall was 135 mm of height, of which
only 5 mm (3.7 %) was above the water surface. The wall
ended 2 − 3 mm over the bottom of the channel in order to
make sure that no part of the wall was dragging the bottom,
generating unwanted friction on the wall and thus disturbing
the experiment.

Two angle bars held together by a screw and clamps were
used to keep the wall in place. For the thinner walls, two
screws had to be used in order for the flexible wall not to
slip, in this case no clamps were needed. The friction between
the bottom and the angle bars proved sufficient in keeping
the construction in place, not sliding along the length of the
water tunnel. When applying high flow velocities to the more
rigid HDPE material, a greater drag was generated by the
wall. For such cases, the construction was held in place using
extra weights. The angle bars were of type Low-Carbon Steel
90 Degree Angle 1/2" X 1/2" Legs, 1/8" Wall Thickness, 1’
Length. In order to determine whether the angle bars would
remain rigid under the course of the experiment, its Cauchy
number, Ca = 6ρU2CDl

3

Eb3 , was calculated. Typically, a Cauchy
number larger than 1 means it will bend over, while a Cauchy
number smaller than 1 means it will stay firmly rigid. The
angle bars have a Cauchy number in the order of 10−4,
ensuring their being rigid in the flow.

The investigated flexible walls were made of High Density
Polyethylene, HDPE, and Low Density Polyethylene, LDPE.
HDPE has a density of ρ = 0.95 g

cm3 , while LDPE has
a density of ρ = 0.92 g

cm3 so ∆ρHDPE = 0.05 g
cm3

and ∆ρLDPE = 0.08 g
cm3 in water. Thus the bouyancy of

HDPE is much less than that of LDPE. However, because
of its relatively high elastic modulus, EHDPE = 0.93 GPa,
the wall need to be very thin in order to get high Cauchy
numbers for a given length. LDPE has an elastic modulus of
ELDPE = 0.235 GPa and homogenous, pure LDPE sheets are
available in thickness starting at 0.002 inches, which allows
larger Cauchy numbers.

In order to get the buoyancy negligible for the LDPE
material, which has a relatively large density difference to that
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Figure 8. Relative difference of experimental value of h
l

to theoretical
prediction, plotted versus confinement ratio and wall length. Measurements
have been grouped together in intervals of 0.1, from (0.1, 0.2) to (0.6, 0.7)
in the case of confinement ratio (left plot). The circles represent the average
value and the flyers plus/minus one standard deviation in the relevant interval.
The average value of the confinement ratio in the interval has been written
out on the x-axis.

of water, the ratio of the drag force to the restoring force due
to buoyancy has to be big, so that the wall is pushed back into
the non-buoyant deformation state by the drag force when it
tries to bend itself upward due to buoyancy. Specifically, the
ratio of drag force to buoyancy force is equal to the ratio of
the Cauchy number to the buoyancy parameter, defined as

B =
∆ρgtl3

EI
,

since Ca = Drag force
Stiffness force and B = Boyancy force

Stiffness force , so Ca×
B−1 = Drag force

Stiffness force ×
Stiffness force
Boyancy force = Drag force

Boyancy force . If
Ca × B−1 ≥ 10, the buoyancy can be neglected with high
precision [Luhar and Nepf, 2011]. Thus we had to make sure
that

Ca×B−1 =
0.5ρCDU

2

∆ρgt
≥ 10⇔ U ≥

√
20∆ρgt

ρCD
,

where g = 9.8 m
s2 is the gravity constant and ρ = 1.0 g

cm3 the
density of water for each tested wall.

The range of flow velocity in the water tunnel was u ∈
(2.5, 25) cm

s . One HDPE wall of thickness 0.015 inches and
three LDPE walls of thickness 0.002, 0.004, 0.006 inches
were used. Taking all these limitations into account, the
obtainable measurement points in (Ca, lw ) − space are as
shown in Figure 4. Since our hypothesis is that the confinement
ratio and the Cauchy number are the two parameters that
dictate posture, we want to investigate the dependency of
these in the deformation. Therefore the measurement points
represent isolines for Ca and l

w . Further, in order to see
whether Ca and l

w are sufficient in predicting posture, we kept
Ca and l

w constant while varying rigidity and flow velocity
for different points in (Ca, lw )-space. All measurements are
found in the tables in Figure 4, which shows that the wall
length varies between a quarter of the channel width, 0.25 w,
to 1.5 w. For given wall lengths we are able to vary flow

Figure 9. Same plot as Figure 8, excluding walls longer than channel width.

speed and through that vary Ca. For current constraints the
range of Ca goes form 1 − 200 to 1 − 10000. Secondary
measurements were made of wall length 2 w for Cauchy
Numbers Ca = 3, 5, 10, 50, 200, 1000, 10000.

The deformation of the wall was found using a grid at
the bottom of the water tunnel. In the cases of longer walls,
the camera had to be moved along the length of the water
tunnel to capture the whole deformation. Because of the
limited bandwidth of the camera, a high frame rate and a full
1280 × 1024 resolution was not obtainable. Because of this,
at high flow velocities where the PIV analysis requires a high
frame rate, the image was split in smaller sections during the
recording and then later merged together to get the full picture.

Dynamic Deformation

To investigate what parameters dictating the transition into
oscillatory state, LDPE-flaps of thickness 0.002 and 0.004
inches and lengths varying from 2

4 to 6
4 w with an interval of

1
4w were used. The flaps were immersed into still water, one
at a time, after which the flow velocity was slowly increased
until the flap started oscillating. The flow velocity was then
decreased until the flap went back into steady state. Both of
these transition speeds were noted. Two different definitions
of oscillations were used: absolute and relative oscillations. In
the case of absolute oscillations, the oscillation of the tip of
the flap had to be of at least 1 cm amplitude. In the relative
case, the amplitude of the tip had to be l

w cm. Experiments
showed, however, that the relative and absolute case led to
similar results for the transition speed.

Once the flap had reached oscillatory state, the deformation
was recorded. The video was then converted into an image
sequence using Image-J software package. A point of the flap
defined as the point closest to the tip where the angle θ never
went above 900 (i.e., never pointed towards the wall to which
the flap was attached) was being tracked by cutting the images,
making them vertical, at this point. The images were then
loaded into Matlab and converted into grayscale, so that each
pixel had a numerical value of 0 − 1 where 1 represented a
completely white and 0 a completely black pixel. In order
to find the flexible wall, which was lit up white by laser
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Figure 10. Confinement ratio plotted to wall length, measurements of the
same Cauchy number have been given the same color.

illumination, a pixel was defined as white if its grayscale value
was at least 95% of the maximum value in the current picture.
Since the water was seeded by illuminated, white particles, it
was not trivial finding the flap. To overcome this, the vertical
coordinate (the y-coordinate) of all the “white” pixels (i.e.,
both the particles and the flap) were saved into a vector and
the flap was found by taking the median value of this sorted
vector. The median value was then saved as the y-coordinate of
the flap. This process was repeated for all the pictures, saving
the position of the flap at different times, after which plots
over amplitude versus time were obtainable.

III. RESULTS

Water Tunnel Calibration

The calibration results of the velocity calibration are shown
in Figure 5. Observing the results, one sees that there does
not seem to be any systematic difference in velocity at
different depths, so variations are assumed to be random and
velocity profile uniform within tested water depths. Therefore
an average was taken of the all the measurements at each given
frequency and a linear least square fit was applied to this data.
The result was the linear equation u = 0.62f + 0.15, where
u [ms ] is flow velocity and f [Hz] pump frequency, with an R2
–value of 0.9972. Figure 5 also shows the average values over
depth at given frequencies along with a confidence interval
taken as plus/minus one standard deviation of the data acquired
at each frequency, as well as the result of the linear regression.

One might expect that the velocity profile of u would change
over the tunnel width with no slip boundary conditions at the
sidewalls. However an analysis shows that even though the
velocity profile was not perfectly uniform across the width
of the channel, there was no profile that repeated itself over
different measurements, and so the non-uniformity in the
profile is accredited to random error, which is reasonable
considering the small difference to the mean velocity u of
typically less than 5 %.

Static Deformation

As we originally anticipated, the Cauchy number is not
sufficient for predicting posture for flexible bodies in confined

Figure 11. Measurements and purely theoretical prediction in (h
l
, Ca∗)-

space, error bars included as dashed lines. The theoretical predictions con-
verge, as expected, for walls of varying lengths.

flows, see Figure 6. As expected, the error grows with longer
wall length. The best prediction is the one made for the
shortest flap of length l = 1

4w where 5 out of 6 measurements
are within the error bounds. The error bounds correspond to
the uncertainty of the Cauchy number (e.g. due to material
property and wall thickness variations). The largest source of
error was the wall thickness and so the Cauchy number ranged
from 0.32 − 2.6 of the estimated value. These uncertainty
estimates are quite conservative, the upper bound of all pos-
sible sources of error has been used. Thus it would be logical
to let each measurement be represented by a horizontal box,
stretching from the upper to the lower bound of Ca. In the
interest of accessibility, however, we will reframe from doing
so and instead set these bounds on the theoretical prediction.

In order to make a better prediction that is taking the
confinement into account, we replace the free stream velocity
U in the Cauchy number (2) for the velocity of the fluid as it
passes the tip, u2. Due to the incompressibility of water, the
flow speed will increase so that u2 = U

(1−Q) where Q = h
w is

the confinement ratio and u2 the flow speed at the tip of the
flap. Thus, a modified Cauchy number can be defined as

Ca∗ =
l3CDρbu

2
2

2EI
=
l3CDρbU

2

2EI

1

(1−Q)2
=

Ca

(1−Q)2
.

(3)
Using this number, we get the results shown in the lower
picture of Figure 6, which shows walls of lengths l ≤ w,
where all but two measurements fall within the error bars of
the prediction.

In Figure 7 all the conducted measurements are found in
one plot. There is a family of measurements lying considerably
under the error bars of the theoretical predictions. All of those
have one common factor - they are all walls of length longer
than channel width, l > w. Another observation is that there is
a rich range of marker colors lying within the error bars. Thus
it seems as though Ca∗ makes up for confinement ratio Q in
an excellent manner, but fall short when the walls grow longer
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Figure 12. Dynamic measurements in (Re,Ca∗)-space. While performing
experiments, we were walking along the dashed lines away from the origine
until we reached oscillatory motion. The points at which the flap started
oscillating are marked with blue stars.

than channel width. Both of these observations are confirmed
in Figure 8. Here there is a clear break point between walls
of length w and 5

4w, when l ≤ w the relative error is quite
constant, but starts increasing with l when l > w. Looking at
the picture to the left in Figure 8, there does not seem to be any
real trend line over varying confinement ratio, the high median
values in the upper intermediate regions of Q ∈ (0.4, 0.7) owe
to the longer walls that happen to be overrepresented in this
region. This conclusion is confirmed by Figure 9 where we
have removed walls of length longer than channel width.

Thus far we have concluded that Ca∗ is sufficient for
predicting h

l , and by that also posture, for wall lengths l ≤ w
and all confinement ratios Q. When the flap grows longer
than channel width, the self-similarity across walls of varying
lengths is broken, as is shown in Figure 10 where h

w is plotted
to wall length. Since w is constant, any change in the y-
coordinate is accredited to a change in deflected height h.
Easily observable, there is a clear transition between l ≤ w
and l > 5

4w where the isolines for Ca goes from scaling
roughly linearly with wall length to becoming completely
horizontal, converging to a constant value of h. Thus h scales
with wall length, as it should for self-similar bending, before
the transition point. After, however, h is constant as wall length
increases for a constant Ca or Ca∗, meaning that the self-
similarity is broken. However, the value of convergence is
nothing but the value of h for wall length l = w, which
is predictable using Ca∗. Thus h can be predicted by Ca∗

for longer walls as well, as long as we change the prediction
accordingly, i.e. the deflected height for flaps with l > w
and a given Ca∗ is the same as that for flaps with l = w
with the same Ca∗. However, since the self-similarity does
not hold for walls where l > w, posture is no longer uniquely
defined by h

l and so we cannot predict posture as we can when
l ≤ w. We can only predict deflected height h and through
that obstruction ratio Q.

So far the experimental value of deflected height h has

Figure 13. y-position of the tracked point versus time for oscillating flaps.

been used in order to find Ca∗ for the flaps. Of course, the
value of h is not known a priori. In order to make a purely
theoretical prediction of the deflected height h, two parameters
are needed; Ca, which is estimated based on known material
and geometric properties of flap, and the confinement ratio in
unbent state, i.e. wall length over channel width. To do this,
an iterative algorithm was used where h was firstly calculated
based on Ca. This value of deflected height h was then used
to find Ca∗. Recalculating h based on Ca∗, a new value of
h was found, leading to a new value of Ca∗. This process
repeated itself until h converged, i.e.

Ca→ h0 → Ca∗1 → h1 → Ca∗2 → h2...

Convergence was considered to be found when h did
not change more than 1 % between two cycles. Using this
algorithm, convergence was found for all walls not exceeding
channel width, see Figure 11. No convergence was found in
the case of walls longer than channel width, in these cases h
circulated between a very high value, typically over 90 %, and
a very low value, around 10 %. This is beacause a high value
of Ca∗ leads to a small h, which in turn leads to a small
value of Ca∗, leading to a large h, leading to a large Ca∗
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Figure 14. Frequency times stiffness height plotted to flow velocity with a
linear least square fit. The slope of the fit is the Strouhal number, St.

and the loop starts over, i.e. h big → Ca∗ big → h small →
Ca∗ small→ h big....

Dynamic Deformation

Observing figure 12, there seem to be two dimensionless
parameters determining the transition into oscillatory motion:
Ca∗ and Reynolds number, Re. Re = UL

ν , where the
characteristic length L is taken as the lengths of the flaps.
Specifically, the requirements for dynamic deformation appear
to be Ca∗ > 3000 and Re > 10000, meaning the tranisition
points should cluster up at the isolines Re = 10000 and
Ca∗ = 3000.

Observing the oscillations (see Figure 13), one clearly sees
harmonic tendencies, but the oscillations do not seem to be
purely sinusoidal, some of the oscillations look more like
triangle waves. In some oscillations the upward motion takes
more time than the downward motion, in other oscillations
it is the other way around. The time interval between two
neighboring peaks for each wall oscillation is nearly constant,
thus the oscillations are near mono-frequent and this frequency
is easily found by taking the inverse of the average time
interval. Using this frequency, along with the stiffness height,
defined as the average height over time of the tracked point
of the flap over the wall, and the free stream velocity, we can
find the Strouhal number, St. Plotting frequency times stiffness
height versus flow velocity and applying a linear least square
fit to the data on the form y = ax, we get an R2-value of
0.85 and a = 0.12 (Figure 14). The a-parameter would be
the Strouhal number, which we would expect to be somewhat
under 0.2 if the oscillations are vortex-induced. The St value
of 0.12 is thus indicative of a vortex-induced phenomenon
and is roughly consistent with that expected for bluff bodies,
St < 0.2.

The dependence on Ca∗ has an intuitive physical inter-
pretation - as the Ca∗ parameter increases, the flap bends
over more, increasing curvature near the base and decreasing
curvature away from the bed, making the rest of the flap close
to linear-shaped [Alben et al., 2002]. Since the restoring force

due to structure stiffness is Fre = −EI d
2θ
ds2 , the flap gets stiffer

in the region closer to the bed and more flexible in the outer
part as Ca∗ increases until the shape resembles a rigid quarter
of a cylinder with a straight, streamlined, flexible tail behind
it. Once Ca∗has reached 3000, the flap will be sufficiently
deformed so that the ’rigid’ quarter cylinder near the base will
vortex-shed downstream, the vorticity will induce a pressure
difference to the surrounding fluid and push the ’flexible
tail’ from its streamlined position. This disturbance from the
equilibrium position travels with the vorticity downstream,
causing the flap to oscillate. The dependence on Re needs
to be studied further.

IV. CONCLUSIONS AND FUTURE WORK

In agreement with our hypothesis, the Cauchy number was
not able to predict posture in steady state wall deformation.
However, a modified Cauchy number taking the increase in
velocity due to flow confinement into account, Ca∗, was suf-
ficient for predicting posture for all wall lengths not exceeding
the channel width. For walls of length longer than the channel
width, self-similarity was broken and the deflected height of
the flap converged to a constant value depending on the value
of Ca∗. That value is also predictable by Ca∗, thus Ca∗ is
sufficient for predicting posture for wall lengths not exceeding
channel width and obstruction ratio for all wall lengths.

Experiments indicated that dynamic deformation occurs
when Ca∗is typically larger than 3000 and the Reynolds
number, Re, typically larger than 10000. The dynamic de-
formation was in the form of monofrequent oscillations with
clear harmonic tendencies. It appears that the oscillations are
vortex-induced with a Strouhal number, St, of 0.12.

Future work on this area should include an analytical
model for steady state wall deformation in confined flows
explaining the importance of Ca∗ and observed convergence
in h. Further, since the primary interest of this topic is in
internal biological flows and blood is a non-newtonian fluid,
it would be interesting to investigate the case when the fluid
is non-newtonian. For the same reason, in biological contexts
one often see two flaps, one fastened at each wall, facing
eachother over the channel (e.g. vocal cords and heart valves),
therefore investigating the effect of such “double-flap” setup
would be useful when trying to apply these results to real
world problems.
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